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Abstract
The coastaline between Tetouan and BouAhmed and its hinterlands, which is known for its frequency and variety of landslides at
Morocco scale. In this context, the geological complexity, the steep terrain morphology, the fairly abundant rainfall, seismic
activity…, etc. increase sensitivity and susceptibility to landslides. The consequences generated are extremely large on the
components such as road networks, electricity networks, water lines, housing, arable land, forest areas, and coastal areas. In this
study, we propose analytic hierarchy process (AHP) and weight of evidence (WofE) methods, to highlight and target potential
areas vulnerable to risks of landslides to minimize the damages produced by these phenomena. Eleven parameters controlling the
genesis and development of landslides in the order of priority are the following: elevation, slope, lithology, land use, rainfall,
proximity to faults, proximity to streams, curvature, aspect, shaded/relief, and proximity to the road. The efficiency testing of
landslide susceptibility maps showed a good precision for both AHP and WofE models by utilizing the ROC/AUC method. The
comparison between validation processes indicates that WofE method is more accurate in prediction than the AHP method. The
output landslide susceptibility maps can constitute a basic document for planners, managers, and regulatory bodies responsible
for managing and mitigating landslide incidents at scale of area, especially with increasing housing and large projects within an
unstable mountainous area.

Keywords Morocco . Landslides . Damages . Analytic hierarchy process (AHP) . Weight of evidence (WofE) . ROC/AUC
method

Introduction

In recent years and at global scale in mountainous area, the
occurring frequency of incidents linked to landslides has sig-
nificantly increased (Pradhan and lee 2010a); they are consid-
ered one of the most threatening phenomena in many regions
of the worlds (Glade and Crozier 2005; Zorn and Komac
2007; Yalcin et al. 2011; Saha et al. 2020). They are respon-
sible for colossal damages on human life and property. The
statistics of the Center for Researches on the Epidemiology of

Disasters (CRED) (Pourghasemi et al. 2012a) show that land-
slide occurrence is responsible for 17% of all fatalities of
natural hazards worldwide whereas economic losses are in
billions of dollars per year especially for USA, Japan, and
the Alpine nations (Austria, France, Italy, and Switzerland)
(Aleotti and Chowdhury 1999). They are ranked as the sev-
enth most dangerous geohazards at global scale (Saha et al.
2020). This phenomenon includes all forms of terrain dis-
placement under the effect of slope sudden variation
(Flageollet 1989); it varies between debris flows up to large
superficial or deep abrupt terrain detachments. Generally, the
mechanism origin of landslides is rarely attributed to a single
factor it attributed to a combination of several factors whether
natural or anthropogenic (Varnes 1978; Crozier 1984; Iqbal
et al. 2021). The main causes of terrain instability and conse-
quently trigging landslides are lithology, structure (faults,
joints), slope gradient, ground water conditions, and nature
of the overburden (Agliardi et al. 2001, 2012; Dramis and
Sorriso-Valvo 1994). The trend impacts related to landslide
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occurrence are expected to be continuously growing through-
out time, for numerous reasons. For instance, increasing of
regional precipitation due to climate change, continuous de-
forestation (agricultural lands, overgrazing, urban areas) in
addition to this, the population growth leads to the booming
of exploitation of mountainous areas more vulnerable to
slopes failure. (Goetz et al. 2011; Regmi et al. 2014).
Moroccan territory is also exposed to landslides risks, espe-
cially the Rifian domain, given its geomorphological, litho-
logical, structural, seismic activity, and climatic characteris-
tics, is much more affected by landslide occurrence (Millies-
Lacroix 1965; El Gharbaoui 1980; Fares 1994; El kharim
2002; El moutchou 2014), and a lesser extent to the Middle
Atlas as result of the strong contrast in the aforementioned
characteristics. The components most exposed and damaged
by landslides risks in our study area and generally at Rif scale
area are the road network, the electrical and hydraulic instal-
lations, habitats and landscape of the coast and the continent,
forest systems, and agricultural lands; in addition to the latter,
human life is always endangered. Mapping landslide suscep-
tibility is considered a reliable technique for landslide risk
assessment, minimizing cost damages, and for a good man-
agement of hazards reduction (Guzzetti et al. 1999; Guzzetti
et al. 2012; Naidu et al. 2018; Nohani et al. 2019; Biçer and
Ercanoglu 2020).

The literature reviewers from different regions showwealthy
approaches and methods used concerning prediction, assess-
ment, and mapping landslide susceptibility. Heuristic, deter-
minist, and statistical approaches are widely experienced for
the objective mentioned before (Reichenbach et al. 2018). For
heuristics or qualitative approaches which are based essentially
on knowledge of the terrain characteristics and the expertise of
the operator who maps (Van Westen 2000), the main methods
which are part of this approaches are geomorphological method
(Buwal 1997; MATE/METL 1999) and the qualitative indexed
heuristic method (AHP) (Pourghasemi et al. 2012b;
Pourghasemi et al. 2013a; Althuwaynee et al. 2014). The deter-
minist approaches are based on the calculation of safety factor
by using mathematical relationship and physical law (Nohani
et al. 2019); it is imputable to the engineering domain. The
integration of remote sensing data, GIS environment, and bi-
variate and multivariate statistical methods such as frequency
ratio (FR) (Pradhan 2010; Pradhan and lee 2010b; Park et al.
2013; Pham et al. 2019), information value (IV) (Karim et al.
2019), weights of evidence (WoE) (Pradhan 2010; Pamela et al.
2018; Karim et al. 2019), analytic logistic regression (LR)
(Pradhan and lee 2010b; Park et al. 2013; Rasyid et al. 2016;
Wu et al. 2017; Saha et al. 2020), Shannon entropy (SE)
(Nohani et al. 2019), evidential belief function (EBF) (Nohani
et al. 2019), and fuzzy logic (Pradhan 2010, 2011; Pourghasemi
et al. 2012b) constitutes an efficient tool for producing landslide
susceptibility map. Lately, several machine learning and deep
learning techniques have become highly demanded for many

geotechnical applications and landside identification (Zhang
et al. 2015), for example, artificial neural network (ANN)
(Pradhan 2010; Pradhan and Lee 2010a; Pradhan and lee
2010b; Bui et al. 2016; Saha et al. 2020; Ghorbanzadeh et al.
2019), random forest (RF) (Li et al. 2015; Saha et al. 2020),
support vector machine (SVM) (Pradhan 2013;Van Den
Eeckhaut et al. 2012; Bui et al. 2016; Saha et al. 2020),
convolutional neural network (CNN) (Ghorbanzadeh et al.
2019), neuro-fuzzy (Pradhan 2013), decision three (Pradhan
2013), and many others. However, of these considerable tech-
niques, the choice of one of them in landslide susceptibility
mapping is still an open topic for a debate (Guzzetti et al.
1999; Van Westen et al. 2006).

The hillslope coastline between Tetouan and BouAhmed and
its hinterland in Rif domain is becoming more remarkable by the
frequency and variety of landslide incidence. In addition to the
natural factors cited before (geomorphological, lithological,
structural, seismic activity and climatic) in trigging landslides,
the heavy frequent rainfalls, and storms in few decades, the in-
crease of a large building (infrastructural, residential), unplanned
management, continuous deforestation for more area of agricul-
tural, overgrazing, and urbanization would have a serious reper-
cussions on the stability of hillslope and consequently expansion
of the risks and the damages. The identification of landslide
spatial distribution and determination of the type and the magni-
tude intervention of trigging factors is strongly recommended in
the purpose to mitigate losses, select the best strategy of preven-
tion and intervention, and control the susceptible impacts. For
this reason, some attempts at landslide inventory and landslide
susceptibility mapping were applied at regional or locale scale of
Rif domain using various methods; as an example, we can cite
geomorphological method (El Gharbaoui 1980; El Moutchou
2014), ZERMOS method (Millies-Lacroix 1965; Fares 1994),
AHP (Brahim et al. 2018), WofE (Elmoulat and Ait Brahim
2018), and others.

The lack of comparative studies between heuristic tech-
niques and bivariate models for assessment andmapping land-
slides occurring in Rif scale and the limitation in landslide
modeling at the known factors (such as lithology, slope,
hypsometry, aspect, proximity to drainage and to fault, land
use) by underestimating the role of other factors, such as an-
nual rainfall, curvature, shaded relief, and manmade activities
(e.g., construction of the road network, spread of quarrying
activities), constitutes one of the motivations of the current
study. Thus, the main objectives of this study are the follow-
ing: (i) highlighting areas most exposed to landslide occur-
rence at the coastline between Tetouan_Bou Ahmed and its
hinterlands by using AHP and WofE techniques in GIS plat-
form, (ii) determining the factors most significant in landslides
trigging, (iii) comparing the performance of these techniques
in landslide susceptibility mapping using ROC/AUC method.
Nowadays, it is the first time that a landslide susceptibility
assessment using analytic hierarchy process and weight of
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evidence methods is applied in the coastline between Tetouan
and Bou Ahmed and hinterlands. The results of this research
could constitute a basic document for decision makers, future
managing, and planning as well as an important literature
contribution to the landslide susceptibility mapping.

Description of study area

The study area covers approximately of 1478,428 km2 located
in the NW part of northernmost Morocco, between 35° 20′ to
35° 45′ North latitude and 5° 40′ to 4° 40′West longitude (Fig.
1). It is limited in the East by the Mediterranean Sea, to the
West, North, and South by the limestone chain of internal Rif.
Characterized by rugged mountainous area, altitude can reach
1927m in parts of the region and strong slopes are very com-
mon. The average annual rainfall is 654mm. The climate is
under the combined influence of the Mediterranean and the
Atlantic, a hot and dry summer, and a wet and mild winter.
The study area (Fig. 1b) is a part of the Rif belt and the majority
of them is an integral part of the internal Rif domain, represent-
ed by Sebtide and Ghomaride corresponding to the Paleozoic
and Mesozoic sequences which affected by Alpine metamor-
phism during the Eocene to late Oligocene (Kornprobst 1974;
Chalouan et al. 2001) and the limestone ridge a set of small
nappes or scales reinforced with Triasico-Liasic carbonates

(Wildi 1983). In addition, to paleozoic tectonic klippes
(sebtides, Ghomarides) and calcareous dorsal mentioned be-
fore, some extensions limited appears of domain flysch which
comprising Cretaceous and Tertiary sediment and the external
domain including calcareous and marly series that are made up
of Mesozoic and Cenozoic. Generally, the geomorphology of
the study area is represented by the high countries (the croups of
the Haouz, the ridges, the headlands, and the cliffs) and the low
countries (alluvium plains, sandy coasts). The area consists of
six different land uses and the major part among this classifica-
t ion is barren land with 61% of the study area.
Hydrographically, the zone areas crossed of permanent or tem-
porary rivers with irregular regime. They are broad little
encased and with great meanders in the northern part, and nar-
row, encased, and perpendicular to the coast in the meridional
part. In addition to the active tectonic domain of the Rif, ac-
companied by seismic shocks resulting from the rapprochement
of the Euro-Asia and the African plates, all the characteristics
mentioned before make our study area a seat, which shelter
several forms of instabilities.

Materials and methods

In this section, we give details of the steps and the data used
during the realization of the current study. We based on

Fig. 1 a Location of the study area at the national scale. b Structural schema of the study area
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several data, such as satellite, geological, topographic, and
meteorological data, completing with observations of field
data. The data collected were analyzed and integrated in GIS
software, for generated map of landslide causative factors and
the datasets for constructing and validating the models. The
methods AHP and WofE were used for elaborating landslide
susceptibility maps, whereas comparison and the assessment
of the accuracy of them; the ROC/AUC method was
employed (Fig. 2).

Inventories and mapping of landslides

The key step in the elaboration of the landslide susceptibility
map is preparing an inventory map. For zoning and mapping
landslides, we based on extracted data, from topographic
maps, geological maps, satellite images (Landsat-8), and ae-
rial photography. A total of 905 unstable spots with an area of
95,838 km2 which corresponding to 6.482% of the total of the
study area. Thereafter, the landslides inventoried were ran-
domly divided into two groups: training data (=78%) designed
for building the model and the remaining area of landslides
(=22%) using for validation the model performance, which
called testing data. Several types of landslides were identified
(Fig. 3): rocks falls, debris flow, rotational and translational
sliding, complex sliding, mudflow, and surface gullying.

Landslide causative factors

The root causes of instability of the hill slopes and conse-
quently the occurrence of landslides in most cases is the
resulting conjunction of several factors and rarely by only
one. According to the several studies, determination and
choice of relevant causative factors for preparing landslide
susceptibility maps (LSMs) in general varies with the major
characteristics of the environment context. Availability,

relevance, and practicality are the main characteristics for se-
lected causative factors (Oh and Pradhan 2011). For elaborat-
ing LSMs, field surveys and literature review were of great
importance in choice and classification of the eleven causative
factors affecting the occurrence of landslides under study area
which are elevation, slope, lithology, land use, rainfall, prox-
imity to faults, proximity to streams, curvature, aspect, shad-
ed/relief, and proximity to the roads.

Topographic factors: elevation, slope, aspect, curvature,
and shaded/relief

The geomorphological context of the study area is very fragile
and constitutes a key factor in landslide genesis. Five topo-
graphic factors were selected and generated from a GDEM
Aster 30m*30m.

Elevation Elevation is one of the main causal factors for slope
failure; altitude influences other factors such as slope, precip-
itation, gravitational force, water velocity, and erosion force,
which exert a strong impact at high altitude and therefore more
susceptibility to landslide occurrence. The elevation map is
produced and subdivided into four classes (<25m; 25–100m;
100–600m; > 600m) (Fig. 4a).

Slope The instability of the hillslope is directly dictated by the
slope angle. The increase of the slope angle leads to more
increasing of shear forces and consequently more instability
triggering, with lithology (the degree of cohesion) and struc-
tural characteristics (faults, schistosity, fractures, diaclases…,
etc.), constitutes determining factors in the genesis and occur-
rence of landslides (Van Den Eeckhaut et al. 2006; Hadji et al.
2013). The slope map produced was classified into five clas-
ses: > 2.5; 2.5–5; 5–15; 15–20; <20 (Fig. 4b).
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Fig. 2 Flowchart of the
methodology followed in this
study

1346    Page 4 of 18 Arab J Geosci (2021) 14: 1346



Fig. 3 Some field photos of landslides occurring in the area under study.
Photographs a, c, e, f, and h show the impact of landslides on hydraulic
network, agricultural lands, beaches, and road network respectively.

Photographs b, d, f, g”, and i, g’ translational sliding, rotational sliding,
debris flow deposits, rocks fall, and complex sliding respectively
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Aspect The slope aspect is considered a very important factor
in the genesis of landslides. It control the humidity variation of
the hills slopes (Ercanoglu and Gokceoglu 2002), flow evapo-
transpiration (Sidle and Ochiai 2007) and soil moisture (He
et al. 2019; Jaafari et al. 2019) which lead to weak mechanical
strength of rock cohesion. Four classes are determined: the

North slopes (315°–45°), the western slopes (45°–135°), the
eastern slopes (135°–225°), and the southern slopes (225°–
315°) (Fig. 4c).

Curvature The curvature identifies the morphology of the to-
pography (Pourghasemi et al. 2013a). The surface of drainage

Fig. 4 a Elevation. b Slope. c Aspect. d Curvature. e Shaded relief. f Proximity to stream. g Proximity to lineaments/fault. h Proximity to roads. i Land
use/cover. j Lithology. k Rainfall (mm)
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is always controlled by the curvature factor, and therefore it
influences the genesis of landslides (Pham et al. 2017); after
torrential rains, the regime and the flow action on the concave,
flat, and convex slopes are completely different. The
established map is classified into three classes: < −0.002 (con-
cave topography); −0.002 to 0.004 (flat topography); <0.004
(convex topography) (Fig. 4d).

Shaded relief The shaded relief parameter, or hill-shading, has
been much used in cartography, to produce the illusion of a
three-dimensional relief; in the literature, recently, it is used as
conditioning factor in landslide occurrence (Thapa and
Bhandari 2019). The shaded relief map has been established
and was reclassified into 5 classes (0–50m; 50–100m; 100–
150m; 150–200m; 200–254m) (Fig. 4e).

Fig. 4 (continued)
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Proximity to streams

This factor acts by the erosion and the undermining of the
banks of the river (Popesc 1994; Pham et al. 2018), the reason
why several landslides have been mapped near the river, es-
pecially on the concave banks of the meanders where the
action of water is more concentrated in particularly during
periods of torrential rain. The distance from river map is pro-
duced from a DEM to generate the drainage network first of
all, and then calculate distance to rivers using the Euclidean
distance method in a GIS, then reclassified into 10 classes
(<30; 30–60; 60–90; 90–120; 120–150; 150–180; 180–210;
210–240; 240–270; > 270) (Fig. 4f).

Proximity to faults/fractures

The circulation of surface water (runoff) along the structural
footprints (faults, fractures, joints, stratification) is considered
a factor of destabilization of the hill’s slopes. It plays a pri-
mordial role in the process of triggering landslide occurrence;
the discontinuities caused in soils and rocks (Ayalew and
Yamagishi 2005) make them less cohesive and less resistant
(Devkota et al. 2013), promoting the circulation and infiltra-
tion of water and at the saturation threshold the landslides are
triggered. The established map is produced by digitalization of
the structural lineaments from the geological maps of Tetouan
RasMasari, Talamboute, Bou Ahmed, and part of Beni
Hassan at scale of 1/50.000, then reclassified into 10 classes
(<30; 30–60; 60–90; 90–120; 120–150; 150–180; 180–210;
210–300; 300–500; > 500) (Fig. 4g).

Distance from roads

Our observations during field surveys confirm without hesita-
tion the impact and the anthropic role in the activation and
reactivation of the instabilities of the landslide occurrence in
this region. The cutting of the hills for road construction, using
dynamite in some place to explode hard rocks for road con-
struction or in exploitation of quarrying, had a high impact on
the stability of hill slopes and consequently activates a long
process of slope instabilities difficult to control. The map is
produced by digitizing the essentials of the national and re-
gional road network based on topographic maps and the
Landsat-8 satellite image of our study area, then reclassified
into 10 classes: <40m; 40–80m; 80–120m; 120–160m; 160–
200m; 200–240m; 240–280m; 280–320; 320–360; > 360
(Fig. 4h).

Land use/cover

Demographic expansion and the development that the region
is experiencing in terms of infrastructure in recent years, lead
to the more use of forest and mountain areas very susceptible

to slope failure which will undoubtedly contribute to the in-
creasing of landslide incidence. The absence of management
plans before the construction of these infrastructures amplified
the landslides risks (Prokos et al. 2016). The land use map is
extracted using the digitalization of topographic maps
(Tetouan, Ras Mazari, Talembote, Bou Ahmed, and part of
Beni Hessane at the scale of 1/50.000) coupled with the su-
pervised classification of the Landsat-8 satellite imagery,
using the maximum likelihood method. Six classes have been
identified: water bodies; barren land; sparsely vegetated; agri-
culture land; settlement area; wood and forest (Fig. 4i).

Lithology

Geotechnical and geomechanical properties of the rocks
and soil with other factors (such as faults, fractures, elevation,
slope, precipitation, etc.), this factor becomes relevant in the
process of instability of hill slop and landslide occurrence. To
produce lithological map, we have digitized the geological
maps of Tetouan RasMasari, Talamboute, Bou Ahmed, and
part of Beni Hassan at scale of 1/50.000, and then reclassified
on GIS according to the geotechnical and geomorphological
affinities; 12 classes were identified (gneiss and mica schists;
peridotites and kinzigites; shale complex; marlstones; lime-
stone dolomites; sandstone-pelite, conglomerates, sand-
stones-marlstones, marlstones-limestone, limestones-
dolomites; alluvium (Fig. 4j)).

Rainfall map

The abundance of rainfall is a very crucial factor in the occur-
rence of landslides, especially in rainy periods. Indeed, the
water saturation of the soil increases the pore pressure and
decreases the cohesion forces and the shear strength thus trig-
gering instabilities (Song et al. 2012; Hamed et al. 2014). To
characterize the spatial variations of the pluviometry, we use
the data of the annual average precipitations between the pe-
riods (1936–2017), of stations located in our study area and
those neighboring. By the interpolation method, a spatial dis-
tribution map of rainfall is produced and reclassified into 10
classes (> 500mm; 500–550mm; 550–600mm; 600–650mm;
650–700mm; 700–750mm; 750–800mm; 800–850mm; 850–
900mm; > 900mm) (Fig. 4k).

Landslide susceptibility analyses

Weight of evidence method

The susceptibility to landslides has been established by a
quantitative method using theory of evidence. It is a bivariate
method based on the Bayesian probabilistic method (Van
Westen 2000). For running the model, we were based on
Eq. (1) and Eq. (2) which correspond to weight positive

1346    Page 8 of 18 Arab J Geosci (2021) 14: 1346



(W+) and weight negative (W−), respectively (Regmi et al.
2010; Pradhan 2010); the weights of each causative factor
(N) class are estimated based on the presence or absence of
landslide occurrence within factor class (Pradhan 2010).

Wþ ¼ ln p M�
N

� �
jP M�

N

� �� �
ð1Þ

W− ¼ ln p M
�

N

� �
jP M

�

N

� �� �
ð2Þ

where P is the probability and ln is the natural logarithm; M
andM are the presence or absence of landslide causative fac-
tors; N and N are the presence or absence of landslide occur-
rence, respectively.W+ andW− are the weights of presence or
absence of landslides. The variation from W+ to W− corre-
sponds to weight contrast C.

C ¼ Wþ−W− ð3Þ

Analytic hierarchy process (AHP)

In this study, analytic hierarchy process (AHP) was used for
landslide susceptibility analyses. Saaty (1980) proposed this
method for classifying a problem into different hierarchy lev-
el. In order to calculate the weights of each causative factors,
firstly, all the significant predictive landslide causative factors
(elevation, slope, lithology, land use, rainfall, proximity to
faults, proximity to streams, curvature, aspect, shaded/relief,
proximity to the road) were reorganized in a hierarchical or-
der; secondly, based on our field knowledge and according to
the importance of them in landslide process, we created the
AHP matrix by a dual comparison between all factors in

pairwise comparison (Table 1), which used as the input values
in the AHP matrix, which then normalized and standardized
for determining the CR of the matrix. If CR is less than 0.1, the
model AHP is acceptable and it discarded if CR is greater than
0.1. After calculating the weight of each causative factor, we
assigned for each classes factor a weight based on the percent-
age of inventoried landslides within this classes.

CR ¼ CI
�
RI ð4Þ

where

CI ¼ λmax−1
n−1

ð5Þ

where CR and CI correspond to consistency ratio and consis-
tency index, respectively. RI is the random index that depends
on the number of causative factors, λmax is principal eigen-
value in the matrix, and n is the number of causative factors.

Results

Multicollinearity diagnosis

In this study, in order to avoid no collinearity between the
selected causative factors for landslide susceptibility mapping,
a multicollinearity test was applied by calculating variance
inflation factors (VIF) and tolerances method. According to
Pourghasemi et al. (2012a), the values of VIF>10 or tolerance
<0.1 stated a problem of multicollinearity of causative factors.
The results of the test (Table 2) confirm all factors used were
independent between each other.

Table 1 Pairwise comparison matrix

Factors 1 2 3 4 5 6 7 8 9 10 11

1 1.00

2 0.50 1.00

3 0.50 1.00 1.00

4 0.25 0.33 0.50 1.00

5 0.33 0.33 0.50 0.50 1.00

6 0.20 0.20 0.20 0.25 0.25 1.00

7 0.50 0.50 0.50 0.50 1.00 1.00 1.00

8 0.20 0.20 0.20 0.25 0.25 0.25 0.25 1.00

9 0.25 0.25 0.25 0.25 0.25 0.25 0.33 0.33 1.00

10 0.14 0.14 0.20 0.20 0.25 0.25 0.33 0.33 0.33 1.00

11 0.11 0.11 0.11 0.13 0.13 0.13 0.14 0.17 0.20 0.11 1.00

Wight factors 0.218 0.169 0.150 0.112 0.093 0.066 0.083 0.042 0.037 0.025 0.012

1, elevation; 2, slope; 3, lithology; 4, land use; 5, rainfall; 6, fault proximity; 7, stream proximity; 8, curvature; 9, aspect; 10, shaded/relief; 11 proximity to
roads
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Landside susceptibility map using WofE model

The analysis of the results of Table 2 showed that all causative
factors used in the modeling in both WofE and AHP methods
were contributed in landslide process occurring whether with
a weak or strong weight value. These findings go with the
results of other researches (Varnes 1978; Crozier 1984),
which stated that landslides are the result of conjugation for
more than only factor.

As shown in Table 3, the weights obtained using WofE
model for each classes of causative factors represent the im-
pact magnitude for those classes in landslide events. Thus, a
weakmagnitude or negative value of weight contrast of a class
is corresponding to the no significant correlation of this later in
landslide occurrence. For elevation impact, the 2 first (<25m,
25–100m) classes and the last class (600–1926m) had very
small impact on the landslides under the study area; the ele-
vation between 100 and 600m had the greatest impact on
landslides. Regarding the slope angle influence, the classes
of 5°–10° and 10°–15 are corresponding to the most prone
areas to landslide occurrence, respectively. The remaining
classes (<5° and >20) show a weak probability of landslide
occurrence. Under the study area, the North direction followed
by the West direction had the most influence on landside
occurrence against the other directions (South and East).
Among the curvature classes, landslides preferentially occur
near concave slope than the other classes (flat, convex).
Concerning hill shaded influence, the 200–254m class had
the largest impact on landslide occurrences than the remaining
classes. For the distance from streams indicating a rational
correlation with landslide occurrence, thus the first 3 classes
(<30, 30–60, and 60–90m) were the most unstable areas to
prone landslides.

For distance from faults, the most influenced classes were
in the distance range between 90 to 500m from faults. For
distance from roads, the effective class was 280–320m. The
barren land is one of the most components exposed to land-
slide occurrence of all remaining classes of land-use cover. In
the case of lithology impact, the analyses of results of Table 3
showed that among all lithology units, sandstones-marlstones,
marlstones-limestones, and sandstones-pelites had the greatest
probability to landslide occurrence. The other units (alluvium,
peridotites and kinzigites, gneiss and mica schists, shale com-
plex) have a lower probability to landslide occurrence.
Rainfall is another relevant factor in landslides trigging espe-
cially in heavy rainfalls; it leads to the surface gully and the
bursting of the rock soils due to water saturation, which re-
duces the cohesion and resistance of the hill slopes; the classes
that show the greatest impact in trigging landslides are 700–
750mm and 750–800mm, respectively. Equation (6) was used
in GIS to elaborate LSM (Fig. 5a). The obtained map was
classified into five susceptibility classes using natural break
method (Pourghasemi et al. 2012a). Percent areas of the sus-
ceptibility classes of very low, low, moderate, high, and very
high were 9.740, 7.932, 25.321, 36.203, and 20.804, respec-
tively (Fig. 6a).

LSMWofE ¼ WofEelevation þWofEslope þWofEapect

þWofEcurvature þWofEshaded=relief

þWofEproximity to stream þWofEproximity to faults

þWofEproximity to roads þWofEland use

þWofElithology þWofERainfall ð6Þ

Landside susceptibility map using AHP method

The landslide susceptibility map (LSM) (Fig. 5b) was pre-
pared based on Eq. (7) proposed by Voogd (1983). Using
natural break method, the susceptibility values of the map
prepared were classified into five classes very low, low, mod-
erate, high, and very high which cover of the study area,
9.710, 7.882, 24.598, 34.335, and 23.475 respectively (Fig.
6b). The results of the weight score of each factor involved in
the triggering of landslides are exhibited in Table 3. In this
study, elevation, slope, lithology, land use, and rainfall, re-
spectively, weighting 0.218, 0.169, 0.150, 0.112, and 0.093
are found to be determined factors on stability of hill slope and
consequently in trigging landslide occurrence in our study
area, whereas the remaining factors (fault proximity, stream
proximity, curvature, aspect, shaded relief, road proximity)
were less implicated in the process of trigging landslide oc-
currence according to this method.

Table 2 Indices of multicollinearity diagnosis for landslide causative
factors

Model Collinearity statistics

Tolerance VIF

Altitude 0.195 5.141

Slop 0.220 4.552

Aspect 0.991 1.009

Curvature 0.983 1.017

Shaded 0.969 1.032

Proximity to stream 0.971 1.03

Proximity to fault 0.712 1.404

Proximity to road 0.903 1.108

Land use 0.904 1.106

Lithologies 0.391 2.557

Rainfall 0.832 1.201
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Table 3 Spatial relationship between each landslide causative factors and occurring landslides using weight of evidence (WofE) and analytic hierarchy
process (AHP) models

Numbers of
pixels

Percent of
pixels

Landslide
numbers

Percent of
landslides

Weight of evidence AHP

W+ W− C Index Weight

Factors

Elevation (m)

0–25 201,643 10.69 1575 1.66 −0.828 0.044 −0.872 1 0.218
25–100 264,516 14.023 12,245 12.905 −0.041 0.006 −0.047 7

100–600 954,718 50.614 60,171 63.415 0.089 −0.121 0.210 9

600–1926 465,400 24.673 20,894 22.02 −0.057 0.018 −0.074 6

Slope (°)

0_2.5 164,427 8.717 1284 1.353 −0.828 0.036 −0.864 1 0.169
2.5_5 127,393 6.754 3401 3.584 −0.287 0.015 −0.302 1

5_15 558,690 29.619 38,018 40.067 0.130 −0.069 0.199 6

15_20 332,397 17.622 18,557 19.557 0.043 −0.010 0.053 8

20_73 703,370 37.289 33,625 35.438 −0.031 0.018 −0.050 9

Aspect

N 518,452 27.485 29,648 31.246 0.052 −0.022 0.073 9 0.037
E 519,854 27.56 26,260 27.676 −0.004 0.002 −0.006 4

S 399,591 21.184 14,690 15.482 −0.146 0.033 −0.179 1

O 448,380 23.771 24,287 25.596 0.028 −0.009 0.037 8

Curvature

Concave 872,423 46.251 48,319 50.924 0.032 −0.031 0.063 8 0.042
Flat 149,588 7.93 7433 7.834 −0.007 0.001 −0.008 2

Convex 864,266 45.819 39,133 41.243 −0.058 0.046 −0.103 1

Hill shade/relief (m)

0–50 24,882 1.319 843 0.888 −0.179 0.002 −0.181 3 0.025
50–100 120,178 6.371 4324 4.557 −0.153 0.009 −0.162 5

100–150 369,378 19.582 17,272 18.203 −0.038 0.009 −0.046 6

150–200 908,220 48.149 42,994 45.312 −0.038 0.034 −0.073 8

200–254 463,619 24.579 29,452 31.04 0.100 −0.039 0.139 9

Proximity to streams (m)

<30 376,524 19.961 24,507 25.828 0.113 −0.033 0.146 9 0.083
30–60 335,536 17.788 21,010 22.143 0.096 −0.024 0.119 9

60–90 297,363 15.765 16,960 17.874 0.054 −0.011 0.064 8

90–120 255,113 13.525 12,606 13.286 −0.011 0.002 −0.013 7

90–150 208,257 11.041 8617 9.082 −0.091 0.010 −0.101 6

150–180 155,961 8.268 5257 5.54 −0.183 0.014 −0.196 5

180–210 109,286 5.794 2930 3.088 −0.285 0.013 −0.298 4

210–240 71,085 3.769 1594 1.68 −0.364 0.010 −0.374 2

240–270 41,651 2.208 787 0.829 −0.440 0.006 −0.446 2

>270 35,501 1.882 617 0.65 −0.476 0.006 −0.482 1

Proximity to faults (m)

<30 75,920 4.025 1258 1.326 −0.498 0.013 −0.510 9 0.066
30–60 74,365 3.942 2492 2.626 −0.185 0.006 −0.191 9

60–90 71,041 3.766 3611 3.806 0.004 0.000 0.004 9

90–120 67,641 3.586 4279 4.51 0.104 −0.004 0.109 9

120–150 64,601 3.425 4542 4.787 0.154 −0.006 0.160 8

150–180 60,951 3.231 4589 4.836 0.186 −0.008 0.193 8

180–210 57,478 3.047 4318 4.551 0.185 −0.007 0.192 8

210–300 153,926 8.16 11,568 12.192 0.183 −0.020 0.203 5

300–500 256,283 13.587 18,236 19.219 0.156 −0.030 0.186 5
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Table 3 (continued)

Numbers of
pixels

Percent of
pixels

Landslide
numbers

Percent of
landslides

Weight of evidence AHP

W+ W− C Index Weight

>500 1,004,071 53.23 39,992 42.148 −0.116 0.110 −0.226 1

Proximity to roads (m)

<40 65,808 3.489 2594 2.734 −0.111 0.004 −0.115 9 0.012
40–80 46,208 2.45 1816 1.914 −0.113 0.003 −0.115 9

80–120 43,611 2.312 1827 1.925 −0.084 0.002 −0.086 8

120–160 41,418 2.196 1659 1.748 −0.104 0.002 −0.106 8

160–200 39,292 2.083 1682 1.773 −0.074 0.001 −0.075 7

200–240 37,340 1.98 1731 1.824 −0.038 0.001 −0.038 7

240–280 35,663 1.891 1760 1.855 −0.009 0.000 −0.009 6

280–320 33,739 1.789 1711 1.803 0.003 0.000 0.003 6

320–360 32,434 1.719 1602 1.688 −0.009 0.000 −0.009 5

>360 1,510,764 80.092 78,503 82.735 −0.005 0.023 −0.027 1

Land-use/cover

Water bodies 16,270 0.863 223 0.235 −0.581 0.003 −0.584 3 0.112
Barren land 1,158,850 61.436 63,771 67.209 0.025 −0.048 0.073 9

Shrubland and sparsely
vegetated

53,609 2.842 1756 1.851 −0.195 0.005 −0.199 1

Agriculture land 61,195 3.244 2779 2.929 −0.047 0.002 −0.049 6

Settlement area 31,073 1.647 1458 1.537 −0.032 0.001 −0.033 4

Wood and forest 565,280 29.968 24,898 26.24 −0.067 0.026 −0.093 3

Lithology

Gneiss and mica schists 156,561 8.3 4987 5.256 −0.208 0.015 −0.223 3 0.150
Peridotites and kinzigites 55,225 2.928 749 0.789 −0.586 0.010 −0.596 2

Shale complex 417,931 22.156 19,560 20.614 −0.038 0.010 −0.048 5

Marlstones 41,020 2.175 1936 2.04 −0.030 0.001 −0.030 6

Dolomite 181,724 9.634 9952 10.488 0.037 −0.004 0.041 6

Limestone 146,268 7.754 8056 8.49 0.040 −0.003 0.043 6

Sandstone-pelite 299,362 15.871 27,121 28.583 0.268 −0.073 0.341 8

Conglomerates 61,635 3.268 3990 4.205 0.115 −0.004 0.120 7

Sandstones-marlstones 19,406 1.029 2796 2.947 0.501 −0.009 0.510 9

Marlstones-limestone 43,379 2.3 5492 5.788 0.436 −0.017 0.452 9

Limestone-dolomite 123,641 6.555 7562 7.97 0.088 −0.007 0.095 7

Alluvium 340,125 18.032 2684 2.829 −0.824 0.078 −0.902 1

Rainfall (mm)

<500 0 0 0 0 0.000 0.000 0.000 4 0.093
500–550 104 0.006 0 0 0.000 0.000 0.000 4

550–600 26,524 1.406 661 0.697 −0.317 0.003 −0.320 4

600–650 144,742 7.673 6644 7.002 −0.043 0.003 −0.047 5

650–700 789,042 41.831 37,855 39.896 −0.031 0.022 −0.053 5

700–750 691,076 36.637 36,686 38.664 0.016 −0.010 0.025 6

750–800 161,945 8.585 10,788 11.37 0.127 −0.014 0.141 9

800–850 35,891 1.903 1594 1.68 −0.057 0.001 −0.058 7

850–900 14,564 0.772 359 0.378 −0.321 0.002 −0.323 7

<900 22,389 1.187 298 0.314 −0.594 0.004 −0.598 8
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Fig. 5 Landslide susceptibility maps from a WofE and b AHP models
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LSMAHP ¼ ∑n
j¼iW jwij ð7Þ

whereLSMAHP: landslide susceptibility mapWj: weight
assigned for causative factorWij: weight assigned for the class
(i) of factor (j)n: number of causative factors

Assessment and comparison of the models

The credibility and viability of any landslide susceptibility
map produced according to a given model are closely depen-
dent on both the data used and model structure. For our study,
the accuracy of the prediction of two maps produced by using
WofE and AHP was verified by using training landslides lo-
cation and validation landslides location by applying ROC/
AUC technique (Yilmaz 2010). The AUC result analyses
showed that for WofE model, the success rate using training
data was 77.333%, the prediction rate using validation data
was 74.653 % (Fig. 7a, b), and for AHP method, the success
rate and prediction rate were 72.602% and 71.394% respec-
tively (Fig. 7a, b). According to Hong et al. (2018), a curve of
a model with a largest AUC that varies from 50 to 100% can
be considered the best model and consequently our results are
consistent. For prediction zoning potential risk areas, the
weight of evidence (WofE) method appears the most adequate

than analytic hierarchy process (AHP), according to the result
of this study.

Discussion

Predicting landslide occurrence and quantifying the relation-
ships between landslide occurrences and causative factors are
often a real challenge as well as for landslide hazards and risk
assessment. In this research, at the coastline between Tetouan
and Bou Ahmed and its hinterlands of the Rif chain (north-
ernmost Morocco), we combined several dataset for
implanting tow models of analyses for landslide susceptibility
mapping, using qualitative method (AHP) and quantitative
method (WofE). The results made it possible to quantify the
importance of magnitude of causative factors in landslides
trigging, to understand the correlation between spatial distri-
bution of landslides and causative factors in order to highlight
the areas most exposed to landslide occurrence. According to
the AHP method, elevation, slope, lithology, land use, and
rainfall were respectively the most important factors
followed fault proximity, stream proximity, curvature,
aspect, shaded relief, and road proximity. In another
research, by using AHP method and six main landslide
causative factors, Brahim et al. (2018) has shown that eleva-
tion, lithology, and land use are the main factors controlling
landslide occurrence at Rif scale than slope, fault density, and
drainage network density. Our study adds tow causative fac-
tors important in landslide occurrence which are slope and
rainfall; these findings are consistent with other studies at
Rif domain which report that the main predisposing factors
in landslides triggering are rainfall, lithology, elevation, slope,
and land use (Millies-Lacroix 1965; Fares 1994; El Gharbaoui
1980; El Kharim 2002; El Moutchou 2014). However, to
compare quantitatively the result accuracy between models,
it is preferable to use similar landslide causative factors in
building these models (Iqbal et al. 2021).

The mechanism of landslide occurrence is a complex and
often unknown for new location; it is rarely attributed to a
single causative factor (Varnes 1978; Crozier 1984; Iqbal
et al. 2021). The bivariate analysis (WofE) reveals that the
lowest elevations (>100m) and height elevation (>600m)
show a weak influence on landslide occurrence; the superpo-
sition of these elevation classes with flat zones and the hard-
ness of rocks of limestone ridge respectively explain widely
this finding to this is added the abundant of vegetation cover
and forest at high elevation, which represent an element of
stability against slope failure. The middle elevation (100–
600m) shows a strong impact on landslides, which character-
izes the relief of Sebtide, Ghomaride nappes, flysch nappes,
and Tangier unit unstable for their crushed characters.
Regarding the slope impact, we expect a linear correlation
between slope and landslide occurrence; however, the steepest
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inventory on landslide susceptibility maps (training and validation data)
for WofE (a) and AHP (b) models
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slope had a weak influence on landslides trigging; it corre-
sponds to the limestone and dolomite peaks, the abrupt reliefs,
and to some sandstone bars of the Flysch layers, mechanical
hardness, and resistant. In terms of aspects, the North direction
and West direction had the most impact on landside occur-
rence as a result those directions are less exposed to solar
radiation and more wetness due to the wet currents of the
Mediterranean Sea and the Atlantic Ocean. The concave
hillslopes had the biggest impact on landslide occurrence
compared to the other geomorphology curvature. It is proba-
bly because of the topographic forms, which favoring retained
rainwater under the effect of intense fracturing, the water-
logged bedrock leads to significant weathering. As expected,
landslide susceptibility near streams and at barren land be-
comes more substantial. The distance between 90 and 500m
from fault is the most susceptible areas to landslides. This
might be due to the disconnection created by tectonics in the
soil and rocks which favoring the circulation of water and
easily the triggering of landslides. In the case of the roads
impact, the results showed a weak relation between landslide

occurrences and proximity to roads probably is due to the
moderate number of landslide mapping alongside roads.
Concerning lithofacies, the sandstones-marlstones followed
by the marlstones-limestones show a strong susceptible to
slope failure, overall are calcareous clays moderately plastic
and weak mechanical strength. The annual rainfall factor is
relevant in landslides trigging especially after heavy rainy
days. The results show a correlation between rainfalls and
spatial distribution of landslides except for the last three clas-
ses which exerted a weak impact; this contradiction might be
due to these classes, which are superposed with the hardness
of rocks of limestone and dolomite weakly sensitive to land-
slides and water erosion. At last, these results clearly show the
close relationship between the geological, geomorphological,
hydrogeological, climatic, and anthropic context on spatial
distribution of landslides in the current study area, which are
in agreement with the previous studies (Millies-Lacroix 1965;
El Gharbaoui 1980; El Kharim 2002; El Moutchou 2014).

In this research, model validation shows satisfactory results
for both methods (WofE, AHP) used in landslide
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Fig. 7 Area under curve shows
the success rate curve (a) and the
predictive rate (b) of landslide
susceptibility index maps, for
WofE and AHP models
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susceptibility mapping; however, WofE model was found the
best model for identifying and zoning the areas more exposed
to landslide occurrence, this finding is consistent with results
of other literature studies (Pourghasemi et al. 2013b;
Pourghasemi et al. 2013c; Nohani et al. 2019). The possibility
to get better results is related to the use of other susceptibility
models (Iqbal et al. 2021); this constitutes a motivation for a
study under realization.

Conclusion

The coastline between Tetouan and Bou Ahmed and its hin-
terland subject of this study encloses several hot spots giving
rise to frequent and varied landslide types, which constitute
real risks on propriety, and human life is always in danger, to
this is added the continuing modification of the costal and the
continent landscape and consequently changing the stability
of the ecosystem of these areas. For the purpose of developing
and preserving these areas against landslide occurrence, land-
slide susceptibility map has become one of the solicited and
widely proven choices worldwide in zoning areas susceptible
to landslide incidence. Thus, we applied weight of evidence
(WofE) and analytic hierarchy process (AHP) methods in GIS
platform for producing landslide susceptibility maps.

The resulted maps showed that the area most vulnerable to
the risks of landslides constitutes with approximately the same
value 58% and 57% of the total of study area by WofE and
AHP models, respectively. It represents approximately more
than half of study area; this finding is alarming especially with
the increase of unplanned housing and project development
that accompanied in some case by destruction of forest and
vegetation that plays an important role of stabilization of
hillslope.

To perform these models, some factors such as seismicity
and the variation of the piezo metric level of ground water can
be added in modeling. Generally, the encouraging results ob-
tained by WofE and AHP method showed clearly the perfor-
mance of them in zoning risks within study area; it can be used
at scale of belt Rif for landslide susceptibility maps or other
context similar to Rif context. The results are consistent and
can be used by different stakeholders especially with the de-
velopment and managing that have been experienced in recent
years under study area, which undoubtedly will have an im-
pact on stability of hillslope.
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