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Abstract

Simulation is an art to model the reservoir’s structure in the petroleum industry, which transfers all possible data digitally to the
reservoir management system’s suitable computation software. The present study attempts to construct a 3D structural model
using the geostatistical method to access in situ oil volume and the best oil production position. The geological area is the Maroon
oilfields located at Dezful Embayment in southwest of Iran. In this oilfield, the Asmari reservoir is divided into ten zones. Several
steps such as griding, kriging, and experimental variogram were carried out to access all available data to make up the model. The
evaluation revealed that zones one and five were the main oil-bearing layers since it contains about 60% of total oil volume in this
field. Petrophysical parameter distribution indicated that zones four and seven are good candidates for oil production since they
have higher porosity and net to growth thickness than other zones. From the seventh to the tenth zone, the oil volume decreased
due to high water saturation in these areas. The best zones for the future program are located in the western part. This study shows
that 3D modeling will find elongation-type anticline and reservoir direction and the best location for future drilling programs
based on the interaction of the petrographic parameters. The results can be used in various steps during the lifetime of the different
reservoirs around the globe.
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Introduction information count as important keys for well managing and

production in oil fields (Aarnes 2004; Al-Bulushi et al. 2012;

Understanding the subsurface structure is an essential part of
any hydrocarbon reservoir-characterization study. Reservoir
characterization and modeling obtained by this valuable
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Avansi et al. 2016). In recent years, various technologies and
new models are applied to understand prospective reservoirs
and provide different information types such as geological,
petrophysical, geophysical, pressure profiles, and production
history (Chen and Durlofsky 2006). Over the last decades,
many researchers demonstrated that the new models could
determine some essentials, including oil amount in the giant
oilfields and optimum drilling locations, introduce undevel-
oped fields, and have an economic estimate of the projects
before they start (Christoforos and Dario 2010; Le Ravalec
et al. 2014; Nikravesh and Zadeh 2007; Pouladi et al. 2017).
The conventional methods, such as classical statistics, are no
longer helpful in the vast reservoirs and are obsolete (Zhi and
Caineng 2019). Because (i) their estimated petrophysical pa-
rameters do not show significant correlations in heteroge-
neous hydrocarbon reservoirs (Elkatatny et al. 2018), (ii) they
are costly and need a large number of core samples and wells
(Al-Ajmi and Holditch 2000), and (iii) the modeling takes a
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Fig. 1 Geographical position of a Zagros oilfields, b surface geology in
Maroon oilfield, and ¢ studied oil wells in Maroon oilfield (Mgs: gray,
and red marl alternating with anhydrite, argillaceous limestone, and
limestone; Mmn: low weathering gray marls alternating with bands of

long time, which the heterogeneity of the reservoir rocks might
change during the model calculation, and lead to error in calcu-
lation (Huang et al. 2017; Skalinski and Kenter 2015; Yin et al.
2009). Some researchers (Labourdette et al. 2008; Yan-lin et al.
2011) imply a series of basic steps for constructing a 3D reservoir
model, and these trials and errors have advanced our knowledge.
The key to solving this problem is to build a reasonable 3D
spatial data model, develop an efficient modeling method, and
develop a user-friendly model operation algorithm. Therefore,
engineers found necessity of more efficient and economical tech-
niques to develop and manage complex giant oilfields.
Moreover, accurate handling of the uncertainties associated with
the various modeling parameters and their integration into the 3D
model can provide an estimation of a reliable range of the volume
of hydrocarbon in place (Al-Attar 2004; Al-Kadem et al. 2018).

Optimum reservoir characterization and management by
3D modeling need initial data such as well-logs, core samples,
well test, and production data (Arnold et al. 2019; Ibrahim
et al. 2018). The outputs give valuable and practical informa-
tion about the volume of space, grain size, thickness, porosity,
and formations’ permeability. Also, it can recognize the faces
in different sedimentary environments (Soleimani et al. 2019;
Xuequn et al. 2019).

The geological modeling of the reservoir needs a 3D struc-
ture to calculate in-place fluid volumes (Benetatos and Giglio
2019), which has two parts: (i) structural modeling (strati-
graphic and fault models) which plays a significant role in the
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more resistant shelly limestone; MuPlaj: brown to gray, calcareous,
feature-forming sandstone, and low weathering, gypsum-veined, red
marl, and siltstone; Qft2: low-level piedmont fan, and valley terrace
deposits)

compartment of a reservoir and often provide the first-order con-
trols on in-place fluid volumes and fluid movement during pro-
duction. Thus, it is crucial to model the structural frameworks as
accurately as possible. (ii) modeling of reservoir features (faces
and petrophysical properties) (Balestra et al. 2019; Wu et al.
2006) which describes the structure, stratigraphy, and rock prop-
erties of the reservoir and is a powerful tool in geostatistical
studies (Chambers et al. 2000; Jin et al. 2020) and geological
modeling (Mitra and Leslie 2003; Pan et al. 2020). It can inves-
tigate point distance, heterogeneity, spatial variation, and data
association (Zamora Valcarce et al. 2006); 3D geo-model grid,
water saturation, porosity, and permeability distribution map are
made (Nikravesh et al. 1999; Soleimani and Shokri 2015).
Besides, one of the primary responsibilities of 3D geological
modeling is the structural reconstruction and estimation parame-
ters to calculate oil volume in place, exploitation of oil, and
finding the new wells’ location (Larue and Friedmann 2005;
Pringle et al. 2010).

Zagros fold is one of the significant oil reservoirs in Iran, rich
in hydrocarbon reservoirs (Kobraei et al. 2019; Lasemi and
Jalilian 2010). This potential has been formed by a combination
of flexure slip and natural surface folding mechanism among
Zagros oilfields (Bordenave and Hegre 2010; Dehghanzadeh
and Adabi 2020; Hakimi and Najaf 2016; Moradi et al. 2017).
Among Zagros oilfield, Maroon oilfield in Asmari formations
has the most importance for geologists and drillers due to its oil
production capacity and high drilling mud loss (Agin et al. 2018;
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Table 1 Lithology of classified layers and sublayers

Layer/sublayer Thickness (m) Lithology Zone symbol
Layer 1 50-75 Dolomite, dolomitic lime Asml-1
Sublayer 11 18-20 70% sandstone, and small amounts of lime, dolomite, and thin layers of shale Asml-2
Layer 20 60-90 60% dolomite, dolomitic lime, thin layers of shale, and marl Asm2-1-1
Sublayer 28 12-18 Sandstone, lime, sandy lime, dolomite, and shale Asm2-1-2
Layer 30 30-60 Lime, dolomite, and thin layers of sand and shale existed. Asm2-1-3
Sublayer 30.60 18-28 Dolomitized sandstone and thin layers of shale in some parts Asm2-2
Layer 40 120-130 Lime, dolomitic lime, sandstone, and shale/marl Asm3-1-1
Sublayer 40.80 17-30 90% lime, and thin layers of shale and sand Asm3-1-2
Layer 50 65-70 Dense clay, limestone, dark glauconite, and pyrite shales Asm3-1-3
Sublayer 50.60 38-78 Compacted clay lime Asm3-2

Zare et al. 2019). The present study attempts to deeply explore
Maroon oilfield as a giant reservoir using 3D reservoir modeling
to produce structural information, which could be essential for
decision-makers. In the present study, the volume of oil-in-place
of the reservoir and various zones were estimated, and the best
zones for future exploitation were introduced. Regarding similar
studies, the present study is the most extensive and highly de-
tailed 3D modeling of the greatest hydrocarbon reservoir in the
Middle East, which also statistically revealed the petrophysical
parameters’ interaction.

Material and methods

Geological position

Zagros geological zone in Iran is extended over Iraq territory
in the northwest and in some parts of Oman in the south

direction, which is considered one of the world’s richest hy-
drocarbon basins (Moradi et al. 2017). Zagros is divided into
three zones, including (i) imbricate zone, (ii) Uremiah—
Dokhtar magmatic zone, and (iii) Zagros folded and thrust
belt (Mehrabi et al. 2021) with an area of about 867 km?.
The maroon oilfield is one of the largest oilfields in Dezful
embayment near Aghajari, Ahvaz, and Koopal oilfields (Fig.
la). It is located in the southeast of Ahvaz City on the quater-
nary sediments, including low-level piedmont fan and valley
terrace deposits. The field has a northwest-southeast direction
in length and a northeastern-southwestern direction in width.
Active tectonical movements in the Zagros system during
Oligocene resulted in many anticlines that provided colossal
hydrocarbon reservoirs (Bordenave and Hegre 2010) (Fig.
1b). Overall, the length and width of the field are about 60
and 7 km, respectively. This surficial face is formed in the
early Oligocene and mainly includes limestone, sandstone,
and evaporate rocks (Alavi Panah 2004). The Asmari

Fig. 2 Isochore depth map of
Asmari reservoir in Maroon
oilfield
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Fig. 3 3D structural modeling of
Asmari reservoir in Maroon
oilfield
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formation, Bangestan formation, and Khami groups constitute
this field’s oil reservoirs (Jafarzadeh and Hosseini-Barzi
2008).

Modeling and simulation of Asmari formation in
Maroon oilfield

Two groups of data were entered into the RMS software to
create a static model of the reservoir. First is the number of 86
well data, including geographic coordinates, well deviation,
and petrophysical properties. Second, reservoir structural data
is involved in calculated horizons based on the underground
contour (UGC) map, interpreted horizons, faults, project
boundary, contact surfaces of water, oil, and gas (OWC)
well-picked. In the following steps, the constructing structural
model, 3D model grid, blocked wells, and constructing
petrophysical models were simulated. Finally, water satura-
tion ratio, porosity distributions, the ratio of useful thickness
to the total thickness or net to growth thickness (NGT), and
volumetric calculations were calculated.

Results
Structural modeling

It is necessary to model structural and petrophysical charac-
teristics as an essential framework to simulate the reservoir.

@ Springer

The structural modeling includes modeling of faults,
stratigraphic, and 3D geo cellular (grid). In stratigraphic
modeling, all the reservoir horizons were calculated
based on the interpreted horizons (depth, well devia-
tion), thickness data (isochore), and modeled faults.
According to their lithology, the petrophysical properties
of interpreted horizons were classified into ten signifi-
cant layers/sublayers (Table 1).

The isochore depth map of the Asmari reservoir in the
Maroon oilfield was plotted by considering each reservoir
zone’s depth and UGC (Fig. 2). This map shows the opening
of the last isochore to the south and possible relation to other
structures and implies the possibility of petroleum migration
in the past. The 3D stratigraphic model of the Asmari reservoir
in the Maroon oilfield was calculated in each oil well and
plotted as a structural modeling map (Fig. 3). According to
this figure, the field consisted of one culmination related to
folding compressing stresses.

The 3D geo cellular model (3D grid) was produced to re-
veal reservoir heterogeneities in the next step. Griding is a cell
net that other modeling processes are applied to increase data
accuracy and improve our understanding of heterogeneity in
hydrocarbon reservoirs (Soleimani and Nazari 2012). For this,
a net of cells with individual dimensions was defined for the
whole reservoir. Therefore, each cell introduces a particular
value that can be varied in the order of importance.
Controlling the geometry and cell dimensions must be done
before giving the weight and run in petrophysical modeling.
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Fig. 4 Variogram calculated by RMS in three directions of a X, b Y, and ¢ Z

The 200 x 200 x 1 m (X.Y.Z) dimensions were selected for
each cell to consider the griding model’s space.

Petrophysical modeling

The petrophysical model introduces the estimated distribution
of petrophysical properties such as porosity, water saturation,
and net to gross thickness. Before running the model, some
necessary steps should be done, including rejecting data trun-
cate, except marked trends in the vertical direction, and data
transferring to normalize data process. The Asmari reservoir’s
variogram in the Maroon oilfield was then calculated (Fig. 4)
to find the spatial relationship between the data. The figure
shows the variability of data corresponding to spatial distance
or lag in three directions of X (Fig. 4a), Y (Fig. 4b), and Z (Fig.
4c), which are also mentioned in Fig. 3. Spatial variation
remained unchanged for all three graphs at specific lags,
which is highlighted with a dot line.

Based on the previous information, some of the most ap-
plicable reservoir properties comprising water saturation, po-
rosity, and net to gross thickness were modeled for each zone.
The distribution map of the average water saturation percent-
age for the study area is shown in Fig. 5. As shown in Fig. 5,
the saturation ratio is calculated between 0.16 and 0.99. The
areas with high saturation ratios are concentrated in the center
of the northeast part of the oilfield, and that means there is the
least sign of other fluids such as oil and gas, while the great
majority of central areas consist of formations with lower wa-
ter saturation ratios ranges between 0.16 and 0.6. The southern
part of the oilfield had an intermediate water saturation
condition.

Figure 6 shows the average distribution of porosity ratios in
Asmari formation calculated by RMS through well data. As
shown, the areas with lower porosity are highlighted with
green, yellow, and red colors. Thereby, these areas with
clumped dispersion are more susceptible to trap the fluids
such as oil. Conversely, it is unlikely that blue colored areas
with higher porosity rates are contained oil (Asoodeh and
Bagheripour 2013; Gholami and Ansari 2017).

The average NGT ratio distribution map of the Asmari
formation is shown in Fig. 7. The ratio is essential to estimate
the amount of oil volume in the reservoir (Snyder 1971).
Similar to water saturation and porosity maps, NGT has a
clumped dispersion pattern. As shown, the blue and purple areas
with higher reservoir rocks have NGT between about 0.6 and
1.0, offering potential hydrocarbon resources with up to 40% or
higher availability for secondary recovery, while in the other
areas with higher non-reservoir rocks, only 15-25% of hydrocar-
bon can be recovered. One hundred percent recovery is not pos-
sible because of residual oil, high oil viscosity, heterogeneity,
fractures, and oil-wet rock factors (Worthington 2010).

The estimated petrophysical parameters (water saturation,
NGT, and porosity) are shown in Fig. 8a. The radar chart
showed that water saturation, porosity, and NGT properties
ranged between 31.5-90.00%, 2.70—12.70%, and 2.60-
79.00%, respectively. As shown, water saturation stood at

@ Springer
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30% in Aml-1 and reached to 90% in Am2-1-1. After a
sharp decrease to 60% in Am2-2, it reached 90% in the
lower zones of Am3-1-1 to Am-3-2. NGT was higher in
the top zones and began at 55%, and then reached a
high of 68% in Am2-1-1. Following a gradual decrease
to 23% in Am3-1-1, NGT percentage sharply decreased
to a minimum range of 3% in A3-2. The porosity
started at nearly 8% in Aml-1 and witnessed a similar
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trend with water saturation for the other zones. It
peaked at just under 30% in Am2-1-2, and after a fluc-
tuation reached to about 3% in Am3-2.

As shown in Fig. 8b, NGT and porosity have a significant
positive correlation of 0.85 while respectively have negative
correlations of —0.98 and —0.84 with water saturation. Based
on results, hydrocarbon accumulation would increase with
increasing porosity of a layer.

Fig.6 The distribution map of the
average porosity for Asmari
formation in the study area
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Calculation of the amount of oil volume in place

The precise calculation of original oil-in-place volume is one
of'the outstanding outputs of 3D simulations of giant oilfields.
The amount of volume oil-in-place was estimated by the fol-
lowing equation (Eq. 1):

77584 _,
N = B—OZizlh@(l_Sw) (1)

where N = oil in place (stb), A = drainage area (acres), Bo =
formation volume factor (rb/stb), # = net pay thickness (ft.), ¢
= porosity, and Sw = water saturation.

Reserve defines as (Eq. 2):

R=NxE (2)

where R = reserves, N = oil in place or free gas reserve, and £
= recovery factor.

Based on the above equations, the total and reserve oil
volume were 11.5 and 4.4 mm stb, respectively. The amount
of oil volume in place for various zones is calculated by Eq. 1
and Eq. 2, shown in Fig. 9a. The pie chart illustrates that the
Am2-1-3 and Aml-1 zones possess the highest oil volume
percentages of 30.9 and 28.7%, respectively, in the Maroon
oilfield. Zones of Am2-1-1 and Am2-2 with 15.3 and 14.2%
contained lower oil. The other zones altogether have about
11% of the oil volume of the reservoir. As shown in Fig. 9b,
in the zones of Am1-1 to Am2-2, the oil volume has a direct
relationship with zone thickness. However, the other under-
neath zones of Am 3-1-1 to Am3-2, as shown in Fig. 8a, due
to water saturation possess lower oil volume.

I
328000

I I I
337000 346000 355000 364000

Discussion

In this research, the geostatistical method was applied as an
advanced tool to predict rocks’ performance through geolog-
ical data. Also, it is known as a powerful tool for understand-
ing data and building spatial distribution models (Hosseini
et al. 2019). The 3D geological modeling through drilling,
sections, and plane data can provide common platforms for
geophysicists, geologists, and engineers to work together
(Collon et al. 2015; Philippon et al. 2015). We utilized
variogram-based geostatistical techniques to create a 3D mod-
el, which is widely applied in the great majority of reservoir-
characterization studies (Eidsvik 2015; Pyrcz and Deutsch
2014; Ziegel 2005) because the proper selection of variogram
parameters and using adequate data points in the variograms is
a key to acquire accurate reservoir characterization (Rossi and
Deutsch 2014).

Furthermore, some of the most applicable reservoir param-
eters comprising water saturation, porosity, and net to gross
thickness were modeled for each zone. The average value of
the parameters calculated and distributed on the map gave us a
general overview of reservoir conditions. The northeast parts
of the oilfield had high saturation ratios while the southern
part of the oilfield had an intermediate water saturation con-
dition. However, water saturation is not merely representative
of fluid distribution because a small proportion of clay min-
erals and carbonate formation significantly reduces modeling
accuracy. Regarding pore size distribution, extensive varia-
tions in pore size were observed in carbonate formation.
Porosity is a vital parameter for evaluating reservoir forma-
tions because the higher porous media store more fluids

@ Springer
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Fig.8 Illustration of water saturation, NGT, and petrophysical porosity parameters including a petrophysical percentages in various zones and b Pearson

correlation between petrophysical properties

(Alhammadi et al. 2020). Also, the capacity and volume of oil
in bedrocks are porosity functions (Pang et al. 2019).
However, we should not ignore unrelated connections in rock
structures and petrophysical parameters, leading us to differ-
ent errors during the modeling (Movahhed et al. 2019).
Overall, the areas with high porosity values are concentrated
in the southern parts, while the areas with high water satura-
tion ratio are approximately located in the northern parts. The
porous rocks with a higher NGT ratio are more oil-bearing
than those with lower porosity (Metwalli et al. 2018; Xu and
Sharif 2020). The converse relation of water saturation with
other parameters agrees that the oil-bearing layer has lower
water saturation. Therefore, the layers of Am2-1-3, Am 2-2,
and Aml-1 are seeming to have the highest oil accumulation.

@ Springer

Based on the results, the highest oil-bearing layers
consisted of carbonate rocks. Dolomite is the significant com-
ponent of Asm1-1, Asm1-2, and Asm2-1-1, and shale exists in
a thin layer in depth. In contrast, the layers with lower oil
volume have other ingredients such as sandstone and clay
materials. Sandstone appears from Asm2-1-2 to Asm3-1-1
and is more porous because it is a significant part of Asm3-
1-2 and Asm3-1-3, while Asm3-2 mainly consists of a heavy
texture component. The compacted clay layers can conversely
affect the oil-bearing of geology layers (Lai et al. 2019;
Usman et al. 2020; Wooldridge et al. 2017).

This research presented a 3D reservoir model for handling
uncertainties in oil reservoirs and provided a reference for
future applications and developments. It can help
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systematically explore the uncertainty space and estimate the
volume of hydrocarbon in place. It was conducted by calcu-
lating petrophysical parameters and the volume of oil in place
for various layers. The volumetric calculations transferred into
separate pie and bar charts allowed the evaluation of each
layer’s capacity and potential. Knowing the oil-in-place vol-
ume for various layers and drawing proper plots for water
saturation, porosity and NGT can be a guideline for optimiz-
ing future hydrocarbon reservoir development by assessing
the level of risks and optimizing investments.

As discussed, the distribution maps of petrophysical prop-
erties of water saturation, porosity, and NGT can be a guide-
line for drilling new wells in the future. Additionally, these
platforms have improved data handling and decision-making,
leading to more coherent reservoir parameter representation
(Philippon et al. 2015; Senel et al. 2014; Xuequn et al.
2019). But one of the critical issues is that the spatial varia-
tions of their distribution were severe. For example, the

porosity model showed a slow variation in different direc-
tions, and the polygons were more continuous. At the same
time, water saturation and NTG modeling showed extreme
variation with smaller heterogencous polygons. Therefore,
finding the location of new wells must be done by taking high
accurate measures.

Conclusion

—  Structural model revealed that the Maroon oilfield is an
elongated anticline with a southeast-northwest direction
and extends for 60-7 km based on the Asmari formation
top.

—  The Asmari reservoir in the Maroon oil field is a giant oil
field for different reasons, such as low water saturation in
most zones and a high oil amount.

—  The petrography maps showed that the northwest culmi-
nation is the best location for future drilling programs due
to low water saturation and NGT.

— The petrophysical properties of porosity and NGT re-
vealed a significant positive correlation with each other
and a significant negative correlation with water
saturation.

—  The first and fifth zones count as the potential petroleum
zone as about 60% of the present oil is accumulated there.

—  From the seventh to the tenth zone, the oil volume de-
creased due to high water saturation in these areas.

—  The overall method discussed in this research can be ap-
plied in various steps during the lifetime of the various
reservoirs around the globe.
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