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Abstract
In this study, for the first time, the scour pattern around cross-vane structures with I, U, and J shapes in bending channels is
simulated by a new artificial intelligence method called “generalized structures group method of data handling” (GSGMDH).
Compared to the group method of data handling (GMDH), the GSGMDH method has more flexibility and exactness so that
nodes can derive inputs from non-adjacent layers. Initially, using the input parameters, six different models are defined for each of
the GMDH and GSGMDH methods. Also, the superior model forecasts objective function values with acceptable accuracy. For
example, the correlation coefficient (R), the scatter index (SI), and the Nash-Sutcliffe efficiency coefficient (NSC) for the
GSGMDH superior model in the training mode are approximated to be 0.913, 0.214, and 0.800, respectively. Based on the
sensitivity analysis, the shape factor of cross-vane structures, the ratio of the difference between the upstream and downstream
flow depths to the height of the structure, and the densimetric Froude number are introduced as the most effective input
parameters. Subsequently, for the superior model, a relationship is proposed for the estimation and calculation of the scour
depth. Finally, a partial derivative sensitivity analysis (PDSA) is conducted for the superior model.

Keywords Cross-vane structures . Scour .Modeling .Generalized structuresgroupmethodofdata handling .Densimetric Froude
number

Introduction

In general, waterways have played a key duty in the develop-
ment of civilizations. For example, major cities and industrial
hubs have been historically created adjacent to the Yangtze,
Nile, Mississippi, and Amazon rivers. The protection of the
banks and riverbeds against erosion and scour is one of themost
important issues in river engineering. There are several tech-
niques used to protect riverbeds and banks against scour. The
utilization of stone cross-section structures is considered a via-
ble solution to protect the bed of canals and rivers. Scour is a
three-dimensional phenomenon in which erodible materials
such as gravel and sand are removed from around the structures.
Commonly, scour is one of the most important reasons for the

failure of infrastructures such as piers, road bridge piles, and
abutments. Due to the complete consistency of stone with the
structure of rivers, structures with stone cross-section are more
popular than other riverbed protective structures. Using them,
the fish pathway is fully maintained in all parts of the flow.
Additionally, the construction reduction and saving costs com-
pared with common structures are one of the most important
advantages of cross-section structures. Thus, thanks to the sig-
nificance of such protective constructions, numerous laboratory
and theoretical investigations have been done on the flow pat-
tern in their vicinity. For instance, some criteria for designing
stone cross-vane structures with different forms such as U, W,
and J shapes were suggested by Rosgen (2001). Using the shear
stress concept, he put forward several equations for calculating
the minimum dimension of aggregates. Also, Scurlock et al.
(2011a) did a laboratory-analytical survey to assess energy drop
occurring on U-shaped cross-vane structures. To simulate en-
ergy drop values, they utilized the HEC-RAS numerical model
and verified the results of this model with their experimental
model data. Besides, the scour pattern around these construc-
tions with U, W, and A forms in straight channels was mea-
sured by Scurlock et al. (2011b). They proposed several
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formulae to predict the scour depth. Scurlock et al. 2011a, b
through a laboratory investigation measured the scour values
near the stone weirs sequentially installed at the bend locations
of an open conduit. They evaluated the results and concluded
several equations for computing maximum velocity variations
at the inner bank, outer bank, and centerline of the conduit.
Moreover, Pagliara et al. (2013a) measured scour hole dimen-
sions near J-Hook vanes located in an open rectangular channel
in clear-water conditions. They proposed several equations with
reasonable accuracy to calculate the maximum scour depth.
Subsequently, Pagliara and Kurdistani (2013) performed an
experiment to measure scour values downstream of these con-
structions located in an open r channel. Through the conduction
of dimensional analyses, they introduced the variables affecting
the scour parameter and indicated that the sedimentary bed
morphology changes by hydraulic conditions. Pagliara et al.
(2013b) measured the dimensions of scour hole in the vicinity
of W-shaped constructions through a laboratory program.
Through a dimensional analysis, they suggested several rela-
tionships for estimating the maximum length and depth of the
scour hole. Furthermore, the authors analyzed the obtained
results by the above relationships with the laboratory
measurements to exhibit their accuracy. Kurdistani and
Pagliara (2017) through a laboratory investigation compared
the scour values around different protective constructions such
as Log-Deflectors and Log-Vanes. Using the Buckingham the-
orem, they manage to conduct a dimensional analysis on the
variables affecting the scour values. In addition, Pagliara et al.
(2015a) performed an experiment on the scour pattern around
Log-Vanes made of wood. These authors scaled the scour hole
depth in various geometric and hydraulic circumstances and
stated that the tailwater depth was a significant hydraulic
factor affecting the formation of the scour hole dimension. It
is worth mentioning that Pagliara and Kurdistani (2015)
assessed the scour hole values at the downstream of J-Hook
constructions located in bending channels in clear-water condi-
tions. They expressed that different types of morphologies are
formed downstream of these structures according to flow hy-
draulic conditions. Besides, Pagliara et al. (2015b) carried out
an experimental program to calculate scour values around log-
deflectors installed in horizontal straight channels in clear-water
conditions. They evaluated such protective structures for vari-
ous geometric and hydraulic conditions. Furthermore, Pagliara
et al. (2016) evaluated the scour resulted from the existence of
rock sills in open horizontal and bending channels. They con-
ducted several experiments in a horizontal channel in clear-
water conditions. They proposed several useful empirical for-
mulae for assessing the bed morphology. Furthermore, Pagliara
and Kurdistani (2017) experimentally investigated scour values
around log-frame deflectors. They measured the scour values
near these structures for various layouts of protective structures.
Subsequently, Kurdistani and Pagliara (2017) experimentally
evaluated the scour pattern near U-shaped constructions

installed in bending channels. By analyzing the experimental
data, they divided the scour occurring in the vicinity of such
structures into three different categories. Khosronejad et al.
(2018) utilized a numerical model to simulate the flow pattern
and the morphology of sedimentary beds in bending channels
with rock vanes. To simulate the flow field, they used a model
regarding the Reynolds-averaged Navier-Stokes principal in
unsteady conditions. The authors validated the numerical re-
sults with the observational measurements.

Recently, various artificial intelligence (AI) algorithms
have been employed to model various phenomena. Besides,
such numerical models have noticeable abilities in estimating
and simulating scour hole dimensions near different construc-
tions such as piers, pipes, abutments, and submerged vanes
(Azamathulla et al. 2009; Amini et al. 2011; Ebtehaj et al.
2015; Khoshbin et al. 2016; Shabanlou et al. 2018; Azimi
et al. 2017, 2018, 2019a, b; Azimi and Shiri 2020). Azimi
et al. (2020) simulated the scour depth around cross-vane
structures through the outlier robust extreme learning machine
(ORELM). The authors suggested a set of matrices to estimate
the subject value.

Reviewing the literature reveals that due to the importance
of the protection of banks and beds of rivers, different exper-
imental and analytical investigations have been conducted on
the scour modeling near cross-vane constructions with various
forms. However, the scour depth around these constructions
with I, J, and U forms installed in bending channels has not
been investigated using the artificial intelligence approaches
and soft computing techniques so far. So, in the current paper,
the scour depth around cross-vane constructions with I, J, and
U forms in bending channels is innovationally simulated by a
modern artificial intelligence technique entitled “generalized
structures group method of data handling (GSGMDH).”
Compared to the group method of data handling (GMDH)
method, this new technique has more flexibility and accuracy
so that the middle nodes can receive inputs from non-adjacent
nodes. By simulating the scour depth, the superior model is
introduced and the most influencing inputs are detected.
Eventually, a formula is presented for approximating the scour
depth.

Method

The numerical models used in this study are described.
Initially, the group method of data handling (GMDH) is
expressed and then the new generalized structures group
method of data handling (GSGMDH) is thoroughly assessed.

Group method of data handling

The GMDHmodel with one output and a set of inputs and is a
subset of the base function elements expressed as follows:
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Y x1;…; xnð Þ ¼ aa ∑
m

i¼1
ai− f ij

� �
ð1Þ

where f denotes the initial function depending on different
functions of the inputs, a represent factors, and m is the num-
ber of base function elements.

To solve the problem, the GMDH has several solutions
called “partial models” or “partial derivatives.” The factors
of this model are reckoned using the “least square” method-
ology. The GMSH algorithm enhances several partial models
and finds a topology of GMDH with a desirable complication
shown with at least one external criterion among them. The
process is called the self-organizing model. It can be said that
the GMDH method is considered a self-organizing methodol-
ogy that gradually creates more sophisticated issues during the
evaluation of the performance of output and input values. The
GMDH algorithm is used to evaluate the environmental be-
haviors of highly complex nonlinear problems. The major
idea of GMDH is to establish an analytic method based on a
progressive network according to binomial transition func-
tions. Its structure is in the form of a progressive multilayer
network which is similar to artificial neural networks, except
that, unlike neural networks, the number of neurons and layers
are unknown and they are determined during the training pro-
cess. Ivakhnenko (1976), using the Kolmogorov-Gabor poly-
nomial, developed the GMDH theory and expressed the rela-
tionship between input and output parameters of each system
using the Voltra series that is identical to the Kolmogorov-
Gabor discrete polynomial.

Mathematical basis of GMDH algorithm

Suppose there are some m variables such as x1, x2, ..., xm and a
parameter y as the objective parameter. There is also data for
each of the xi and the objective variable y for each of training and
test modes. It means that each factor is a vector containing dif-
ferent numbers associated with the parameter. The initial data
required to be collected for the structure of the GMDH are a
combination of n values represented by the following matrix:

In this matrix, the total number of data is represented by n,
so that k (k<n) samples are used for learning data and n-k
samples for testing data. To start the algorithm, we encounter
two problems: (1) Identifying a relationship that produces the

output variable based on the input variables. (2) Prediction of
y for known parameters of xi, that is, model identification and
the relationship between variables (simulated) is needed to
model values of the target function from that model (predic-
tion). The principal of the GMDH is the procedure of creating
a high-order polynomial known as the Volterra functional
series provided as follows:

y ¼ a0 þ ∑
m

i¼1
aixi þ ∑

m

i¼1
∑
m

j¼1
aijxix j þ ∑

m

i¼1
∑
m

j¼1
∑
m

k¼1
aijkxix jxk

þ… ð2Þ

To this end, in the GMDH algorithm, initially, the Volterra
functional series is decomposed into multivariate quadratic
polynomials:

y xi; x j
� � ¼ a0 þ a1xi þ a2x j þ a3x2i þ a4x2j þ a5xix j ð3Þ

In this equation, the Volterra series is transformed into
some chain recursive formulas, so that by the algebraic place-
ment each of the recursive equations in that relationship
(Volterra series) is created once again. So, the following equa-
tion:

yi ¼ f xi1; xi2; xi3;…; ximð Þ; i ¼ 1; 2; 3;…; n ð4Þ

is estimated by the function bf :
yi ¼ bf xi1; xi2; xi3;…; ximð Þ; i ¼ 1; 2; 3;…; n ð5Þ

If the function bf is expressed as Eq. 2, the function bf is
written as below:

byk ¼ G ui; uj
� �

i; j ¼ 1; 2 i≠ jð Þ k ¼ 1
uk ¼ G si; s j

� �
i; j ¼ 1; 2;K; F1 i≠ jð Þ F1≤C2

F2
k ¼ 2

sk ¼ G pi; pj

� �
i; j ¼ 1; 2;K; F2 i≠ jð Þ F2≤C2

F3
k ¼ 3

⋮ ⋮ ⋮ ⋮
zk ¼ G wi;wj

� �
i; j ¼ 1; 2;K; Fl i≠ jð Þ Fl ≤C2

m k ¼ Fl−1
wk ¼ G xi; x j

� �
i; j ¼ 1; 2;K;m i≠ jð Þ k ¼ Fl

ð6Þ

The order of these relationships from top to bottom is a
display of the decomposition steps of Eq. 4 into quadratic
polynomials. On the other hand, the order of these relation-
ships from bottom to top indicates the completion of Eq. 4
using returning equations. Indeed, the aim of the algorithm is
to detect the unknown factor “a” in the Volterra function se-
ries. The resulted partial models own a structure identical to
the below function:

bf xi; x j
� � ¼ v0 þ v1xi þ v2x j þ v3x2i þ v4x2j þ v5xix j ð7Þ

Given that the purpose we pursue in this algorithm is noth-
ing but the initial system modeling, thus through the
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combination of partial models and iteration of this process, the
major model of the problem is calculated as below:

bf ¼ v0 þ ∑
m

i¼1
vixi þ ∑

m

i¼1
∑
m

j¼1
vijxix j þ ∑

m

i¼1
∑
m

j¼1
∑
m

k¼1
vijkxix jxk þ… ð8Þ

After the analysis of the problem into Cm
2 partial systems, a

function with two inputs is calculated for each of them. Thus,

produced partial systems are combined in pairs resulting C2
m

C2
m−1

� �
=2 problems or new partial models with at least three

or four inputs. However, the number of variables dependent
on the model or in other words the number of problem inputs
is not significant and only the actual precision of the problem
estimation by produced systems is important. So, considering
this rule to reduce redundant computations and increase the
modeling performance and precision, several produced partial
functions with acceptable precision and approximation over
other functions are chosen and the rest are removed.

Secondly, partial functions are chosen and then the ideal
function created in the earlier stage is combined in pairs sim-
ilar to the first step and new partial functions with at least five
and at most six inputs are generated.

In the same way, in the next steps, the combination proce-
dure is repeated by choosing and eliminating a number of
created partial functions to finally reach a perfect result.

The main aim of these steps is to achieve a function that
almost all parameters are visible and have the lowest number
of models (the provided model should be simple). The other
purpose considered in performing iterative amalgamation is to
reach a model with the lowest error compared to other models
calculated in the previous steps.

To this end, the Corrected Akaike Information Criterion
(AICC) is used which in addition to considering the means
square error (MSE) for evaluating the model accuracy con-
siders the number of parameters that exist in the model to
provide the simplest model.

AICC ¼ n� log ∑
n

i¼1
ypre−yobs

� �2
� �

þ 2zþ 2z 2zþ 1ð Þ
n−z−1

ð9Þ

Here, n is the number of observations, ypre and yobs are the
predicted and observed values, respectively, and z is the num-
ber of tuned factors through the modeling by GMDH.

In each layer of the GMDH network, to estimate partial
equations, binary choices are done among inputs of that layer
of the neural network to create partial equations by means of
partial equations. For example, the number of binary selec-
tions in the first layer is:

C2
m ¼ m

2

� �
¼ m m−1ð Þ

2
ð10Þ

Given that the aim of the utilization of this algorithm is to
model and estimate y, so themain equation (Eq. 4) is obtained by
the amalgamation of partial systems and iterating this process.

Generalized structure of GMDH

Despite a good capability of convectional GMDH for model-
ing complex issues, GMDH owns some disadvantages like
other techniques. Such disadvantages have a significant im-
pact on results provided by this model so that sometimes sig-
nificantly decreases the modeling accuracy. Some of the main
important disadvantages of this technique are as follows:

1- The structure of the defined polynomial (Eq. 7). This is a
second-order polynomial so that there are only two neu-
rons in each polynomial.

2- Input neurons in each layer are only chosen from adjacent
layers.

Therefore, for problems of great complexity, the use of
second-order polynomials may not yield satisfactory results.
Besides, considering two inputs for each neuron leads to an
increase in the number of neurons in order to achieve an accept-
able model. Using adjacent neurons increase the number of pro-
duced polynomials. Thus, the existence of such problems has a
noticeable influence on the accuracy and simplicity of provided
models. Hence, a model entitled “generalized structure of
GMDH (GSGMDH)” is presented in this paper. GSGMDH
has been coded by using MATLAB software. The presented
model changes the global structure of convectional GMDH so
that simultaneously evaluates all possible modes in achieving the
best and simplest available model using second and third poly-
nomials and also using two and three inputs in each neuron and
finally chooses the best model by means of AICc.

In fact, four states can occur: (1) second-order polynomial
with two inputs, (2) second-order polynomial with three in-
puts, (3) third-order polynomial with two inputs, and (4) third-
order polynomial with three inputs. Among these states, the
first case is exactly the same relationship provided for convec-
tional GMDH (Eq. 7). Thus, the general form of the polyno-
mial defined in this study is expressed as follows:

y ¼ v0þ v1*xik þ v2*xiqþ v3*xipþ v4*xiq*xik

þ v5*xip*xik þ v6*xip*xiqþ v7*xik*xik

þ v8*xiq*xiqþ v9*xip*xipþ v10*xip*xiq*xik

þ v11*xiq*xik*xik þ v12*xiq*xiq*xik

þ v13*xip*xik*xik þ v14*xip*xiq*xiq

þ v15*xip*xip*xik þ v16*xip*xip*xiq

þ v17*xik*xik*xik þ v18*xiq*xiq*xiq

þ v19*xip*xip*xip ð11Þ

Furthermore, GSGMDH has the ability to choose neuron
inputs from a non-adjacent layer. In Fig. 1, a GSGMDH
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modeling sample in which the neuron input is from the non-
adjacent layer is illustrated. It is seen that Neuron x6 has three
inputs and the Neuron x7 has two inputs. Moreover, Neuron x8
as the output of the problem takes three inputs including x3,
x6, and x7. It is clear that x3 is taken from a non-adjacent layer.
The flowchart of GSGMDH is presented in Fig. 2.

Goodness of fit

In the present paper, for assessment of the introduced models,
the correlation coefficient (R), variance accounted for (VAF),
RootMean Square Error (RMSE), the scatter index (SI),Mean
Absolute Error (MAE), and the Nash-Sutcliffe efficiency co-
efficient (NSC) are employed as follows (Azimi and Shiri
2020a, b):

R ¼
∑n

i¼1 Fi−F
� �

Oi−O
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1 Fi−F
� �2

∑n
i¼1 Oi−O

� �2
r ð12Þ

VAF ¼ 1−
var Fi−Oið Þ
var Fið Þ

� �
� 100 ð13Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
∑n

i¼1 Fi−Oið Þ2
r

ð14Þ

SI ¼ RMSE

O
ð15Þ

MAE ¼ 1

n
∑
n

i¼1
Fi−Oij j ð16Þ

Fig. 1 An example of GSGMDH for a model with five inputs

Fig. 2 Flowchart of proposed GSGMDH
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NSC ¼ 1−
∑
n

i¼1
Oi−Fið Þ2

∑
n

i¼1
Oi−O

� �2 ð17Þ

where Oi represents observational values, Fi is predicted
values by AI models,O is the average of experimental values,
and n is the number of experimental values. In the following
parts, initially, different activation functions are evaluated.
Then, the superior model and the most significant inputs are
ascertained through a sensitivity analysis. Moreover, the
GSGMDH superior is compared with the GMDH model.
Besides, an uncertainty analysis and a partial derivative sen-
sitivity analysis (PDSA) are accomplished. Finally, a formula
is proposed for estimating the scour depth near the cross-vane
constructions with various forms placed in bending channels.

Experimental models

In order to validate the AI models, the experimental values
conducted by Pagliara and Kurdistani (2015), Pagliara et al.
(2016), and Kurdistani and Pagliara (2017) are used. The ex-
perimental models of cross-vane constructions with J, U, and I
forms were used inside a bending channel with a rectangular
cross-section with a length of 15 m, a height of 0.5 m, and a
width (B) of 0.5 m. Theymeasured the scour depth (Zm) near a
structure with a height of hst and a width of b for densimetric
Froude numbers equal to Fd. Additionally, the difference be-
tween the flow depths near the structure isΔy. The schematic
of these experimental models is illustrated in Fig. 3.

Scour near cross-vane constructions

Pagliara and Kurdistani (2015), Pagliara et al. (2016), and
Kurdistani and Pagliara (2017) showed that the variables
governing the scour near the structures are scour depth (Zm),
height of the structure (hst), tailwater depth (htw), length of the
cross-vane construction (l), channel width(B), the difference
between flow depth at the downstream and the upstream of the
structure (Δy), discharge (Q), viscosity of water and sediment
(ρs, ρ), gravity (g), the average diameter of sediments (d50),
and the radius of the channel bend (R) as follows:

f Zm; hst; htw; l;B;Δy;Q; ρs; ρ; g; d50;Rð Þ ¼ 0 ð18Þ

Through a dimensional analysis, they exhibited that the
scour near the cross-vane constructions is a function of the
below variables:

Zm=hst ¼ f l=B; htw=hst; Fd ;Δy=hst;B=Rð Þ ð19Þ

In the studies accomplished by Pagliara and Kurdistani
(2015), Pagliara et al. (2016), and Kurdistani and Pagliara
(2017), the parameter l has not been reported. Furthermore,

the shape factor of cross-vane constructions with J, I, and U
shapes is also denoted byφ. Thus, Eq. 17 is rewritten as follows:

Zm=hst ¼ f htw=hst; Fd;Δy=hst;B=R;ϕð Þ ð20Þ
where Fd is the densimetric Froude number. So, the variables of
Eq. 20 are assumed as the inputs. It means that six numerical
models are developed through different combinations to detect
the influencing factors. The developed models are depicted in
Fig. 4. It is worth mentioning that 70% of the data are applied
for learning the GMDH andGSGMDHmodels and 30% of this
data are employed for testing these models.

Result and discussion

GMDH models

All GMDH numerical models are examined. As discussed in
the previous section, six different artificial intelligence models
are defined using the input parameters to detect the superior
GMDH and the most influencing input. All estimated indices
for the GMDH models are illustrated in Fig. 5. GMDH1 sim-
ulates the scour parameter using all inputs(htw/hst, Fd,Δy/hst,
B/R, ϕ). This model is more accurate than other GMDHs. As
an example, the VAF, MAE, and NSC for GMSH1 in the
training mode are respectively computed to be 74.451,
0.233, and 0.646. Furthermore, the RMSE and SI for this
model in the testing stage are respectively reckoned to be
0.277 and 0.252. For GMDH2, the SI, RMSE, and MAE in
the testing stage are respectively estimated to be 0.541, 0.594,
and 0.511. Besides, the NSC and VAF in the training mode
for this model are − 0.911 and − 11.517. On the other hand, for
simulating the scour parameter by this model, the shape factor
(ϕ) is eliminated and this model is a function of htw/hst,Fd,Δy/
hst, B/R. Also, in the training mode, GMDH3 estimates MAE
and RMSE equal to 0.582 and 0.439, respectively. Besides,
this artificial intelligence model calculates VAF, SI, and NSC
in the testing mode to be 9.343, 0.574, and − 0.384, respec-
tively. GMDH3 forecasts the target values regarding the pa-
rameters htw/hst, Fd,Δy/hst, ϕand the effect of the parameter B/
R is neglected, while for GMDH4 in the training mode, the
VAF and RMSE are 31.384 and 0.502. Additionally, MAE
and NSC in the testing situation are estimated to be 0.543 and
− 0.594. For simulating the scour pattern by GMSH4, the
dimensionless parameters htw/hst, Fd, B/R, ϕ are implemented
and the effect of the Δy/hst is relinquished. For GMDH5, the
RMSE, VAF, and SI in the testing stage are surmised 0.572,
6.507, and 0.529. Furthermore, the MAE and NSC in the
testing situation are respectively yielded equal to 0.516 and
− 0.941. To approximate the scour parameter by the GMDH5
model, the dimensionless parameters htw/hst, Δy/hst, B/R, ϕ
are employed and the impact of the parameter Fd is neglected.
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Besides, GMDH6 simulates the target value using Fd,Δy/hst,
B/R, ϕ and for this model the effects of the parameter htw/hst
are removed. For this model, SI and MAE in the testing stage
are respectively calculated to be 0.561 and 0.612.

In Figs. 6 and 7, the comparison of the scour values simu-
lated by the GMDH models with the experimental measure-
ments and their scatter diagrams is shown. GMDH1 owns the

highest precision and the lowest error among these GMDHs.
For GMDH1, the correlation coefficient (R) in the training and
testing stage is obtained equal to 0.863 and 0.855, respective-
ly. Also, the R values for GMDH2, GMDH3, and GMDH4 in
the testing situation are computed 0.191, 0.425, and 0.409. In
contrast, GMDH5 and GMDH6 estimate the R values in the
training mode equal to 0.371 and 0.423. Therefore, GMDH2
has the lowest correlation and the highest error. Furthermore,
GMDH1 is the best model estimating the objective function
using all input parameters. In addition, the shape factor (ϕ)
and also the densimetric Froude number are known as the
most important inputs.

GSGMDH models

The accuracy of the GSGMDH models is assessed. The com-
puted indices for these GSGMDHmodels are depicted in Fig.
8. Among all GSGMDHs, the GSGMDH1 model owns the
highest accuracy and the lowest error. Additionally, the model
calculated the RMSE, MAE, and SI in the training stage as
0.232, 0.166, and 0.214, respectively. For GSGMDH1, the
VAF value in the training mode is improved by about 12%
compared to the GMDH1 model. Moreover, the NSC value

Fig. 3 Schematic of laboratory models of cross-vane constructions in bending channels (a) J-shaped, (b) U-shaped, (c) I-shaped (Pagliara and Kurdistani
2015; Pagliara et al. 2016; Kurdistani and Pagliara 2017)

Fig. 4 Combinations of input parameters for developing different
numerical models
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Fig. 5 Calculated indices for GMDH models

Fig. 6 Comparison of scour values simulated by GMDH models with observed
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for this model in the testing mode is estimated to be 0.842. In
the training mode, GSGMDH1 computes NSC and MAE
equal to 0.397 and 0.263. The VAF in the testing mode of
the GSGMDH model significantly increases compared to the
GMDH2 model. Furthermore, for GSGMDH3 in the testing
mode, the values of NSC, SI, and MAE are estimated to be
0.829, 0.186, and 0.155. The VAF index in the training mode
of the GSGMDH 3 model is improved by about 41% com-
pared to the GMDH3 model. Among all GSGMDHs, the
GSGMDH4 model owns the maximum error and the lowest
accuracy. In other words, the RMSE and MAE in the testing
stage of this model are considered 0.335 and 0.279. However,
the VAF index in the testing mode of this model is almost

twice the GMDH4 model. Additionally, the NSC, MAE, and
SI for the GSGMDH5 in the testing situation are 0.542, 0.231,
and 0.298, respectively. Compared to the GMDH5model, this
model has a better performance so that the VAF index in the
training mode increases about 11 times the GMDH5 model.
For GSGMDH6, the SI, MAE, and RMSE in the testing situ-
ation are respectively estimated to be 0.235, 0.201, and 0.295.
Furthermore, the VAF index in the training and testing phases
for the GSGMDH6 model is approximated to be 78.427 and
76.429, respectively.

Thus, according to the results of the GSGMDHmodels, the
dimensionless parametersΔy/hst and ϕ are the most influenc-
ing inputs of the GSGMDH.

Fig. 7 Scatter plots for GMDH models
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In Figs. 9 and 10, a comparison of the predicted and ob-
served scour parameters and also the scatter plots of all
GSGMDH models are depicted. the R values for the
GSGMDH 1 in the training and testing modes are computed
0.913 and 0.930, respectively. Additionally, for the testing
mode of GSGMDH2 and GSGMDH4, the R index values
are estimated 0.821 and 0.924, respectively. Besides, the R
values for GSGMDH4, GSGMDH5, and GSGMDH6 in the
training stage are respectively obtained as 0.790, 0.860, and
0.886.

Thus, all GSGMDH models have a better proficiency in
comparison with the GMDHmodels and predict the objective
function values with higher accuracy.

Moreover, among all numerical models, the GSGMDH1 is
determined as the best model. This model surmises the scour
parameters using all inputs.

Based on the analysis of the artificial intelligence
models, the parameters ϕ, Δy/hst and the densimetric
Froude number are considered the most effective inputs.

Uncertainty analysis

The performance of the best models is assessed through
an uncertainty analysis. Generally, the uncertainty analysis
is a beneficial aid for assessing the performance of
GMDHs and GSGMDHs (Karbasi and Azamathulla

Fig. 7 (continued)
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Fig. 8 Computed indices for GSGMDH models

Fig. 9 Comparison of scour values simulated by GSGMDH models with observed parameters
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2016; Azimi et al. 2018, 2019a, b). In other words, this
analysis is performed to measure the error computed by
these models and assess their proficiency. The error pre-
dicted by a model equal to values predicted by the model
(Pi) minus observed parameters (Oi)(ei = Pi −Oi). Besides,
the average of the calculated error is surmised as
e ¼ ∑n

i¼1ei. Furthermore, the standard deviation of calcu-

lated error is in the form of Se ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1 ei−eð Þp
2=n−1.

Also, the negative sign of e shows an underestimated
proficiency of this model, whereas its positive sign reveals
the overestimated performance. In addition, by using the e
and Se, a confidence bound is created near the error values
predicted by the Wilson score model without the

continuity correction. Then, the utilization of ±1.96Se, ap-
proximately results in a 95% confidence bound (Azimi
and Shiri 2021). These parameters of the uncertainty anal-
ysis are listed in Table 1. In this table, the width of the
uncertainty bound and the 95% prediction error interval
are denoted by WUB and 95% PEI, respectively. Both
the GMDH1 and GSGMDH1 mode l s own an
underestimated performance. Furthermore, the width of
the uncertainty bound for the GMDH1 and GSGMDH1
models are respectively calculated − 0.049 and − 0.038.
Moreover, 95% PEI for the GMDH1 model is calculated
from − 0.049 to 0.049. Also, 95%PEI for the GSGMDH1
model is approximated from − 0.038 to 0.038.

Fig. 10 Scatter plots for GSGMDH models
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Superior model

The GSGMDH1 is introduced as the superior GSGMDH in sim-
ulating the scour depth near cross-vane construction with differ-
ent forms. For this model, a formula is presented for predicting
the scour depth near these protective structures as follows:

Zm=hst ¼ 0:296þ −0:171*x6þ 3:056*B=Rþ 0:1457*x7

−3:393*B=R*x6þ 2:016*x7*x6−0:052*x7*B=R

−0:140*x62−9:462*B=R2−0:928*x72 þ 0:188*x7*B=R*x6

þ 0:502*B=R*x62 þ 4:721*B=R2*x6−0:219*x7*x62

−2:686*x7*B=R2−0:647*x72*x6þ 0:443*x72*B=R

þ 0:117*x63 þ 10:864*B=R3 þ 0:506*x73

ð20Þ

x6 ¼ 0:491−0:845*φ−2:979*Δy=hst þ 0:276*Fd

þ 3:635*Δy=hst*φ−0:005*Fd*φþ 2:347*Fd*Δy=hst

þ 0:481*φ2 þ 7:610* Δy=hstð Þ2−0:121*Fd
2−0:250

*Fd*Δy=hst*φ−0:365* Δy=hstð Þ2*φ2−5:563* Δy=hstð Þ2
*φ−0:045*Fd*φ2−2:770*Fd* Δy=hstð Þ2 þ 0:0496*Fd

2*φ

−0:065*Fd
2*Δy=hst−0:027*φ3 þ 1:406* Δy=hstð Þ3 þ 0:004*Fd

3

ð1� 20Þ
x7 ¼ 1:144−4:572*φþ 0:348*Fd−1:235*htw=hst þ 0:836*Fd*φ

−2:468*htw=hst*φþ 0:571*htw=hst*Fd þ 8:840*φ2−0:278

*Fd
2 þ 0:135* htw=hstð Þ2−0:194*htw=hst*Fd*φ−0:547

*Fd*φ2 þ 0:142*Fd
2*φþ 1:379*htw=hst*φ2 þ 0:027

*htw=hst*Fd
2 þ 0:056* htw=hstð Þ2*φ−0:046* htw=hstð Þ2*Fd

−3:188*φ3−0:003*Fd
3−0:040*

ð2� 20Þ

Fig. 10 (continued)
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Partial derivative sensitivity analysis

The PDSA is performed for GSGMDH1. Generally, PSDA is
performed for identifying the influence of inputs on the objec-
tive parameter. In other words, PSDA is a method for identi-
fying the variation pattern of the objective parameter accord-
ing to input parameters. The positive PDSA shows that the

scour parameter is enhancing, whereas the negative sign iden-
tifies that the objective function is reducing. The relative de-
rivative of each input parameter is calculated regarding the
target value (Azimi et al. 2017). For example, the PDSA
values are negative for most of the htw/hst values. The impact
of this input variable is decreasing, while the PDSA results for
the input parameters Fd, Δy/hst, and B/R are positive.

Table 1 Uncertainty analysis results for GMDH and GSGMDH

Model Number of samples e Se WUB 95% PEI

GMDH 1 132 − 7.317E−17 0.285 − 0.049 − 0.049 to 0.049

GSGMDH 1 132 − 1.200E−05 0.223 − 0.038 − 0.038 to 0.038

Fig. 11 PSDA results for superior
model
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Conversely, a part of the PSDA results for the shape factor (φ)
has a positive sign and the other part has a negative sign (Fig. 11).

Conclusion

Thanks to the crucial role of rivers in maintaining the ecosystem
of different areas and developing cities, the preservation of their
bed and banks is quite significant. In general, different ap-
proaches such as submerged vanes, log-deflectors, and cross-
vane structures are used to protect riverbeds. Thanks to the ease
of protection, cost-saving, and consistency with the ecosystem,
cross-vane structures are more popular. In the current paper, a
modern AI method entitled “generalized structure group method
of data handling (GSGMDH)” was employed for predicting the
scour depth near cross-vane constructions with I, U, and J shapes
installed inside bending channels for the first time. Compared to
the classical GMDHmethod, this model has higher accuracy and
greater flexibility for estimating the scour depth, because, in this
technique, middle nodes can take inputs from a non-adjacent
layer. To simulate the scour depth, through the inputs, sixmodels
were developed for the GMDH and GSGMDH methodologies.
The analysis of the models exhibited that the proficiency of the
GSGMDHwas better. For instance, the RMSE, R, and NSC for
the GMDH in the testing stage are calculated to be 0.277, 0.855,
and 0.655, while for theGSGMDHare computed equal to 0.196,
0.930, and 0.842, respectively. The sensitivity analysis indicated
that the shape factor (ϕ) of cross-vane structures, the ratio of the
difference between the flow depths downstream and upstream of
the structure to the structure height (Δy/hst), and the densimetric
Froude number (Fd) are the most effective input parameters. In
addition, the GMDH andGSGDMHmodels had underestimated
performance. Subsequently, an equation for calculating the scour
depth near cross-vane construction with various forms was pro-
posed. Finally, the influence of the input parameters on the ob-
jective function was investigated by performing a PDSA.

The obtained results exhibited that the artificial intelligence
(AI) approaches had a reasonable ability to predict the scour
hole in the vicinity of the cross-vane structures in the curved
flumes. It is worth noting that the suggested formula can be
utilized in practical application particularly in the field of river
engineering to approximate the scour hole depth around this
type of structures. Even though the current study provides a
good understanding of the simulation of scouring around
cross-vane structures with different shapes by using the artifi-
cial intelligence (AI) models, further experimental and numer-
ical investigations can be performed in the future.
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