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Applying hybrid artificial algorithms to the estimation of river flow:
a case study of Karkheh catchment area
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Abstract
This study was conducted on the Karkheh catchment area in the country of Iran on the basis of data from four stations of Cham
Anjir, Kashkan, Pole-zal, and Jologir. The data were monthly collected for the years from 1997 to 2017, from which 70% were
used for calibration and 30% for test validation. Artificial neural networks (ANNs) were used in the prediction of river flow. To
optimize the weight coefficients of the network, the meta-heuristic genetic algorithm (GA), particle swarm optimization (PSO),
ant colony optimization (ACO), harmonic balance algorithm (HB), and algorithm of the innovative gunner (AIG) were
employed. To assess the modeling performance of the statistic parameters, the coefficient of determination (R2), root mean
square error (RMSE), Nash-Sutcliffe efficiency (NSE), mean absolute error (MAE), and percentage of bias (PBIAS) were
adopted. The achieved best input combination was different for each algorithm. In summary, variables with lower correlations
had poorer performances. Hybrid algorithms improved the predicting power of the considered independent model. The results
showed that for the studied four stations, among the meta-heuristic algorithms, AIG had the highest predictive power correlation
coefficient R2 = 0.985–0.995, root mean square error (RMSE) = 0.036–0.057 m3/s, mean absolute error (MAE) = 0.017–0.036
m3/s, Nash-Sutcliffe coefficient (NSE) = 0.984–0.994, and bias = 0.008–0.024 and had the best performance in estimating the
daily flow of the river.
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Introduction

Different factors such as population growth and human activ-
ity development have led to the increase in water demand.
This, in turn, has made considerable changes to water catch-
ments and uses of rivers, resulting in economic losses such as
runoffs, destructive floods, landslides, storms, and tsunamis
(Yapo et al. 1996; Tokar and Johnson 1999). Studies have
shown that half of the countries around the world are faced
with drought. Inmany other regions, the hazards of storms and
runoffs have caused the destruction of infrastructures
(Wheater et al. 2008; Khaing et al. 2019). Adopting traditional

and non-modernized, i.e., non-scientific and non-applicable,
procedures in the agricultural section and inappropriate man-
agement factors (weakness in strategic management and pro-
gramming, unskilled plans, etc.) have exerted a double pres-
sure on natural resources, ecosystem, and hydrological cycles
(Samra et al. 1999). In some regions, increasing rainfall leads
to the rise of the runoff level, causing erosion and increased
base flow in rivers (Friedman 1991). Rapid economic devel-
opment and increased human activities have raised natural
hazards, such as severe climate change, and transformed run-
offs (Li et al. 2009). Thus, exact prediction and estimation of
rainfall-runoff have an important role in programming and
management of water resources in different fields, such as
flood control (Bai et al. 2015; Liu et al. 2018), water transfor-
mation (Madani 2011), environmentology (He et al. 2018),
optimization of water distribution systems (Zheng et al.
2015), and so on (Xu et al. 2019; Liu et al. 2019). For system-
atic and optimal modeling of hydrological processes, proper
perception of the involved phenomena and their physical re-
lations play a significant role (Jothityangkoon et al. 2001).
Accordingly, researchers from around the world have
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developed and applied various hydrological models in differ-
ent scientific fields (Chow et al. 1988; Pinos and Timble
2019). Accurate modeling of the hydrological processes can
provide important fundamental information in different areas
and significantly improve different systems of water resources
(Nourani et al. 2007; Nourani and Mano 2007). Different
models for predicting hydrological phenomena have been de-
veloped by researchers in the past decades (Niu et al. 2019).
These models are classified into physically based, conceptual,
and data driven, and each category has its specific advantages
and disadvantages (Zhu et al. 2019). Artificial intelligence and
data mining techniques are nowadays broadly applied to
predicting non-linear hydrological time series in different
fields of science. The main advantage of these techniques is
their applicability to a wide range of conditions with dynamic
and non-linear data with a high level of noise (Jain et al. 2004;
Senthil Kumar et al. 2004). Black-box time series models are
extensively used in the prediction of hydrological and envi-
ronmental processes (Salas et al. 1980; Tankersley et al.
1993). Artificial neural networks (ANNs) are a powerful mod-
el for modeling rainfall-runoff processes with complex and
non-linear nature (Senthil Kumar et al. 2004). The first efforts
to perform simulation with ANNs were made by McCulloch
and Walter Pitts in the early 1940s (McCulloch and Walter
1943), and afterwards, they were extended by Hebb (1949),
Rosenblatt (1958), and Minsky and Papert (1969). Today,
there are very powerful models in hand that can simulate com-
plex, non-linear, time-consuming problems with high accura-
cy and low computational time (Hebb 1949; Minsky and
Papert 1969). The main advantages of ANNs are the

capability of utilizing incomplete data (in case of missing or
low volume of data on a phenomenon or poor statement of the
problem), fault tolerance (i.e., weakness in a cell or a neuron
does not end in the failure of the whole project), machine
learning and compatibility with other artificial intelligence
(meta-heuristic and optimization) models, parallel computing
(the ability to perform multiple tasks simultaneously), etc.
(Minsky and Papert 1969). On the other hand, their main
two disadvantages are requiring a great amount of long-term
data to reach the best response and uncertain and imprecise
prediction with out-of-range data (Melesse et al. 2011; Kisi
et al. 2012). Two major strategies have been proposed to
overcome these weaknesses: incorporation of fuzzy logic
(FL) in ANNs to create an adaptive network-based fuzzy in-
ference system (ANFIS) and combining ANNs with meta-
heuristic optimization algorithms (Rajaee et al. 2009;
Ebtehaj and Bonakdari 2014). The hybrid ANN-ANFIS mod-
el is applied to different fields of science and technology in-
cluding the prediction of concrete compressive strength
(Mohammadi Golafshani et al. 2020), daily potential evapo-
transpiration (Ramiro et al. 2020), effective factors in physical
properties of nanofluids (Abdullah et al. 2018) and lake-level
fluctuations (Talebizadeh and Moridnejad 2011), estimation
of daily solar radiation (Quej et al. 2017), groundwater simu-
lation and prediction (Zare and Koch 2018), etc. The devel-
opment of computational intelligence has enhanced modeling
efficiency, speed, and accuracy, enabling us to solve prob-
lems, the solutions to which could not be achieved through
classical methods. In recent years, meta-heuristic models have
drawn increasing attention for solving optimization problems.

Fig. 1 Positions of the selected stations in Karkheh catchment
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Simplicity, flexibility, a broad range of algorithms, and
preventing local optimization in computational processes are
the main advantages of these models. Simulated annealing
(Kirkpatrick et al. 1983), Tabu search (Glover 1986), grey
wolf optimization (Mirjalili et al. 2014), cuckoo optimization
algorithm (COA) (Yang and Suash 2009), gravitational search
algorithm (GSA) (Rashedi et al. 2009), particle swarm opti-
mization (PSO) (Eberhart and Kennedy 1995), grasshopper
optimization algorithm (GOA) (Mirjalili 2018), ant colony
optimization (ACO) (Dorigo et al. 1999), harmony search
(HS) method (Reynolds 1994), bee swarm optimization
(BSA) (Karaboga 2005), momentum balance equation, etc.
are samples of such algorithms. The main aim of this research
was the estimation of river flow through hybrid smart algo-
rithms. For this purpose, ANNs were used. However, as
known, these networks go through trial and error to calculate
the weight coefficients and bias, which decreases their predic-
tion accuracy. To overcome this weakness and optimize
weight coefficients to enter into modeling, five powerful
meta-heuristic optimization algorithms, namely genetic algo-
rithm (GA), PSO, harmonic balance algorithm (BFA), ACO,
and algorithm of innovative gunner (AIG), were used. Finally,
for better appraisal of the performance of the applied algo-
rithms, the old GA model was compared with the brand new
AIG method.

Based on the above review of literature and given that the
Karkheh river is one of the main catchment areas in Iran that
supply much water for drinking and nearby agriculture, espe-
cially under the pressure of low river water volume due to the
recent drought, the importance of simulating river flow and
taking constructive measures for water management is now
felt more than ever. Therefore, this study aims to predict the
daily flow of the Karkheh catchment area by using the pro-
posed hybrid ANN-AIG model as well as to compare the
obtained results with those of other hybrid models (ANN-
GA, ANN-PSO, ANN-BFA, ANN-ACO).

Materials and methods

The studied catchment area

Karkheh catchment in the country of Iran was studied in this
research. It is located between 48° 10′ to 50° 21′ E and 31° 34′
to 34° 7′Nwith an area of 59,143 km2 from the western to the
middle and south western Zagros Mountains in the Persian
Gulf region. It is limited to the Sirvan, Sefid-rud, and
Ghareh-chai rivers in the north, Dez catchment area in the
west, and some parts of the western borders of the country
in the south. Average annual rainfall in the Karkheh catch-
ment area ranges from 951 mm in the southern to
9111 mm in the northern highlands and eastern regions.
Vegetation was insignificant at lower altitudes, but it

increased with the rise of altitude. Average annual rain-
fall was higher in the northern and eastern regions of
the catchment, with 48.8% of the total precipitation oc-
curring in winter on average, 30.60% in autumn, 20.4%
in spring, and only 0.2% in summer. Figure 1 shows
the geographical positions of the selected four stations
in the Karkheh catchment area, namely Cham Anjir,
Kashkan, Pole-zal, and Jologir. Table 1 also presents
the geographical data on these stations

Data collection and selection of the best input
combination for the model

Different methods of prediction are intended to relate
dependent and independent variables. The relation be-
tween the variables of hydrological cycle and runoff is
one of the major challenges for hydrologists. In this
study, the preliminary step was determining the factors
influencing the river flow discharge. The major factors
in the estimation of runoff in an area are rainfall, dis-
charge, temperature, evapotranspiration, humidity, and
wind pressure and direction. Due to the lack of enough
records and the required knowledge about the physical
process of converting these parameters to flow variables

Table 2 Descriptive statistics of variables for the calibration and test
data

Data Station Min Max Mean SD Skew

Total Cham Anjir 3.40 33.10 8.49 6.02 1.89

Kashkan 6.65 273.00 42.34 39.43 3.02

Pole-zal 0.00 94.90 5.99 10.95 5.04

Jologir 8.20 639.00 124.37 147.53 1.32

Calibration Cham Anjir 3.40 33.10 9.64 6.21 1.69

Kashkan 6.65 273.00 48.57 41.39 2.89

Pole-zal 0.00 94.90 7.14 11.96 4.56

Jologir 8.20 639.00 152.64 152.32 1.03

Testing Cham Anjir 3.85 6.87 3.87 0.53 4.44

Kashkan 13.90 42.80 17.43 11.98 0.85

Pole-zal 1.14 1.88 1.36 0.26 1.08

Jologir 8.92 35.60 11.27 5.11 3.78

Table 1 Geographical coordinates of Karkheh stations

Station Length Width Area

Cham Anjir 48° 14′ 38″ 32° 26′ 37″ 1140

Kashkan 47° 53′ 39″ 39° 19′ 52″ 820

Pole-zal 48° 9′ 32° 25′ 90

Jologir 47° 43′ 32° 9′ 120
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and their effects as well as negligible values of some
parameters in this study, only rainfall and discharge
were accounted for. Time series were monthly, and the
data were collected for the years from 1997 to 2017,
from which 70% data were used for calibration and
30% for validation of the test (Khosravi et al. 2018).
Model structure and the best input combination are the
effective factors in the prediction power of a model and
achieved results. Table 2 presents the variables (maxi-
mum, minimum, mean, standard deviation, and skew-
ness) in the calibration and test data for the considered
four stations. Before modeling, the best input combina-
tion with the optimum amounts to operate each model
should be determined. To achieve the best input combi-
nation of parameters, Pearson correlation coefficient
(PCC) was employed. Variables were considered as the
potential input, and PCC was calculated between the
input and the output. After calculating a correlation be-
tween variables, the models were ranked in descending
order. Hence, the first combination had the highest cor-
relation coefficient, and the last combination showed the
lowest value. The highest correlation would indicate
whether the variable with the highest correlation could
predic t output (discharge) on i ts own or not .
Combination 2 was a complex of model 1 and the
highest correlation in the following combination and so on
(Khosravi et al. 2018; Sharafati et al. 2019). Table 3 shows
the values of the correlation coefficient between different var-
iables. These variables were the criteria for choosing the best
model combination, as given in Table 4. To select the best
input combination and the optimum values for different oper-
ators, MATLAB 2019a and, in some other analyses,
Microsoft Excel 2019 were employed.

As observed in Table 3, the input was a combination of
rainfall and discharge, and the output was discharge. In this
table, P(t) shows rainfall; P(t − 1) is rainfall with a day delay,
and P(t − 2) is rainfall with 2 days delay, Q(t − 1), Q(t − 2), and
Q(t − 3) shows discharge with 1, 2, and 3 days delay, respec-
tively. As noted above, selection of the combinations was
based on PCC between variables in a way that, after calculat-
ing the correlation between discharge and all the other factors,
in the first combination, the highest correlation was selected,
and at the lower levels, the respective higher combinations
and the highest coefficient were considered.

Evaluation criteria and comparison of the models

Different criteria are used in each project to evaluate model
performance. In this study, the coefficient of determination
(R2), root mean square error (RMSE), Nash-Sutcliffe efficien-
cy (NSE), mean absolute error (MAE), and percentage of bias
(PBIAS) were used for this purpose (Legates and McCabe
1999; Nagelkerke 1991). The values were between 0 and 1
for R2 with 1 showing higher prediction and precision. The
value of zero indicates that the model does not determine the
variability of the data around the mean, and the value of 1
implies that it identifies all the variability around the mean
(Nagelkerke 1991). NSE is a normalized statistic that deter-
mines residual variance compared to the measured variance
(Nash and Sutcliffe 1970) ranging within −∞ <NSE < 1 with
the optimum value of 1. In other words, the response is opti-
mum if the value of NSE is equal to 1. Moreover, NSE values
from 0 to 1 are generally regarded to be at the acceptable level,
standing for better observational amounts than estimation
amounts (Duie Tien et al. 2020). This parameter has also been
suggested by ASCE (ASCE 1993), and it is very frequently
used because it presents a broad range of information for re-
ported values. Moreover, its applicability has experienced a
significant increase to different sciences in recent years (Sevat
and Dezetter 1991; Kesgin et al. 2020). PBIAS measures the
mean of (simulated) calculation (Dabanlı and Şen 2018) and
can be positive and/or negative. Zero is the optimum, and low-
magnitude values show model precision in the simulation
process; positive PBIAS values indicate underestimation,
and negative values stand for overestimation of the model
(Gupta et al. 1999). PBIAS is also a broadly used indicator

Table 4 Combinations of input variables for the selection of the best
model

Input Output

1 P(t) Q(t)

2 P(t), P(t − 1) Q(t)

3 P(t), P(t − 1), P(t − 2) Q(t)

4 P(t), P(t − 1), P(t − 2), Q(t − 1) Q(t)

5 P(t), P(t − 1), P(t − 2), Q(t − 1), Q(t − 2) Q(t)

6 P(t), P(t − 1), P(t − 2), Q(t − 1), Q(t − 2), Q(t − 3) Q(t)

Table 3 PCC values between
each input variable and Q PCC Station Q(t − 1) Q(t − 2) Q(t − 3) P(t) P(t − 1) P(t − 2)

Q(T) Cham Anjir 0.927 0.901 0.874 0.844 0.806 0.785

Kashkan 0.931 0.910 0.862 0.853 0.813 0.778

Pole-zal 0.945 0.918 0.886 0.866 0.823 0.791

Jologir 0.934 0.911 0.877 0.857 0.808 0.788
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by many researchers in different fields, including hydrology,
water resource management, and earth sciences (Pengxin et al.
2019). The formulations for calculating all the considered in-
dicators are given in Eqs. 1 to 5. In this study, in addition to the
above criteria, boxplot and Taylor diagram were used. Taylor
diagram and boxplots are common graphic procedures used in
model performance comparison. The Taylor diagram is an
appropriate tool for assessing different methods and has re-
cently been applied to the fields of weather forecast, water
science, and so on. It is represented in the form of a semi-
circle indicating positive and negative correlations (a quadrant
shows only a positive correlation). The values of the correla-
tion coefficient are given in the form of radii, and standard
deviations are concentric circles (Taylor 2001). Boxplot was
introduced by John Tukey (1969). It is a common figure that
shows statistic values for data. In other words, it compares
data in observational form (Lo Conti et al. 2014).
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� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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Fig. 2 General flowchart of AIG

Fig. 3 General flowchart of GA
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The models used in the research

ANNs have different components, such as input layers,
weights and bias, hidden layers, operator, and output. An ef-
ficient calibration step makes ANNs capable to predict an
output and an output layer of neurons (Schalkoff 1997). The
main steps for designing data collection network are network
construction and configuration, assigning initial values and
obtaining optimum weights and bias, education, and finally,
validation of the network (Haykin 1994; Engelbrecht 2007). It
can be stated that the most important part in networks is the

selection of weight coefficients and bias, which is performed
through trial and error and defined as a calibration step. The
greatest challenge in selecting these coefficients is the trial and
error, which is in turn subject to many negatively influencing
factors, such as selection of incorrect initial amounts, improp-
er configuration, human error, etc. The augmentation of the
errors caused by such factors in the final run decreases predic-
tion accuracy in the modeling process. To overcome the weak-
ness, two strategies are often adopted, as mentioned in the
Introduction section. To improve network precision in esti-
mating weight coefficients and bias, four optimization algo-
rithms were used in this study. The research was carried out in
two steps. In the first step, ANNs were constructed as an
independent model, and their precision was evaluated. In the
second step, the hybrid compounds of ANN-GA, ANN-PSO,
ANN-HB, and ANN-AIG were used. The purpose was to find
the best (optimum) response for weight coefficients and in-
crease model accuracy. The applied optimization algorithms
in this study are discussed in the following.

Algorithm of the innovative gunner (AIG)

AIG is one of the novel meta-heuristic optimization algo-
rithms presented by Pijarski and Kacejko (1970). With regard
to the strong structure of the algorithm, it is expected to find
significant applicability to different fields of science and tech-
nology. This algorithm has high efficiency and speed in solv-
ing optimization problems (e.g., mechanical andmathematical
benchmark performances). High convergence speed and
obtaining an optimum response in the shortest possible time

Fig. 5 ACO flowchart

Fig. 4 PSO flowchart
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with the lowest cost and highest precision are the advantages
of this algorithm. It conducts deep exploration in the searching

space by swarm response vectors to achieve the optimum
response. AIG obtains different solutions and responses that

Table 5 Selection of input combinations based on RMSE

Model Evaluation criteria Phase 1 2 3 4 5 6

Cham Anjir station

GA-ANN RMSE (m3/s) Calibration 0.174 0.163 0.152 0.141 0.129 0.116

Testing 0.145 0.138 0.127 0.116 0.108 0.098

HB-ANN RMSE (m3/s) Calibration 0.153 0.148 0.144 0.137 0.124 0.107

Testing 0.14 0.132 0.125 0.113 0.101 0.086

ANT-ANN RMSE (m3/s) Calibration 0.139 0.132 0.126 0.115 0.108 0.095

Testing 0.107 0.098 0.091 0.085 0.079 0.075

PSO-ANN RMSE (m3/s) Calibration 0.123 0.114 0.102 0.096 0.084 0.084

Testing 0.094 0.089 0.083 0.077 0.07 0.062

AIG-ANN RMSE (m3/s) Calibration 0.102 0.09 0.088 0.082 0.075 0.072

Testing 0.081 0.075 0.068 0.063 0.058 0.054

Kashkan station

GA-ANN RMSE (m3/s) Calibration 0.161 0.149 0.138 0.126 0.116 0.102

Testing 0.147 0.131 0.12 0.109 0.095 0.084

HB-ANN RMSE (m3/s) Calibration 0.144 0.136 0.128 0.117 0.105 0.092

Testing 0.124 0.119 0.106 0.097 0.085 0.073

ANT-ANN RMSE (m3/s) Calibration 0.138 0.132 0.121 0.11 0.098 0.081

Testing 0.118 0.108 0.094 0.086 0.075 0.068

PSO-ANN RMSE (m3/s) Calibration 0.122 0.114 0.107 0.095 0.084 0.072

Testing 0.105 0.09 0.081 0.073 0.064 0.057

AIG-ANN RMSE (m3/s) Calibration 0.104 0.092 0.086 0.075 0.066 0.053

Testing 0.08 0.072 0.065 0.054 0.043 0.036

Polzal station

GA-ANN RMSE (m3/s) Calibration 0.173 0.168 0.155 0.149 0.138 0.127

Testing 0.163 0.156 0.147 0.131 0.122 0.115

HB-ANN RMSE (m3/s) Calibration 0.16 0.151 0.142 0.136 0.127 0.111

Testing 0.152 0.148 0.135 0.129 0.115 0.102

ANT-ANN RMSE (m3/s) Calibration 0.153 0.147 0.136 0.128 0.117 0.106

Testing 0.144 0.132 0.128 0.115 0.103 0.094

PSO-ANN RMSE (m3/s) Calibration 0.142 0.131 0.122 0.11 0.097 0.084

Testing 0.118 0.109 0.097 0.086 0.077 0.064

AIG-ANN RMSE (m3/s) Calibration 0.121 0.115 0.104 0.093 0.082 0.072

Testing 0.101 0.095 0.087 0.076 0.064 0.057

Jologir station

GA-ANN RMSE (m3/s) Calibration 0.164 0.15 0.138 0.129 0.118 0.106

Testing 0.151 0.146 0.132 0.125 0.112 0.098

HB-ANN RMSE (m3/s) Calibration 0.144 0.137 0.128 0.117 0.108 0.097

Testing 0.136 0.13 0.122 0.108 0.095 0.086

ANT-ANN RMSE (m3/s) Calibration 0.134 0.128 0.12 0.107 0.096 0.083

Testing 0.119 0.11 0.098 0.087 0.075 0.061

PSO-ANN RMSE (m3/s) Calibration 0.127 0.115 0.106 0.099 0.087 0.075

Testing 0.108 0.098 0.084 0.078 0.066 0.058

AIG-ANN RMSE (m3/s) Calibration 0.116 0.105 0.097 0.088 0.075 0.064

Testing 0.093 0.086 0.073 0.067 0.055 0.047
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Fig. 6 Scatter plots and time series graphs for observational data and Q prediction in testing phase for Cham Anjir, Jologir, Kashkan, and Pole-zal
stations
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are considerably efficient in preventing being trapped in local
optima. This algorithm is extraordinarily useful in solving objec-
tive functions with multiple dimensions and different forms. It is

predicted to obtain better results than other swarm intelligence
methods (e.g., GA, PSO, GOA, etc.) Figure 2 shows the flow-
chart of the algorithm. The steps of the algorithm are as follows:
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1) Determine the start point (the initial amount for the first
bullet).

2) Determine the distribution distance (bullet shooting dis-
tance from the gun to the point of impact).

3) Calculate the produced bullet (the second bullet in the
third step originating from the first bullet).

4) Investigate the bullet impact (bullet place, or if the bullet
accurately hits the target).

5) Select N bullets randomly as the main bullets (if the bullet
hits the target).

6) Investigate and update the place and position of the point
of impact (if the bullet hits the target, end; otherwise,
repeat the previous steps).

7) Determine the best recorded position.
8) End.

Genetic algorithm (GA)

GA has been inspired by genetic science and Darwin’s evolu-
tion theory and is based on the survivability of the top mem-
bers or natural selection. The algorithm was presented by
Halland in 1970, and since then, it has been extensively ap-
plied to different engineering problems, such as hydrological
models, ground water, etc. GA is a searching method based on
selection mechanism, which combines the best artificial re-
mains with the genetic functions obtained from nature
(Podger 2004). GA searches among different points, uses
codes instead of real amounts, and follows probability laws
(Rouhani and Farahi Moghadam 2014). According to the re-
sults of the assessments, it directs the searching process to-
wards the optimal responses. After giving values to a random
set of strings to achieve the optimal point, it calculates the
objective function, which is the criterion for evaluating the
performance and compatibility of the strings. If the optimum
state criterion is not satisfied, a new generation begins. After
generating the offspring of the second generation (elite, hy-
brid, and mutant) in defined ratios, using the parent selection
algorithms, new generations are replicated until the stopping

criteria are met (Kennedy and Eberhart 1995). Figure 3 gives
the flowchart of the GA algorithm.

Particle swarm optimization (PSO)

PSOwas first presented by Kennedy and Eberhart (1995). It is
a simulation algorithm for colony behavior, the main idea of
which originates in regular flocking of birds and fishes. In this
algorithm, similar to other developmental techniques, poten-
tial solutions are investigated for exploration of the searching
space (Kennedy and Eberhart 1995). Different types of PSO
have successfully been applied to hydrological projects as a
useful and powerful optimization algorithm. In this method,
each particle has a speed vector that is responsible for chang-
ing its position to explore among the present responses. If the
searching space is D-dimensional, it represents a particle in the
population with D-dimensional vector Xi = (xi1,xi2,…,xiD),
velocity of place changeVi = (vi1,vi2,…,viD), and the best place
Pi = (pi1,pi2,…,piD). The best particle in the whole population
is identified by the index g. The particle swarm is follows:

Vnþ1
i;d ¼ w:Vn

i;d þ c1rn1;i;d pbestni;d−x
n
i;d

� �
þ c2rn2;i;d lbestni;d−x

n
i;d

� �
ð6Þ

X nþ1
i;d ¼ X n

id þ Vnþ1
id ð7Þ

where i = 1, 2,⋯Nwith N representing the swarm size and
d = 1, 2, ⋯D with D being the dimension size. n is the repli-
cation number, and w is the weight inertia. c1 and c2 are fixed
positive coefficients that stand for cognitive and social param-
eters, and r1, i, d and r2, i, d are random numbers in a range of
(0,1) with uniform distribution. Finally, T is the time period.
Since there was no speed control process involved, it was
essential to consider the VMax; above which, the particles
would bypass the range of acceptable solutions, and below
which exploring the search space properly would be impossi-
ble (Kennedy 1998). Figure 4 presents the PSO flowchart.

Harmonic balance algorithm

Harmonic balance is a commonly applied method of approx-
imating periodical responses for normal and non-linear

Table 6 Performance evaluation
for Cham Anjir station Calibration Testing

R2 RMSE MAE NSE BIAS R2 RMSE MAE NSE BIAS

HB-ANN 0.924 0.093 0.064 0.935 0.052 0.932 0.086 0.053 0.948 0.042

GA_ANN 0.908 0.106 0.072 0.921 0.065 0.921 0.098 0.064 0.932 0.054

ANT_ANN 0.938 0.085 0.052 0.953 0.044 0.948 0.075 0.047 0.966 0.035

PSO_ANN 0.951 0.072 0.041 0.968 0.034 0.963 0.062 0.037 0.985 0.026

AIG-ANN 0.963 0.067 0.036 0.977 0.025 0.987 0.054 0.032 0.994 0.021
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differential equations (Sarrouy and Sinou 2011; Detroux et al.
2014). Harmonic balance has various applications, e.g., to
quasi-periodic flows that are determined by a finite number
of governing frequencies and do not necessarily need to be
harmonic (Krack and Gross 2019). Harmonic balance is of
high importance for non-linear systems. The main duty of
harmonic balance is to determine non-linear Fourier coeffi-
cients. Harmonic balance is a method for calculating the
steady response of non-linear equations (Deuflhard 2006),
and it is applied to non-linear electric circuits (Nakhla et al.
1976). Harmonic balance is efficient and flexible, and it cal-
culates the steady-state response directly through Fourier se-
ries. It is a pure frequency domain technique.

Ant colony optimization (ACO)

ACO was presented by Dorigo (1992) for solving seller prob-
lems. It has been inspirited by ant behavior in searching food.
The main steps for solving optimization problems by ACO are
as follows. Figure 5 shows the flowchart of the algorithm.

1. After defining the appropriate graph for the problems in hand,
the pheromone level is considered for all options, and each ant
is placed on an initial point from which it moves.

2. Each ant must select and go to another point by consider-
ing a possible relation. If an ant moves from all the points,
it will build a possible response.

3. After achieving a complete response by an ant, the objec-
tive function value for the respective response is

calculated. Steps 2 and 3 are repeated for all the ants.
Selection probability increases with the subsequent repli-
cations, and this will help in reaching the optimum
response.

4. If a stop criterion of the algorithm is met, modeling is
finished.

Results and discussion

Models and algorithms were assessed by a dataset, and the
highest efficiency for modeling and analysis was selected.
This was performed at six phases, as shown in Table 4. In
other words, the phases were the best input combinations cho-
sen based on the correlation coefficient. Moreover, for each
model, six combinations were used for calibration and testing
(Khosravi et al. 2016). Researchers often use models based on
R2 coefficient and RMSE. The main purpose of artificial
intelligence-based systems is decreasing estimation error,
and hence, their criterion for ranking the models is RMSE. It
can be stated that adding variables with high CC generally
increases point prediction efficiency. However, this is not al-
ways the case, and increasing such variables may lead to de-
crease in prediction accuracy. Table 5 shows input combina-
tions based on RMSE.

The results illustrate that variable combinations are differ-
ent for various structures of models. The RMSE values for

Table 8 Performance evaluation
for Kashkan station Calibration Testing

R2 RMSE MAE NSE BIAS R2 RMSE MAE NSE BIAS

HB-ANN 0.954 0.082 0.057 0.968 0.044 0.963 0.073 0.042 0.977 0.031

GA_ANN 0.932 0.093 0.066 0.947 0.055 0.951 0.084 0.056 0.964 0.045

ANT_ANN 0.971 0.077 0.042 0.986 0.033 0.984 0.068 0.038 0.988 0.027

PSO_ANN 0.986 0.068 0.037 0.993 0.026 0.991 0.057 0.034 0.994 0.017

AIG-ANN 0.994 0.054 0.025 0.997 0.012 0.998 0.036 0.017 0.998 0.008

Table 7 Performance evaluation
for Jologir station Calibration Testing

R2 RMSE MAE NSE BIAS R2 RMSE MAE NSE BIAS

HB-ANN 0.918 0.107 0.087 0.934 0.075 0.928 0.086 0.073 0.933 0.048

GA_ANN 0.901 0.122 0.095 0.917 0.086 0.915 0.098 0.085 0.922 0.057

ANT_ANN 0.932 0.095 0.078 0.965 0.057 0.954 0.061 0.044 0.966 0.035

PSO_ANN 0.954 0.086 0.053 0.978 0.045 0.968 0.058 0.036 0.973 0.022

AIG-ANN 0.97 0.075 0.032 0.988 0.021 0.985 0.047 0.024 0.991 0.014
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each model were calculated for the calibration and test pur-
poses. The lowest RMSE was selected for testing to be able to
evaluate precision. The results in Table 4 show that all the
models in all the four stations of input combination 6 achieved
their best performance with the lowest RMSE. Since the data
were normalized within the range of 0 to 1, the error was
calculated precisely. Moreover, since combination 6 has the

highest number of parameters or variables, the error decreases,
and it is the preferred combination.

Performance evaluation of the models

For all the four stations and all the developed models (ANN-
AIG, ANN-HB, ANN-PSO, and ANN-GA), scatter plots

Fig. 7 Boxplot for the measured and predicted values

Table 9 Performance evaluation
for Pole-zal station Calibration Testing

R2 RMSE MAE NSE BIAS R2 RMSE MAE NSE BIAS

HB-ANN 0.894 0.112 0.087 0.913 0.079 0.917 0.102 0.095 0.928 0.084

GA_ANN 0.881 0.136 0.104 0.902 0.095 0.903 0.115 0.086 0.923 0.077

ANT_ANN 0.915 0.106 0.076 0.928 0.068 0.932 0.094 0.062 0.954 0.051

PSO_ANN 0.928 0.094 0.058 0.942 0.047 0.956 0.064 0.047 0.976 0.038

AIG-ANN 0.941 0.078 0.042 0.955 0.033 0.975 0.057 0.036 0.984 0.024
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and time series graphs were drawn for the observational and
calculation data, as illustrated in Fig. 6. The results showed
that for Cham Anjir station, the highest precision belonged
to ANN-HB (Qpred = 1.0213Qobs + 0.6734, R2 = 0.9998),
and the lowest belonged to ANN-GA (Qpred = 0.9582Qobs
+ 3.6453, R2 = 0.1572). ANN-AIG had the highest precision
in Jologir station, and ANN-GA achieved the lowest preci-
sion. In Kashkan station, ANN-ANT model reached the
highest, and ANN-PSO had the lowest precision. ANN-
AIG and ANN-GA showed the highest and the lowest pre-
cisions, respectively, in Pole-zal station. After selecting the
best input combination for each model and drawing scatter
plots and time series graphs for the observations and calcu-
lations in all the four stations, the performances of the
models with the calibration and test data are given in
Tables 6, 7, 8, and 9. In summary, after selection of the best
input combination for each model, the predictions in dis-
charge simulation for all the stations were studied. The
values for the performance of Cham Anjir station in test
validation (Table 6) showed that ANN-AGI had the highest

accuracy of prediction (RMSE = 0.054, MAE = 0.032, R =
0.987), followed by ANN-PSO (RMSE = 0.062, MAE =
0.037, R = 0.963), ANT-ANN (RMSE = 0.075, MAE =
0.047, R = 0.948), HB-ANN (RMSE = 0.086, MAE =
0.053, R = 0.932), and GA-ANN (RMSE = 0.098, MAE =
0.064, R = 0.921). For the Jologir, Kashkan, and Pole-zal
stations, the results were similar with ANN-AIG having the
best and GA-ANN having the lowest performance. The
PBIAS value was positive for all the stations, which indi-
cated underestimation with all the models. This study ap-
plied two main groups of quantitative and graphical ap-
proaches (scatter, boxplot, and Violin plots) to assess the
performance of the given models. The distinguishing ad-
vantage that the boxplot diagram enjoys is that the predicted
mean, quartiles, and range of datasets (max and min values)
can be compared with the observational data. The boxplot
for fluctuations of discharge displayed in Fig. 7 suggests
that the hybrid ANN-AIG model is well compatible with
the prediction of the observed maximum fluctuations of
discharge (Fig. 8).

Fig. 8 Violin plots of observed and predicted values
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Conclusion

In summary, it can be stated that the developed models were
appropriate for all the stations. Comparing stations showed
that Kashkan station had the best performance, which could
be attributed to low waste data, accuracy of measurements and
observational parameters, operator precision, and appropriate
data quality compared to other stations. The results also
showed that more efficient parameters (dependent variables)
would lead to improved performance. Higher efficiency and
precision were also achieved with greater amounts of input.
Our results showed that, according to the R2 and RMSE
values, AIG had the highest efficiency among all the consid-
ered algorithms. It had the best response for all the stations
with the highest prediction capability and accuracy. The rea-
sons for the superiority of this model were the use of primary
and secondary parameters, low loss function, saving time in
reaching the optimum solution, and higher convergence,
which made the weights converge to the best values. In fact,
it can be stated that while GA, PSO, and ACO are focused in
loss function and the primary criteria, AIG, in addition to these
factors, considers the secondary parameters, which play a sig-
nificant role in achieving the optimum results. The secondary
parameters basically decrease the search domain, which result
inmore accurate and faster convergence. Overall, this research
demonstrated that the ANN-AIG hybrid model could be ef-
fective in predicting the daily flow of a river. Given that the
decision to exploit water resources and to implement manage-
ment strategies in many consumption processes (especially in
agriculture and industry) hinges on an estimate of river flow,
the proposed hybrid model in predicting river flow can be an
appropriate tool for management decisions.
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