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Abstract
Climate change can alter soil moisture with subsequent effects on water resources and vegetation growth. This study aims to
understand the interactions and quantify the impact of climate change on soil moisture and vegetation in the Urmia Lake basin,
Iran. The ERA-5 precipitation and temperature, GLDAS soil moisture, and MODIS NDVI monthly time series were used for
2001–2018. The MK test and Pearson correlation revealed the seasonal and monthly precipitation, and NDVI displayed insig-
nificant trends, but the positive trend of temperature was observed in the cold season. At a depth of 0–10 cm, the monthly soil
moisture trend indicated the highest negative trends occurring during April–May, while the lowest negative trends were in winter
between December and January. Also, time-lagged (0, 1, and 2 months) correlation analysis showed soil moisture and climatic
parameters of each month with short time-lagged (0 and 1 month) mostly presented significant correlations, but mid-time-lagged
(2-months) correlations were not found significant with precipitation. Results showed that temperature played a more critical role
than precipitation in soil moisture distribution within the study area. Investigating the impact of climate change on soil moisture
by ensembles of AOGCM models under the different RCPs showed that soil moisture is influenced by temperature increasing.
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Introduction

The soil moisture is one of the most important drivers of the
ecosystems that, in association with land surface temperature,
near-surface temperature, and water availability, influence
vegetation cover (Chen et al. 2014; Boke-Olén et al. 2018).
Soil moisture varies in time and place and impacts the strong
effect on the terrestrial system (Wang and Qu 2009;
Seneviratne et al. 2010). Under future climate scenarios in
many areas, with increasing demand for evaporation due to
rising temperatures, the soil moisture deficiency increases,
and the role of soil moisture in climate change is significant
(Dirmeyer et al. 2013; Meng et al. 2018). Also, the vegetation
is significantly affected by climate change and increasing tem-
perature (Saha et al. 2018; Potić et al. 2017). Soil moisture
distribution is greatly affected by precipitation regime and
temperature incorporation with vegetation and soil types
(D'Odorico et al. 2000; Feng and Liu 2015). The precipitation
directly affects soil moisture, while the temperature is indirect,
which controls the soil moisture by evapotranspiration. The
balance between precipitation and evaporation can lead to soil
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moisture (Wang et al. 2018). In multiple studies, soil moisture
has been investigated with the climatic variables, soil param-
eters, and vegetation cover across the world (Wang et al. 2018,
2019). Due to the interaction of the soil moisture and other
affective variables, some studies tried to explore the role of
soil moisture as a controlling factor on vegetation cover (Chen
et al. 2014). For example, Engstrom et al. (2008) and West
et al. (2018) have utilized remotely sensed data to examine
vegetation change by using the spatial patterns of the soil
moisture. It is noted that the vegetation cover affects temporal
and spatial soil moisture by varying soil infiltration and reduc-
ing evaporation (Zucco et al. 2014; Ouyang et al. 2018; Yang
et al. 2018; Wang et al. 2019). Niu et al. (2015) showed that
the different vegetation cover could control soil moisture in
the semi-arid region of China. Moreover, it concluded that
temporal fluctuations of soil moisture in lands with a different
cover are not typically consonant with the precipitation due to
the aridity sequence. Generally, the number of soil moisture
observation data is minimal due to the specific geographical
and climate conditions and lengthy harvesting process and
difficulty measuring (Wilson et al. 2003; Cai et al. 2017;
Zeng et al. 2015). Over the past years to now, different remote
sensed-based products of soil moisture in temporal coverage
and post-processing are accessible and can be an alternative to
soil moisture as observational data (Boke-OleÂn et al.,2018;
Meng et al.,2018). Generally, remote sensing data and reanal-
ysis data of soil moisture show better performance than station
data due to greater regional connectivity and coverage
(Legates 2000; Park et al. 2017). The ability of this data has
been considered in many types of research. Cai et al. (2017)
made use of GLDAS (Global Land Data Assimilation
System) data version 2.0 from 1961 to 2011 provided by the
National Centers for Environmental Prediction (NCEP) of the
National Oceanic and Atmospheric Administration (NOAA).
Cai et al. (2017) used this data to investigate soil moisture
characteristics in Eastern China. Despite differences between
GLDAS and observational data, they found that GLDAS data
almost reflect the true characteristics of soil moisture in
eastern China and show that precipitation and temperature
had positively and negatively correlated with soil moisture
in different seasons. Meng et al. (2018) examined the
European Space Agency (ESA) Climate Change Initiative
(CCI) soil moisture product and the observed precipitation in
the Tibetan Plateau to evaluate the capability of the ESA
dataset to investigate the relation of precipitation changes
and soil moisture changes. The results displayed that except
in the west part of the Tibetan Plateau, soil moisture increases
depend on precipitation in many parts of this region. The
SMAP soil moisture dataset (Soil Moisture Active Passive),
NASA’s environmental monitoring satellite, has been
assessed in the Simineh-Zarrineh in the North West of Iran.
The evaluation shows a good correlation between samples as
ground-based observations and the SMAP soil moisture

products (Maleki et al. 2019). Based on studies, it can be
concluded that there is a close and mutual relationship be-
tween hydro-climatic parameters, and soil moisture is impor-
tant for the indicator in drought monitoring in the agricultural
sector and water resource management. Urmia Lake basin is
one of the important basins of Iran which faces a scarcity of
water resources. It is sensitive to climate change, and the issue
of water resources management has always been considered
(Malekian and Kazemzadeh 2016). Furthermore, although
drought is not an unusual phenomenon in Iran, this basin has
continuously faced long-term severe droughts (Shokoohi and
Morovati 2015). Several studies have been carried out to in-
vestigate the hydro-climatic parameters change such as pre-
cipitation (P), temperature (T), and NDVI (Normalized
Difference Vegetation Index) in the Urmia Lake basin
(Khazaei et al. 2016; Ghale et al. 2017; Tootoonchi et al.
2020). So far, a comprehensive study has been conducted to
investigate the interaction of these parameters with soil mois-
ture as an important parameter of Integrated Water Resources
Management (IWRM) in this basin. This may be due to insuf-
ficient data on soil moisture. Soil moisture data in Iran are not
comprehensive enough and are generally incomplete and
highly dispersed. So, it is not possible to study long-term
changes. Hence remote sensing and reanalysis data can be a
good alternative to investigate the change of this hydro-
climate parameter and its interaction with other parameters.
Global Land Data Assimilation System (GLDAS) is one of
these source data for soil moisture, and in several studies, the
GLDAS soil moisture dataset was applied as soil moisture
reference (Kim and Choi 2015; Li et al. 2015; Park et al.
2017). GLDAS is a global high-resolution land surface simu-
lation system produced by assimilation of the satellite obser-
vation data and the ground observation data (Cai et al. 2017).
There are also limitations in the spatial distribution of obser-
vational precipitation and temperature at different elevations
as other effective hydro-climate parameters in the study area
that have also been mentioned by Akbari et al. (2019) in the
Urmia lake basin water balance study. So, as different studies
have demonstrated, satellite-based and reanalysis datasets are
a possible solution to estimate these parameters (Wang et al.
2020). In this study, due to the limitation in different hydro-
climate parameters, GLDAS reanalysis data are used to obtain
soil moisture data. Also, precipitation and temperature have
been obtained from the ERA-5 (ECMWF Reanalysis v5)
reanalysis dataset. The MOD13 (MODIS Vegetation Index
Products)-Gridded Vegetation Index has been used as NDVI
Index. The role of soil moisture in the hydrological cycle of
the Urmia Lake basin in this study is attempted to investigate
soil moisture change and relevance on precipitation,
temperature, and vegetation cover. Thus, assessing soil
moisture change will help us improve our conception of
climate variability in the Urmia Lake basin.
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Materials and methods

Study area

Urmia Lake basin area is about 51758 km2 in 35° 40′–38° 30′
N and 44° 07′–47° 53′ E of northwestern Iran (Figure 1)
(Javadian et al. 2019). Urmia Lake basin is one of Iran’s in-
ner-catchments, including significant rivers such as the
Ajichay, Zarinehroud, Siminehroud, Gadarchay, Brandooz,
Shahrchay, Nazluchay, Mahabad, Rozechay, Ghalechay, and
Zulachay rivers (Akbari et al.,2019). The range of elevation
changes in the Urmia Lake basin ranges from about 1275 to
3707m above sea level. This extensive topography has caused
climate variations in the basin. The maximum and minimum
temperatures vary from 46.5 to −37.5 °C. Minimum rainfall of
about 250 occurs on the edge of the lake, and maximum
occurs in the south and around 700 mm. The origin of these
rainfalls is the air fronts that enter Iran from Europe and the
colder regions and affect the basin from the north and
northwest. The mean annual precipitation is around 340 mm
and means an annual temperature close to 12 °C in this basin
(Akbari et al.,2019).

Data sources

Monthly precipitation and temperature series were collected
from 9 synoptic stations of the Iran Meteorological
Organization from 2001 to 2018 (Figure 1) and used to vali-
date the reanalysis dataset of ECMWF (European Centre for
Medium-RangeWeather Forecasts). In this study, ERA-5 data
(precipitation and temperature), which are fifth-generation re-
analysis from European Center for Medium-Range Weather
Forecast, are utilized in 0.25° resolution from 2001 to 2018.
NASAGlobal LandData Assimilation System (GLDAS) uses
advanced land surface modeling and data assimilation tech-
niques to ingest satellite- and ground-based observational da-
ta. The output data of this hydrology model are presented in
four land surface models: Noah, Catchment, the Community
Land Model (CLM), and the Variable Infiltration Capacity
(VIC) (Rui and Beaudoing 2018). In this study, the GLDAS
model used is Noah. The monthly 0.25-degree spatial resolu-
tion soil moisture dataset at depths of 0–10 cm and 10–40 cm
is derived from the Goddard Earth Sciences Data and
Information Services Center for 2001–2018. NDVI monthly
series is obtained from MOD13C2 Version 6-gridded vegeta-
tion indices in a 0.5-degree resolution. The Normalized

Fig. 1 Location of the study area in the northwest of IRAN
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Difference Vegetation Index (NDVI) was developed by
Rouse et al. (Rouse Jr et al. 1973). This index is one of the
most common, most natural, and most fit indices known in
vegetation studies. It has a simple computational process and
has the best dynamic power compared to other indices. This
index is most sensitive to vegetation changes and is less sen-
sitive to climate and soil effects, except where vegetation is
low. NDVI time series can be assessed by a range of sensors
(West et al. 2018). NDVI has been widely applied in different
studies (Shen et al. 2017; Zhang et al. 2017). NDVI values
vary from −1 to 1. The values less than 0.1 correspond to
unvegetated land, and the values greater than 0.2 correspond
to low, moderate, and dense vegetation (for more details, fol-
low Didan et al. (2015); Al-Doski et al. (2013)).

For change detection of hydro-climatic parameters in future
CMIP5 (Coupled Model Intercomparison Project phase 5)
dataset in the address, ftp://gdo-dcp.ucllnl.org/pub/dcp/
archive/cmip5/ Global Mon / BCSD is used. Eventually, all
the data were transferred to monthly temporal resolution and
0.5*0.5 spatial resolution to adjust the data.

Data analysis

Mann-Kendall (MK) trend test

There are a large number of statistical tests that are used for
trend detection. One of the most convenient and practical sta-
tistical tests is Mann-Kendall’s rank statistic test. It is applied
to analyze climatic time series and climatic change detection
in climatological and climate change studies (Bonfils 2012).
Mann-Kendall rank test belongs to non-parametric tests, and
the normal distribution of data is not required (Zaman et al.
2015). A more thorough description can be found in Sneyers
(1990). In Equation (1), Kendall’s S-statistic, variance, and Z
can be calculated as follow:
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where n is the number of time series observations and xj
and xk are two time series of observational data, while i=1, 2,
3, . . . to n−1 and j=i+1, i+2, i+3, . . .. n. Each xkis as a reference

point in time series and all xj is compared by that. ti is the
number of ties for tth value, andm is the number of tied values.
In this test, the null hypothesis (H0) showed no trend; the
alternate hypothesis (H1) was a trend. If Zj j > Z

1−∝=

2
(H0) is

rejected and means there is a statistically significant trend.
The critical value of a value of 0.05 from the standard normal
table is 1.96 (McBean and Motiee 2008. Ahmad et al. 2015).
In this study, significant level is α = 5% (or 95% confidence
intervals) for a two-sided probability.

Statistical analysis

The Pearson correlation coefficient (CC) is applied to investi-
gate the relationships between the principal variables. This
statistical index has no units and displays the score of agree-
ment representing the linear correlation level, which ranges
from −1 to 1, where a positive value shows a positive corre-
lation and a negative value means the negative correlation
(Wang et al. 2019). Soil moisture has vertical variations at
different depths (ZHANG et al. 2003; Cai et al. 2017), and
generally, soil moisture is affected by precipitation, but this
effect can be delayed by 1 or 2 months (Zhu et al. 1996; Cai
et al. 2017). So, in this study, to check the monthly correlation
of variables and soil moisture, time-lagged correlation analy-
sis (1 and 2 months) is examined. Initially, soil moisture data
were obtained from themonthly GLDAS dataset at two depths
of 0–10cm and 10–40 cm. Spatial distribution maps are plot-
ted in different months to determine the extent and trend of
moisture changes at different depths. Data on precipitation
and temperature variables were obtained from the ERA-5
dataset. The performance of these data is evaluated with
monthly temperature and precipitation observation data.

r ¼ cov sm; fð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cov smð Þp

*
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cov fð Þp ð2Þ

Here, sm is soil moisture, and f is climatic parameters and
NDVI (Eq. 2).

Results

Validation ERA-5 dataset

In Figure 2, the scatterplots of ERA-5 precipitation and tem-
perature data versus observational data are shown for the nine
stations separately. Also, the retrieve R2 and Root Mean
Square Error (RMSE) are displayed. The statistical compari-
son shows that linear correlations for temperature are more
potent than precipitation. The R2 values of temperature are
mostly close to 0.99 or 1, and the RMSE is from 0.77 to
2.47. The linear correlations value of precipitation range
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Figure 2. Scatterplots of ERA-5 precipitation (up) and temperature (down) data versus observational data for 2001–2018 separately
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from 0.58 to 0.79 for all stations, and the RMSE values show a
wide range of precipitation. The magnitude of the RMSE
values compared to the observed rainfall data with the
reanalysis and remotely sensed data is not an unexpected
point and has been observed in several case studies, for
example, Raziei and Sotoudeh (2017) and Katiraie-
Boroujerdy et al. (2019). In the study area, generally, this issue
occurs due to the complex topographic.

Spatial and temporal characteristics of climatic
variables, soil moisture, and NDVI

Figure 3 reveals mean monthly climatic variables, soil moisture
spatial, andNDVI temporal distribution from 2001 to 2018 in the
Urmia Lake basin. Figure 3 a presents a variation of mean
monthly precipitation, ranging less than 20 to rather than
70 mm in the study area. The minimum precipitation appeared
in the middle of the basin and the edge of the Urmia lake, as long
as the maximum appeared in the eastern and western borders of
the basin and rising by elevation due to orographic precipitation.
According to Figure 3a, the precipitation distributed throughout
all months, and low precipitation was observed from June to
September. Generally, more precipitation occurs during the win-
ter, autumn, and spring. The spatial distribution of temperature is
given in Figure 3b and ranged from −5 to 25 °C in other months.
Temperature in the plain of the study area, which is scattered in
the basin, is higher than high altitude areas on the mountains
region in the boundary of the basin. The temporal investigation
of temperature presents a strong consistency between the tem-
perature and the precipitation map. It shows that the most con-
siderable amounts of temperature occur in low precipitation
months of June, July, and August. They are associated with the
climate of the study area, and wet and cold months are in winter
and spring. As given in Figure 3 c and d, both soil moisture 0–10
cm and 10–40 cm have a robust monthly distribution. The soil
moisture 0–10 cm ranges from less than 10 to 40 (m3 m−3), and
the range of less than 30 up to 120 (m3 m−3) belongs to soil
moisture 10–40 cm. The spatial distribution of mean annual soil
moisture (0–10 cm and 10–40) is similar to the precipitation. The
temporal distribution shows that the most of the monthly mois-
ture corresponds with the wet season of the year, observed in
winter and spring, and shows a seasonal cycle of increase from
November to May versus a decreasing cycle from June to
October. The slope of soil moisture is increasing from June to
October due to increased evaporation from the soil surface.

Compared to the distribution of soil moisture coupled with
the precipitation distributed, soil moisture distributions are
homogeneous with precipitation patterns. Also, soil moisture
response to precipitation rate change is asserted by Javadian
et al. (2019), in the Urmia Lake basin. Moreover, the spatial
patterns of soil moisture in different depths are similar in
monthly and seasonal distribution, which was reported by
Cai et al. (2017) in a semi-arid region. The spatial distribution

of NDVI (Figure 3e) shows that vegetation over the central
region is much dense than in other regions. The temporal
distribution of NDVI is in harmony with precipitation and
temperature variations, especially in spring and summer.
Moderate T and soil moisture coupling with a sufficient
amount of precipitation provide high NDVI in the growing
season of the study area spatially in May and June. Referred
to Barlow et al. (2016), temporal variability of vegetation is
related to the distribution of climatic variables in the study
area as the middle-east, and monthly variation of NDVI is
almost in line with the region’s growing season.

Trend analysis

TheMann-Kendall test for trends detection in the monthly and
seasonal average of climatic variables, soil moisture, and
NDVI is shown in Figure 4. Monthly and seasonal precipita-
tion trends from 2001 to 2018 are given in Figure 4a. As can
be seen, an increasing trend in May, June, and July is notable,
and in January, February, and March, decreasing trends are
considerable. In other months, trends are quite slight and do
not alter significantly during the whole term. In seasonal pre-
cipitation except for autumn, in other seasons, almost high
variations are observed. The trend of temperature in monthly
and seasonal scales is shown in Figure 4b. The monthly trend
showed a slight upward trend from May to August and is
partly close to the study ofMalekian and Kazemzadeh (2016).

In these months, the rising temperature trend confirms the
increasing precipitation trend due to temperature in extreme
precipitation in the region due to environmental conditions.
The analyses of the seasonal trend of temperature also indicate
the increasing temperature in summer compared to other sea-
sons, which is expected due to the monthly temperature
changes in the warm months of the year. The soil moisture
trend in different depths is shown in Figure 4 c and d. The soil
moisture in 0–10cm and 10–40cm showed a relatively signif-
icant decreasing trend in most months. Remarkably, the
downward trend of soil moisture in wet months is more in-
tense. Most of the months present a significantly decreasing
trend at the 5% level and indicate soil moisture change in the
study area. The soil moisture variations of 10–40 cm are more
severe in February and March than at a depth of 0–10 cm. The
seasonal trends of soil moisture show Winter and spring sea-
sons, which have the highest rainfall in the study area and
have the highest downward trend in soil moisture. Winter
and spring seasons, which have the highest rainfall in the
study area, are coupling with the highest decrease in soil mois-
ture, which specifies the dependence of soil moisture on pre-
cipitation. With a downward trend of precipitation in winter,
the soil moisture trend is significantly decreasing. This result
is considered a decline in soil moisture in the west of china by
Cia et al. (2017) and in surface soil moisture over 1991–2009
in West and Central Australia (Chen et al. 2014). Figure 4 e
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a) 

b) 

Figure 3 Spatial and temporal patterns of monthly mean: a precipitation in mm, b temperature in °C, c soil moisture in different depth 0–10 cm, d 10–
40cm in m3 m−3, and e NDVI 2001–2018.
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c) 

d) 

Fig. 3 continued.
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shows the monthly and seasonal trends of NDVI. Generally,
NDVI trends same as temperature and precipitation are slight
approximately in most months, except April.

Regarding trends in the NDVI series, the tendency to an
upward trend in April, May, June, and July is more extreme,
and a slightly increasing trend is shown in other months. Chen
et al. have reported a slight upward trend in the NDVI time
series. 2014 as a result of research in the arid land of Australia.
The seasonal trend pattern shows that seasonal trends of
NDVI did not changed and are similar to those reported earlier
for temperature.

Effects of precipitation, temperature, and vegetation
on soil moisture and time-lagged effects

Statistical correlation of precipitation and soil moisture

Figure 5 a displays Pearson’s correlation for mean soil mois-
ture in 0–10cm and 10–40cm depth and mean precipitation in
the study area. The spatial distribution of soil moisture-
precipitation correlation ranges from −0.2 to +0.1 and shows
a pattern of negative to positive correlations in different alti-
tude regions in the study area. The effect of precipitation on
soil moisture is predominantly positive in mid-elevation and
low-elevation areas in direction mode, and mildly positive

correlations around 0.1 occurred in the depth of 0–10 cm,
which explains that the effect of rainfall on soil moisture is
not dominant, especially at depths (10–40). In the mode of
time-lagged, the correlation between precipitation and soil
moisture with time-lagged of 1 or 2 months has been investi-
gated. In 1-month time-lagged, the positive correlations con-
sidered in the depth of 0–10 and the number of gridded that
show moderate correlations in depth of 10–40 decreased. In a
2-month lagged time mode, the correlation coefficient in
depth of 10–40 declines. Results show that 0–10 cm soil mois-
ture is affected directly by precipitation, and a negative corre-
lation occurs predominantly in 2 months lagged precipitation.
In the depth of 10–40cm, the effects of precipitation decrease
by increasing lagged though in 2-month lagged time. Positive
correlations are more potent than the depth of 0–10 due to
water infiltration conditions and affect soil moisture.
Overall, it resulted in the effect of precipitation on soil mois-
ture that is weak. Some studies had a comparative result and
mildly positive and negative relationships have been reported
between precipitation and soil moisture (Yang et al. 2018).

Statistical correlation of temperature and soil moisture

The various correlation strengths of the soil moisture in 0–
10cm and 10–40cm depth with temperature are given in

e) 

Fig. 3 continued.
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Figure 4 Monthly and seasonal trend of a precipitation, b temperature, c soil moisture 0–10cm, d soil moisture 10–40cm, and e NDVI 2001–2018,
significant at P<0.001 level

1796    Page 10 of 18 Arab J Geosci (2021) 14: 1796



Fig. 4 continued.
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a) 

b) 

c) 
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Figure 5b. The correlation exhibits that the soil moisture and
temperature are correlated very weak to moderate in different
time-lagged modes and different depths. Direct correlation
between temperature and soil moisture shows bad effects of
temperature on soil moisture. It means that the sensitivity of
soil moisture is weak into the change of temperature in the
mode of 0-month lagged time. In other words, the highest
negative relationship between soil moisture and an average
temperature of 2 m was observed at 0–10 m depth. In this
mode, the negative correlation decreases in depth of 10–40.
Also, lagged time effects of temperature on soil moisture show
which 1-month and 2-month antecedent temperatures have
been affected on soil moisture insufficient to moderate in the
study area. Increasing the time delay to 1 month increases the
amplitude of temperature impact at both depths. By increasing
the time delay to 2 months, the effect rose again, and the
correlation increased. Also, the extreme correlation was con-
sidered in the evaluation relation of temperatures with soil
moisture in different depths in a region of China by Wang
et al. (2018).

Statistical correlation of NDVI and soil moisture

The average correlation coefficient of NDVI and soil moisture
over the study period is shown in Figure 5c. The different
patterns of correlation of NDVI and soil moisture in various
time-lagged suggested that vegetation has a considerable in-
fluence on soil moisture in lagged time and from the surface to
deep. Chen et al. (2014) note this relation. This figure reveals
that vegetations are positively correlated to soil moisture at
different time lags. The number of grid points that show a
positive correlation increased by extending ranges of lagged
time from 1 to 2 months. Yang et al. (2018) mention the effect
of vegetation on soil moisture

Responses of soil moisture to climate change

The same as other regions in the world, the Urmia Lake basin
is affected by climate change, and the hydrological cycle has
accelerated. Many studies conclude that by climate change
effects, precipitation reduced, and temperatures increased in
this basin. The change in two main climatic parameters sug-
gested that soil moisture is influenced. As the trends investi-
gated in Figure 4, a slightly decreasing trend in precipitation
and soil moisture has been observed, and air temperature ex-
hibits a slightly increasing trend in the whole study period.

�Figure 5 Spatial pattern of Pearson correlation: a precipitation and soil
moisture 0–10 and 10–40, b temperature and soil moisture 0–10 and 10–
40, and cNDVI and soil moisture 0–10 and 10–40 bottom. Panel left, no-
lagged; panel middle, 1 month lagged; and panel right, 2 months lagged.
The P values are significant in < 0.01.

Figure 6 Monthly distribution of observational data and future change scenario of temperature (a) and precipitation in percentage (b) for different RCPs,
the 2050s.
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According to Figure 5b, in none-lagged time mode, air tem-
perature and soil moisture showed negative coupling, but the
positive coupling is considerable in the lagged time mode.
This reinforces the possibility that soil moisture decline is
affected by temperature raising and the slight changing pre-
cipitation. The results of future temperature and precipitation
prediction under the representative concentration pathway
(RCP) 2.6 and 8.5 scenarios by CMIP5-AOGCM (Coupled
Model Intercomparison Project Phase5- Atmosphere-Ocean
General Circulation Model) ensemble model CSIRO-Mk3-
6-0, CCSM4, and HadGEM2-ES the 2050s are shown in
Figure 6. This figure reveals a slightly decreasing trend in
precipitation and an increasing trend in temperature for the
basin over future periods. Since the precipitation change in
the future is not very big (Figure 6b) and its effect on soil

moisture is weak by the result of this research, it may be
statistically pointless to investigate the future effects.
However, as a result, the Urmia Lake basin will experience a
decrease in soil moisture, resulting from the increase in
temperature.

Discussion

Hydroclimate parameters are varying regionally and are in
complex interaction together. Hence the investigation of the
change and relation of precipitation, temperature, and NDVI
against soil moisture may help explain the water cycle of the
study area. Since the study area is one of the momentous
regions of water resources management in Iran and always

Figure 7 Time series of climatic variable
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was studied in different terrestrial sectors in recent years.
However, soil moisture changes and the relationship between
soil moisture and other climate parameters were less has con-
sidered. So, in this research, it is attempted to the assessment
of the role of change in climatic variables and NDVI on soil
moisture and investigate the correlation of soil moisture time
series of GLDAS data at 0–10cm and 10–40cm with precip-
itation, temperature, and NDVI index over recent 2 decades.
Based on scientific literature, GLDAS as a reanalysis soil
moisture dataset generally is associated with uncertainty, but
in some areas, the observed data of soil moisture is rare, is
helpful, and is useful to help to investigate the correlation of
soil moisture with climate variable (Cia et al., 2017). In order
to calculate both the Mann-Kendal test as a non-parametric
test and Pearson coloration and their significances across the
study area, ERA-5 reanalysis data products (monthly temper-
ature and precipitation) of ECMWF are used for coherent
regional coverage. At first, the performance of ERA-5 reanal-
ysis data products was evaluated against rain gauge data over
the Urmia Lake basin from 2001 to 2018. The performance
ERA-5 reanalysis datasets were significant and suggested that
ERA-5 is applied to study gridded precipitation and tempera-
ture in the Urmia Lake basin.

The trend analysis indicated that a downward trend of
monthly soil moisture is more robust than a slight monthly
precipitation trend. The significant upward trend in monthly
temperature exhibited an increase in temperature in the warm
month. Also, the upward trend of NDVI is represented in
April to July (growing season), and in other months, NDVI

trend is slight. The investigation correlation coefficient of
mean monthly temperature, NDVI, and soil moisture showed
that the correlation coefficient of precipitation is not as strong
as others. The role of temperature on soil moisture distribution
and the amount is more vital than precipitation. The effects of
temperature increasingly become strong by the increasing
time lag. This pattern was reported by Barlow et al. (2016).

The precipitation and surface soil moisture (0–10) correla-
tion goes more negative by increasing lagged time. Inversely,
positive correlations are more by increasing lagged time and
increasing deep soil moisture(10–40cm). Overall, precipita-
tion usually influences intense soil moisture (10–40cm) by
the time lag, and its effects are extended in surface soil mois-
ture in a short time. Time series change of GLDAS soil mois-
ture and precipitation (Figure 7a) also shows that increases in
soil moisture concur with precipitation increases. However,
increases in intense soil moisture do not coincide with precip-
itation, which agrees with the correlation result. This result is
in contrast to the impacts of temperature on soil moisture.
Figure 7 b reveals a pattern of where temperature rises soil
moisture drop. Though, in some areas, such as the arid region
and semi-arid regions such as China, precipitation efficiency
is more notable than the temperature (Yunqian Wang et al.
2019). The coldness of our study area may cause this contra-
diction. In the Urmia Lake basin, most precipitation occurs
during the cold months, so the effect of temperature on soil
moisture levels increases and partly strengthens precipitation.
An enormous time lag pattern is seen in NDVI and soil mois-
ture in Figure 7c, which is in harmony with them. This result

Figure 8 Summary of Pearson
correlation coefficients between
soil moisture and climatic indices
in straight months, one lagged
month, and two lagged months.
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shows that soil moisture is so sensitive to climate variables,
and the change of these climatic parameters affects soil mois-
ture as a critical element of the water cycle. Figure 8 shows a
significant matrix which reveals soil moisture is significantly
correlated with temperature and NDVI in a different time lag.
It is noted that the correlation of precipitation with soil mois-
ture is not significant.

Conclusions

In this research, the GLDAS Noah soil moisture dataset was
used to study the response of soil moisture to climatic vari-
ables and NDVI on the Urmia Lake basin and investigate the
changes of soil moisture under climate change. According to
the result derived from this work, (1) spatial distribution of
soil moisture is similar to precipitation, and the soil moisture
displayed a specific monthly pattern, from December to
March. (2) Investigating the trends analysis showed monthly
precipitation not accompanied by a significant trend. The soil
moisture trend in most of the month was decreasing slightly.
The upward trend is considered in summer, and temperature
and NDVI have been slightly rising for some months. (3) The
statistical correlation shows that temperature positively affect-
ed cold months and adverse effects in a warm month on soil
moisture. Moreover, the temperature played a more critical
role than precipitation in soil moisture distribution within the
study area. Investigation of future climate showed by increas-
ing temperature affected future soil moisture. According to the
result of the CMIP5 ensemble, soil moisture will be influenced
by the change of the future temperature. The relation of soil
moisture with precipitation, temperature, and NDVI showed
less resilience to climate change. Hence, soil moisture will
change as a potential factor of water resources in the future,
influencing water balance and water resource management
policies and planning the study region that needs more
attention.
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