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Spatial modelling for identification of groundwater potential zones
in semi-arid ecosystem of southern India using Sentinel-2 data, GIS
and bivariate statistical models

Karikkathil C. Arun Kumar1,2 & Gangalakunta P. Obi Reddy1 & Palanisamy Masilamani2 & Pundoor Sandeep1,2

Received: 14 September 2020 /Accepted: 3 May 2021
# Saudi Society for Geosciences 2021

Abstract
The overarching goal of the present investigation is to adopt GIS-based spatial modelling techniques to delineate the groundwater
potential zones (GWPZs) in Sarabanga watershed (SBW) of Salem district, Tamil Nadu (TN) state of southern India, by using
high-resolution Sentinel-2 data, geographic information system (GIS), and bivariate statistical models (BSM) of frequency ratio
(FR), and index of entropy (IoE). In GIS-based spatial modelling, eight contributing factors to groundwater potential (GWP),
which includes geology, geomorphology, drainage density (Dd), slope, lineament density (Ld), soil texture, rainfall, land use/
land cover (LU/LC), and the well inventory data of 135 well locations were considered in identification of GWPZs. The identified
GWPZs of SBW based on the FR, and IoE models show that about 67.8% and 66.1% area of SBW are under very good to
excellent categories, while 9.0% and 8.1% are under poor, and very poor categories. The results obtained were validated by using
‘Area Under the Curve-Receiver Operating Characteristic’ (AUC-ROC) method with the validation data and observed the
prediction rate of 0.7313 and 0.7084, for FR, and IoE models, respectively. Modelling of GWPZs shows that FR model clearly
exhibits its robustness over the IoE model. Sensitivity analysis performed through Variable Importance Analysis (VIA) indicates
that in both FR, and IoE models, geology, slope, rainfall, and Dd were identified as the most influencing factors in delineation of
GWPZs. The study clearly demonstrates the potential of Sentinal-2A data, GIS-based spatial modelling, and robustness of FR,
and IoE models in attaining the reliable, and cost-effective results in delineation of GWPZs, which helps immensely in devel-
opment of GW exploration, and management plans.
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Introduction

Groundwater (GW) is vital for life on earth, and its demand
has increased tremendously due to increasing of population,
agricultural, industrial, and domestic usages (FAO 2011;
Wang et al. 2020; Su et al. 2020). Globally, it was reported
that about 42%, 36%, and 27% of net GW withdrawal were

consumed by agriculture, domestic, and industrial uses, re-
spectively (Taylor et al. 2013; Ren et al. 2021). Owing to
the changes projected in global climate and ever-increasing
demand for GW, the urgent adoption of quantitative ap-
proaches is essential to assess GW availability and its demand
(Chen et al. 2015). In India, nearly 90% of rural and 30% of
urban population depend on GW in meeting their basic needs
(Agarwal and Garg 2016). Further, the over utilization of GW
sources is prevalent in the absence of adequate scientific plans
and regulatory mechanisms (Rodell et al. 2009). In recent
years, many states of India have experienced the rapid decline
of GW level due to increased overexploitation (CWC and
CGWB 2016). Many researchers conducted the studies on
dynamics of GW and its impacts on agriculture in the chang-
ing climate scenarios (Song and Choi 2012) and its overall
sustainability (Woo 2013). In order to formulate GWmanage-
ment policies, and priorities, the reliable datasets on
groundwater potential (GWP) and its productivity
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are important for policymakers (Das 2017; Etikala et al.
2019). Geological characteristics of the region, it includes
type, and porosity of rock formations that primarily determine
the GW availability and occurrence (Reddy et al. 1994). The
underlying lithological formations control the percolation, and
the extent of GW recharge (Shaban et al. 2006). Many authors
employed the traditional methods based geological,
hydrogeological, and geophysical techniques in delineation
of groundwater potential zones (GWPZs) (Chatterji et al.
1978; Rashid et al. 2011; Kumar et al. 2014). The convention-
al approaches followed in delineation of GWPZs are complex,
uneconomical, time-consuming, and have one or other limita-
tions (Jha et al. 2010).

Therefore, precisely identification of GWPZs and device ap-
propriate management strategies by using advance tools, and
techniques like remote sensing, Geographic Information
System (GIS), and statistical models are important for sustainable
development especially in agrarian countries like India. Globally,
various techniques such as integration of remote sensing, and
resistivity data in GIS (Selvarani et al. 2016), influence factor
(Selvam et al. 2015; Magesh et al. 2012), statistical methods
(Falah et al. 2017), analytical hierarchy process (Dar et al.
2020; Saranya and Saravanan 2020) and GW modelling
(Sashikkumar et al. 2017) were used in delineation of GWPZs.
Clark and Fritz (1997) reported the use of isotopes of hydrogen
(2H and 3H) and oxygen (18O) in GW studies and assessment of
its dynamics at basin level. In India, stable isotopes studies were
also conducted in the GW recharge studies (Shivanna et al. 2004;
Saha et al. 2013). Lee and Lee (2011) developed decision tree
model to study the vulnerability to GW and changes happening
in environmental parameters like temperature and rainfall pat-
terns. However, the techniques of satellite remote sensing, and
GIS have been adopted widely in identification, and mapping of
GWPZs through integration of thematic database on topography,
soils, lithology, drainage patterns, and lineaments (Nayak et al.
2017; Mokadem et al. 2018; Şener et al. 2018). In the recent
years, probabilistic models were also being used in modelling
and mapping of GWPZs through ‘multi-criteria decision analy-
sis’ and modelling of weights-of-evidence (Mousavi et al. 2017;
Sahoo et al. 2017). The machine-learning models like decision
tree algorithms, fuzzy logic, and numerical modelling were also
widely used in modelling of GWP and reported better results
than the conventional methods (Barzegar et al. 2018; Golkarian
et al. 2018). Rana et al. (2018) and Sharma et al. (2020) per-
formed Hierarchical Cluster Analysis (HCA) to identify the GW
pollution zones in Himachal Pradesh, India. Many studies have
been conducted using remotely sensed datasets, geophysical sur-
veys, and GIS in mapping of GWPZs (Pradhan 2009; Bera and
Bandyopadhyay 2012; Magaia et al. 2018).

The GIS-based advance models like Frequency Ratio (FR)
model (Naghibi et al. (2014), and Index of Entropy (IoE) (Al-
Abadi and Shahid 2015), were sucessfully demonstrated in
modelling, and assessment of GWPZs. By using FR model, the

relationship between the independent, and dependent variables
was assessed through adopting ‘multi-layer integration of the-
matic maps’ in GIS (Oh et al. 2011). The FR and logistic regres-
sion models provide flexible techniques in identification of
GWPZs (Ozdemir 2011). Recently, FR model was tested in
observation of the statistical trends in large datasets (Ding et al.
2017; Hong et al. 2017; Siahkamari et al. 2018) including iden-
tification of GWPZs (Mousavi et al. 2017; Sahoo et al. 2017).
The GW entropy explains the effect of various GW controlling
factors in determining its potential. It could be effectively used in
computation of index system weights (Jaafari et al. 2014), de-
marcating theGWPZs, and their yields (Naghibi et al. 2014; Hou
et al. 2017; Khoshtinat et al. 2019). Since GW is the main source
for irrigation, domestic, and industrial use in semi-arid regions,
accurate assessment and identification of GWPZs using advance
techniques assume a greater importance. So far, the literature on
integration of high-resolution satellite data, GIS, and bivariate
statistical models (BSM) is limited in GWPZsmapping especial-
ly in hard rock terrains. Therefore, it is imperative to delineate the
GWPZs by using advance remote sensing, GIS, and BSM for
exploration and increase the water availability and control its
scarcity in hard rock terrains of semi-arid regions. Hence, the
core objective of the study is to model and delineate the
GWPZs by using high resolution Sentinel-2 data and GIS by
applying BSM of FR, and IoE models in Sarabanga Watershed
(SBW) of Salem district, Tamil Nadu (TN) state, southern India.
The comparative, and sensitivity analysis of BSM were also
performed to assess the degree of influence of input parameters
in precisely identification of GWPZs.

Study area

The SBW lies in southwest (SW) part of Salem district, TN
state of southern India, and covers five tehsils, namely
Omalur, Mettur, Edappadi, Yercaud and Sankari. It extends
between 11° 29′ 27.72″ and 11° 56′ 5.15″ in northern latitudes
and 77° 44′ 9.73″ to 78° 13′ 39.2″ in eastern longitudes and
covers about 1175.3 sq. km (Fig. 1). Sarabanga river originates
on the western slope of Shevaroy hills at 1630m of abovemean
sea level (MSL) and flows through Omalur, Tharamangalam,
Edappadi, and Thevur tehsils before joining the Cauvery river
nearby by Bhavani town. The elevation ranges from 154 to
1641 m above MSL, and it rises from SW to northeast (NE).
The SBW receives 800 to 1600 mm mean annual rainfall
(MAR) during SW monsoon season, and it progressively in-
creased towards the northern, north-eastern and eastern sections
of the SBWwith maximum at Yercaud hill region (1594.3 mm)
(Arulmozhi and Arulraj 2017). Geologically, hornblende-
biotite gneisses, charnockite, and granites represent hard con-
solidated Archaean crystalline rocks, which are the prominent
formations of SBW. These formations are associated with re-
cent alluvial, and colluvial deposits along the river channels,
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and foothills. However, Quaternary alluvium is the prominent
geological formation along the main course of Sarabanga river.
The fractured crystalline rocks, and the recent colluvial deposits
are the prominent aquifer systems in SBW with weathered
thickness zone ranges from 1 to 25 m. GW occurrence mainly
confined to weathered mantle in the fractured zones. These
rocks are porous, and permeable, which are associated with
secondary openings of fractures. The thickness of aquifer sys-
tems in SBW vary from 15 to 60m. In the toposequence of
SBW, recharge mainly takes place in confined aquifers in the
uplands, whereas, recharge-discharge together occur in the un-
confined to semi-confined aquifer of midland areas. However,
discharge takes place predominantly along the unconfined aqui-
fers of the lowland areas. Major agriculture crops grown are
paddy, groundnut, fodder, and sugarcane.

Materials and methods

Datasets used

Sentinel-2Amulti-spectral instrument (MSI) data (10m) of 3rd

March 2018 (tiles of T43PHP, T43PGN and T43PHN) from

Copernicus Open Access Hub, and Digital Elevation Model
(DEM) (12.5m) from ‘Advanced Land Observing Satellite
(ALOS) PALSAR’ were acquired. The lineament data at
1:50,000 scale was derived from ISRO Bhuvan portal. The
data on geology, and geomorphology at 1:250,000 scale
was derived from the Bhukosh portal of ‘Geological Survey
of India (GSI)’ for the watershed area and revised by using
high-resolution Sentinel-2A and ALOS DEM datasets. The
rainfall data of 30 years (1989 to 2018), acquired from the
‘State Surface and Groundwater Resources Data Centre
(SSGRDC)’, Chennai, for 14 rain-gauge stations spread
across the watershed. The data on soil parameters at
1:50,000 scale was acquired for the watershed from the
‘Tamil Nadu Agricultural University (TNAU)’. The input pa-
rameters used in the spatial modelling of GWPZs are depicted
in Table 1.

Georeferenced well inventory data

GIS-based well locations mapping was conducted to establish
the relationship among the geological, geomorphological,
and GW characteristics of wells to validate the identified
GWPZs (Haghizadeh et al. 2017). Firstly, field survey was

Fig. 1 Location map of the study area
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conducted to identify, and map the 135 well locations distrib-
uted throughout the watershed under different geological for-
mations by using hand-held ‘Global Positioning System
(GPS)’ (Fig. 1). Out of 135 well locations, 94 wells (70%)
and 41 wells (30%) were arbitrarily grouped as calibration,
and validation datasets, respectively. The ‘calibration dataset’
was used in spatial modelling and delineation of GWPZs,
whereas the ‘validation dataset’ was used to validate the
GWPZs, and accuracy assessment of models adopted. The
calibrated dataset of well locations was superimposed on all
contributing factor maps in GIS to understand their inter-
relationship.

Computation of groundwater conditioning factors

GWPZs mapping can be carried out by investigating the con-
trolling factors on GW storage and occurrence (Tolche 2020).
GW occurrence is determined by many parameters like rain-
fall, elevation, geology, geomorphology, slope, drainage den-
sity (Dd), lineament density (Ld), type of soil, land use/land
cover (LU/LC), recharge potential, aquifer transmissivity, and
anthropogenic activities (Paul et al. 2020). However, in the
current investigation, eight major contributing factors, which
includes geology, geomorphology, Dd, Ld, slope, soil texture,
rainfall, and LU/LC were used for the identification of
GWPZs. The thematic raster database for the input factors
were developed in ArcGIS at 10m × 10m grid cell by using
‘polygon to raster conversion tool’ for their integrated analysis
and mapping of GWPZs by adopting FR and IoE models.

The distinct LU/LC classess of the SBW was generated
through digital interpretation of Sentinel-2A data by using
‘supervised classification algorithm’ in ArcGIS. The water-
shed boundary, and drainage network were generated through
analysis of high-resolution ALOS DEM (12.5m) by using
‘ArcHydro’ tool in ArcGIS to compute ‘Dd’. The slope clas-
ses were computed fromALOSDEM by using ‘slope tool’ in
ArcGIS. With the help of derived lineaments, the ‘Ld’ was
computed to define its density in the given unit area. The
‘Inverse Distance Weighted (IDW)’ interpolation technique
was used to develop the rainfall raster by considering the 30

years rainfall data (1989 to 2018) of 14 rain-gauge stations.
The soil texture map was developed in GIS by using the leg-
acy soil data at 1:50,000 scale and the same used in the spatial
modelling.

Building of BSMs

FR model was adopted to establish the probabilistic correla-
tion between dependent (groundwater), and independent
(conditioning) factors (Oh et al. 2011; Naghibi et al. 2016).
The model has robustness in execution and understands the
derived results (Khosravi et al. 2018; Khoshtinat et al. 2019).
FR model was adopted to determine the effect of individual
conditioning factors to identify the GW occurrence. FR model
was expressed as follows;

FR ¼ W=TW
CP=TP

ð1Þ

where W explains the ‘total pixels of wells’ for the given
class of input; TW denotes the ‘total pixels of well’, whereas,
CP explains the ‘total pixels’ in the given thematic class and
TP indicates the ‘total pixels’. To find out the GWP, the FR
value of ‘each class in the given parameter’ was taken as the
weight of the given class. Finally, the GWPZs were computed
as (Jaafari et al. 2014; Naghibi et al. 2014):

GWPZ ¼ ∑n
i¼1FRi ð2Þ

where FRi denotes the ‘frequency ratio of a factor’ and n
explains the ‘total number of input factors’. The spatial asso-
ciation between the contributing factors of GW and the occur-
rence of GWPZs was analysed by using the FR model
(Table 3). The FR values were determined by using Eq. (1),
where the average of the proportion of the ‘area of wells’ to
‘the entire watershed’ is assumed as 1 (Moghaddam et al.
2015). If the FR is larger than 1, it indicates high correlation,
and if it is <1, it shows the low correlation (Oh et al. 2011).

In IoE model, the entropy explains the ‘degree of uncer-
tainty’ in the given random variable (Ihara 1993). The entropy
of model shows the ‘degree of variability’ and unreliability of

Table 1 Various input datasets and their characteristics

Sl. no Dataset Input variables Temporal coverage Spatial resolution Source

1 Sentinel-2A LU/LC 16 days 10 m https://scihub.copernicus.eu/

2 ALOS PALSAR DEM Slope, drainage density - 12.5 m https://asf.alaska.edu/

3 Lineament Lineament density - 1:50,000 http://bhuvan.nrsc.gov.in

4 Geology Geomorphology Geology Geomorphology - 1:250,000 http://bhukosh.gsi.gov.in/

5 Rain gauge data Rainfall 1989–2018 - State Surface and Groundwater
Resources Data Centre (SSGRDC)

6 Soil Texture - 1:50000 Tamil Nadu Agricultural University (TNAU)
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a model (Yufeng and Fengxiang 2009). The following math-
ematical expressions were used to determine the coefficient of
information (Jaafari et al. 2014):

Pij ¼ FR ¼ b
a

ð3Þ

Pij
� � ¼ Pij

∑
sj

j¼1
Pij

ð4Þ

H j ¼ −∑Sj
i¼1 Pij

� �
log2 Pij

� �
; j ¼ 1;…:; n ð5Þ

Hjmax ¼ log2 Sj ð6Þ

I j ¼ Hjmax−H j

Hjmax
; I ¼ 0; 1ð Þ; j ¼ 1;…:; n ð7Þ

wj ¼ I jPij ð8Þ

where (Pij) denotes the ‘probability density’, whereas, Hj and
Hjmax explains the ‘entropy values’, Sj indicates the ‘total number
of classes’, Ij is the ‘information coefficient’ and wj is the ‘resul-
tant weight’ of the factor. The values of wj range between 0 and
1. The derived GWPZs were assessed by using Eq. 9:

GWPZ ¼ ∑n
i¼1FRi � wj ð9Þ

where FRi denotes the ‘frequency ratio of a factor’ andwj is
the ‘resultant weight’ of the factor as a whole.

Validation and sensitivity analysis of BSMs

In any predictive modelling, assessment of its performance,
validation and uncertainty is essential (Dar et al. 2020). Many
researchers were used ‘Area Under the Curve-Receiver
Operating Characteristic’ (AUC-ROC) to assess the accuracy
of delineated GWPZs (Nhu et al. 2020; Naghibi et al. 2016;
Rahmati et al. 2015). FR, and IoE models were validated by
adopting AUC-ROC to determine the degree of the existence
or non-existence of GW (Rahmati et al. 2016). To evaluate the
influence of contributing factors, and sensitivity of models,
a performed Variable Importance Analysis (VIA) was per-
formed. It represents the statistical significance of each con-
tributing factor with respect to its effect on the generated mod-
el (Wei et al. 2015). The regression technique of random forest
model was used to measure the variable importance of outputs
of FR, and IoE models and explain the importance of each of
the input variables. The detailed methodology followed is
shown in Fig. 2.

Results and discussion

The analysis shows that SBW is predominantly underlined by
hornblende-biotite gneisses (64.4%), charnockite (23.2%) in

northern regions of the watershed and granites (7.6%) in
Pudupalayam village as isolated outcrops surrounded by
charnockite (Table 2 and Fig. 3a). The geomorphologic fea-
tures are base to understand the structural features, parent
material, and lithological formations in determining the
GWP especially in hard rock terrains (Rao et al. 2000).
Analysing the nature, and extend of geomorphologic units
immensely helped in delineating the GWPZs (Arulbalaji
et al. 2019). In the watershed, seven distinct geomorphologic
units namely structural hills (0.54%), dissected hills (10.27%),
residual hills (1.15), linear ridges (0.7%), pediments (15.8%),
pediplain (60.5%), and upper valley (8.8%) were
identified (Table 2 and Fig. 3b). The structural hills, dissected
hills, and residual hills are developed in north, south, and at
places in eastern parts of the watershed, which are normally
unfavourable for GW occurrence (Kumar et al. 2020). The
‘moderately weathered pediplain’ with medium to coarse
gravel are quite common in the watershed. The pediments
are distinguished by moderately steep topography spreading
below the hilly regions associated with low permeability and
GWP (Rajaveni et al. 2015). The linear ridges associated with
barren lands noticed in the eastern regions of Sarabanga river.
However, the isolated ‘residual hills’ with steep slopes and
rounded in nature were noticed in the northern parts of
watershed.

‘Dd’ explains the proximity of the drainage channels in the
given unit area (Horton 1932). It has direct relationship with
the permeability (Agarwal et al. 2013; Kanagaraj et al. 2019),
slope, geomorphological, and LU/LC conditions of the terrain
(Paul et al. 2020); hence, it was considered as an important
parameter in identification of GWPZs. GIS-based techniques
are being widely applied in delineation of drainage channels
and computation of ‘Dd’ in hydrological models (Reddy et al.
2018). The lower ‘Dd’ indicates the porous soil, thick vegeta-
tion cover and low relief, whereas, the higher ‘Dd’ implies the
opposite scenario (Reddy et al. 2002). The ‘Dd’ of watershed
was categorized as very low (<1.5 km/km2), low (1.5 to 2.5
km/km2), moderate (2.5 to 3.5 km/km2), high (3.5 to 4.5 km/
km2), and very high (>4.5 km/km2) (Table 2 and Fig. 3c).
Lineaments originate through the structural/tectonic process
with secondary porosity have significant contribution in GW
accumulation (Suganthi et al. 2013) and exploration (Şener
et al. 2018). ‘Ld’ in the SBW ranges from 0 to 3.8 km/km2

and further classified into five sub-categories, i.e. 0 to 1 km/
km2, 1 to 1.5 km/km2, 1.5 to 2 km/km2, 2 to 2.5 km/km2 and
>2.5 km/km2, respectively (Table 2 and Fig. 3d).

As slope significantly influences the surface runoff, it was
considered an important criterion in identification of GWP
(Patra et al. 2018). As per the slope criteria defined by Singh
et al. (2016), nine slope classes, i.e. 0 to 1% (level to nearly
level), 1 to 3% (very gently sloping), 3 to 5% (gently sloping),
5 to 10% (moderately sloping), 10 to 15% (moderately steeply
sloping), 15 to 25% (steeply sloping), 25 to 33% (very steeply
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sloping), 33 to 55% (strongly sloping), and above 50% (very
strongly sloping), were identified. Very gentle (31.9%)
to gentle slopes (25.9%) are the dominant classes in
SBW (Table 2 and Fig. 3e). Soil texture determines water
infiltration that affects the recharge, occurrence, and circula-
tion of GW (Das 2017). Hence, the soil texture was considered
as an important contributing factor in estimating infiltration
rates (Lee and Lee 2015) and identification of GWPZs. In
SBW, eight distinct soil textural classes, i.e. sandy clay loam,
sandy loam, loamy sand, clay loam, sandy clay, clay, silty
clay, and loam, were identified (Table 2 and Fig. 3f). Sandy
clay loam soils are dominant soil textural classes with an area
of 448.4 sq.km (38.1%), whereas, sandy loam and sandy clay
soils covered 315.5 (26.8%) and 117.6 (10%) sq.km,
respectively.

The amount, intensity, and distribution of rainfall play an
important role in GW recharge and determine the GWP de-
pending upon the hydrogeological characteristics of the terrain
(Shi et al. 2016). Since, rainfall varies with time and space, it is
essential to ascertain the role of rainfall in identification of
GWPZs (Patra et al. 2018). The SBW receives 800 to
1600 mm Mean Annual Rainfall (MAR), and the maximum
amount of rainfall was received during the SW monsoon sea-
son. It was reclassified into six classes, i.e. < 350 mm/year,

350 to 450 mm/year, 450 to 550 mm/year, 550 to 650 mm/
year, 650 to 750 mm/year, and > 750 mm/year (Table 2 and
Fig. 3g). The LU/LC pattern influences the GWP, and infil-
tration rate of water through soil (Singha et al. 2019). In the
watershed, nine LU/LC classes, namely single crop, double-
crop, current fallows, degraded forest, deciduous forest, scrub-
lands, wastelands, settlements, and waterbodies were identi-
fied through interpretation of Sentinel-2A satellite data. The
single crop is predominantly covered with 410.8 sq.km (35%),
while forest land covered approximately 147.9 sq.km (12.6%)
of the area (Table 2 and Fig. 3h).

Assessment of GWPZs using FR model

The analysis shows that the classes of LU/LC layer like dou-
ble crop, single crop, and settlements classes have high FR
values of 1.26, 1.2 and 1.8, respectively, which indicates the
favourability of these classes for occurrence of GW. In case of
Dd, the classes such as 1.5 to 2.5 km/km2 and 3.5 to 4.5 km/
km2 have higher FR values of 1.5 and 1.3, respectively, and it
indicates their higher influence onGWoccurrence. The terrain
with slope <1 % shows the highest value of FR (1.8), whereas
the terrain with 1 to 3 % slope shows the FR value of 0.9 and 3
to 5% shows 1.3. However, the lowest value of FR of 0.7 was

Fig. 2 Methodology followed in the study
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Table 2 FR and IoE model values of groundwater conditioning factors

Conditioning factor Class Area
(pixels)

Area %
(a)

Wells
(No.)

Wells %
(b)

FR
(b/a)

(Pij) Hj Hjmax Ij Wj

Geology Amphibolite 14,098 0.12 1 1.06 8.87 0.62 1.52 1.05 0.52 0.12

Charnockite 2,726,230 23.2 8 8.51 0.37 0.03

Dunite 55,154 0.47 1 1.06 2.27 0.16

Dunite-pyroxenite 56,369 0.48 0 0 0 0

Fissile hornblende-biotite
gneisses

7,564,105 64.36 74 78.72 1.22 0.09

Fuchsite quartzite 22,179 0.19 0 0 0 0

Granite 897,948 7.64 9 9.57 1.25 0.09

Syenite 403,212 3.43 1 1.06 0.31 0.02

Laterite 13,705 0.12 0 0 0 0

Geomorphology Structural hills 62,976 0.54 0 0 0 0 1.47 1.05 0.47 0.11

Dissected hills 1,206,996 10.27 0 0 0 0

Residual hills 134,952 1.15 0 0 0 0

Linear ridges 81,821 0.7 0 0 0 0

Pediments 1,853,609 15.77 13 13.83 0.88 0.27

Pediplain 7,112,845 60.52 72 76.6 1.27 0.39

Upper valley 1,034,229 8.8 9 9.57 1.09 0.34

Mining area 96,508 0.82 0 0 0 0

Waterbodies 169,064 1.44 0 0 0 0

Drainage density (Dd) <1.5 6,930,020 58.96 55 58.51 0.99 0.2 1.67 1.43 0.67 0.13

1.5–2.5 1,463,856 12.46 17 18.09 1.45 0.29

2.5–3.5 1,211,852 10.31 7 7.45 0.72 0.15

3.5–4.5 1,057,038 8.99 11 11.7 1.3 0.26

>4.5 1,090,234 9.28 4 4.26 0.46 0.09

Lineament density
(Ld)

<1 8,650,967 73.61 68 72.34 0.98 0.2 1.69 1.43 0.69 0.13

1–1.5 1,092,170 9.29 12 12.77 1.37 0.28

1.5–2 607,613 5.17 5 5.32 1.03 0.21

2–2.5 506,442 4.31 3 3.19 0.74 0.15

>2.5 895,808 7.62 6 6.38 0.84 0.17

Slope <1 1,852,289 15.76 26 27.66 1.76 0.38 1.58 1.05 0.58 0.12

1–3 3,755,158 31.95 27 28.72 0.9 0.2

3–5 3,043,919 25.9 31 32.98 1.27 0.28

5–10 1,834,903 15.61 10 10.64 0.68 0.15

10–15 360,916 3.07 0 0 0 0

15–25 514,553 4.38 0 0 0 0

25–33 265,230 2.26 0 0 0 0

33–50 121,681 1.04 0 0 0 0

>50 4351 0.04 0 0 0 0

Soil texture Sandy clay loam 4,484,501 38.16 34 36.17 0.95 0.13 1.75 1.05 0.75 0.14

Sandy loam 3,153,779 26.83 25 26.6 0.99 0.13

Loamy sand 651,996 5.55 6 6.38 1.15 0.16

Clay loam 683,798 5.82 12 12.77 2.19 0.3

Sandy clay 1,176,328 10.01 8 8.51 0.85 0.12

Clay 903,860 7.69 9 9.57 1.24 0.17

Silty clay 4502 0.04 0 0 0 0

Loam 5961 0.05 0 0 0 0

Others 688,275 5.86 0 0 0 0

Rainfall <350 1,161,640 9.88 12 12.77 1.29 0.24 1.57 1.29 0.57 0.12
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found with slope class of 5 to 10%. In SBW, it was noticed
that as slope gradient increases, the FR value decreases. The
Ld between 2 and 2.5 km/km2 shows the FR value of 0.8, and
it indicates very less probability of GW occurrence, whereas
the Ld between 1 and 1.5 km/km2 shows the ratio of 1.4 and it
indicates a high probability. In geomorphology layer, the
highest FR values were found in the pediplain (1.3); similarly,
the next highest values were noticed in the upper valley (1.1),
and pediments (0.9), which indicate the relationship of geo-
morphologic structures and the GW occurrence. As far as
geology is concern, the higher FR values are allied with am-
phibolite, dunite, granite, and fissile hornblende-biotite
gneisses with FR equal to 8.9, 2.3, 1.3 and 1.2, respectively;
it shows their higher potential for occurrence of GW. The rest
of the geological classes with zero FR values denote the low
possibility of GW occurrence. The FR values are high for clay
loam (2.2), clay (1.3), and loamy sand (1.2) classes and rela-
tively low for the remaining texture classes. The higher FR
values indicate the higher infiltration rates of the textural clas-
ses. When the infiltration rate accelerates the GW, it contrib-
utes the higher recharge conditions. In SBW, the relationship
between the rainfall and GWP shows 350 to 450 mm/year
(2.0), 450 to 550 mm/year (1.6) and <350 mm (1.3); these
positive FR values explains the local topographic conditions.
The areas with high rainfall discharges associated with
Yercaud hills with steep slopes, and sparse forest cover reduce
the likelihood of water infiltration. The final GWPZs were
delineated by applying FR model (Eq. 2) with the hypothesis
that all the input GW variables have uniform influence on the
occurrence of GWP (Fig. 4a). The obtained GWPZs values
are in range of 3.91 to 67.29, which were classified based on
mean and standard deviation (SD) classification scheme into

five classes: very poor (< 13.1), poor (13.05 to 21.64), good
(21.64 to 30.23), very good (30.23 to 38.82), and excellent (>
38.82). The very poor to poor classes encompass an area of
15.41 % (181.17 km2); the good and very good classes extend
over an area of 75.23 % (884.18 km2), while the area under
excellent class occupies only 9.36 % (109.95 km2) (Table 3).

Assessment of GWPZs using IoE model

The results attained on application of IoE model in assessment
of GWPZs are shown in Table 3. The computed weights for
geomorphology, geology, LU/LC, Dd, slope, and Ld are 0.11,
0.12, 0.13, 0.13, 0.12, and 0.13, respectively. Similarly, for
soil texture, the weight is 0.14, and for the rainfall parameter,
the weight is 0.12. The final GWPZs map developed by using
IoE model was shown in Eq. 9. The obtained GWPZs values
are ranges from 3.49 to 27.47. Based on mean and SD, they
were classified into five classes, i.e. very poor (< 8.67), poor
(8.67 to 12.23), good (12.23 to 15.89), very good (15.89 to
19.35), and excellent (> 19.35) as shown in Fig. 4b. The very
poor to poor classes encompass an area of 15.55 % (182.71
km2); the good and very good classes extend over an area of
75.08 % (882.47 km2), while the excellent class occupies 9.37
% (110.12 km2). The very good, and excellent classes are
concentrated mainly in SE part of the watershed (Table 3).

Validation of FR and IoE models

The critical stage of any modelling is validation, in the ab-
sence of this, models depict less scientific value (Nampak
et al. 2014). The AUC-ROC was adopted to validate the input
models prediction rate (Pourghasemi et al. 2012; Tehrany

Table 2 (continued)

Conditioning factor Class Area
(pixels)

Area %
(a)

Wells
(No.)

Wells %
(b)

FR
(b/a)

(Pij) Hj Hjmax Ij Wj

350–450 1,110,216 9.45 17 18.09 1.91 0.36

450–550 3,264,687 27.78 40 42.55 1.53 0.29

550–650 5,664,786 48.2 25 26.6 0.55 0.1

650–750 362,045 3.08 0 0 0 0

>750 189,626 1.61 0 0 0 0

LU/LC Double crop 3,863,630 32.87 39 41.49 1.26 0.21 1.68 1.05 0.68 0.13

Single crop 4,107,995 34.95 39 41.49 1.19 0.2

Current fallows 779,304 6.63 2 2.13 0.32 0.05

Wastelands 830,764 7.07 9 9.57 1.35 0.23

Scrub lands 95,723 0.81 0 0 0 0

Degraded forest 134,502 1.14 0 0 0 0

Deciduous forest 1,480,227 12.59 1 1.06 0.08 0.01

Settlements 279,246 2.38 4 4.26 1.79 0.3

Waterbodies 181,609 1.55 0 0 0 0
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et al. 2017). The AUC-ROC values were estimated through
comparison of GW depth of wells collected through field sur-
veys with GWPZs derived from FR and IoE models. The
quantitative inter-relation lies among the model predictions,
and AUC-ROC were grouped into five categories: excellent
(0.9–1), very good (0.8–0.9), good (0.7–0.8), average (0.6–
0.7), and poor (0.5-0.6). The AUC-ROC values were estimat-
ed for FR and IoE models by using GW depth of 41 validation

wells, and it shows 0.7313 and 0.7084, respectively (Fig. 5).
The accuracy assessment of the models indicates that the
adopted two models yield good estimation; however, FR
model depicted relatively higher estimation than the IoE mod-
el. The study clearly demonstrates that BSM can be effectively
applied as a realistic and simple method in modelling and
evaluating the GWP. The strengths of BSM are simple in
implementation and provide reasonable accuracy in spatial

Fig. 3 Contributing parameters in modelling of GWPZs: (a) Geology, (b) Geomorphology, (c) Drainage density (Dd), (d) Lineament density (Ld),
(e) Slope, (f) Soil texture, (g) Rainfall, and (h) LU/LC
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prediction, with the potential to distinguish the input factors or
combinations of input factors in the evaluation of GWP
(Khoshtinat et al. 2019).

Sensitivity analysis

Sensitivity analysis performed through VIA shows that out of
the eight input contributing factors, the geology, slope, and
rainfall are the three important factors, which significantly
contribute in identification of GWPZs through FR model. In
other words, the biotite genesis, and dunite-pyroxenite forma-
tions with slope less 3% and rainfall ranging from 550 to
750mm influence more in identification of GWPZs (Fig.
6a). In IoE model, drainage density, slope and rainfall found

to be three important influencing factors, in identification of
GWPZs (Fig. 6b). The low land regions with slope less 3%
and rainfall ranging from 550 to 750mmwas found to be more
contributing in identification of GWPZs. Besides geology,
slope, rainfall and Dd, the other contributing factors like geo-
morphology, and soil texture especially the areas under
pediplain associted with sandy loam, and sandy clay have
their own contribution in GW recharge, and identification of
GWPZs.

Conclusions

In the study, geology, geomorphology, Dd, Ld, slope, soil
texture, rainfall, and LU/LC were considered as major con-
tributing factors in identification of GWPZs through GIS and
BSM. The GWPZs were determined by adopting FR, and IoE
models and established the relationships among the input GW
conditioning factors. The study shows that both FR, and IoE
models exhibited very good and good performance in model-
ling, and assessment of GWP, respectively, and explained the
most critical classes in each conditioning factor. In compari-
son with IoE model, the FR model not only has better perfor-
mance but also has simple procedure in its computation. The
validation results confirm that the FR, and IoE models are
ideal for assessing GWP, simulating the relationships between
the GW occurrence and GW conditioning factors. The results

Table 3 Area under different GWPZ’s derived from FR and IoE
models

GWPZs FR model IoE model

Area (sq.km) Area (%) Area (sq.km) Area (%)

Excellent 110.0 9.4 110.1 9.4

Very good 686.2 58.3 665.8 56.7

Good 198.0 16.9 216.8 18.4

Poor 75.5 6.4 87.4 7.4

Very poor 105.7 9.0 95.3 8.1

Fig. 4 GWPZs derived from a frequency ratio (FR) and b index of entropy (IoE) models
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obtained are immensely useful in systematic evaluation, de-
velopment of GW exploration and environmental strategic

plans by the government agencies and policymakers.
Sensitivity analysis was carried out through VIA, and it

Fig. 5 Validation of FR and IoE
models using AUC-ROC

Fig. 6 Rank of variables by their
importance. a frequency ratio
(FR) and b index of entropy (IoE)
models
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indicates that in both FR, and IoE models, geology, slope,
rainfall, and Dd found to be important influencing factors in
identification of GWPZs. The study clearly demonstrates the
potential of high-resolution Sentinel-2 data, and robustness of
BSM in obtaining the accurate, reliable, and cost-effective
results for effective GIS-based spatial modelling of GWPZs
in hard rock terrain of semi-arid ecosystems.
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