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Abstract
The Al-Asfar wetland, locally known as Lake Al-Asfar, is the largest inland wetland in the Arabian Peninsula. It is situated to the
east of the Al-Ahsa Oasis. It was formed at the expense of the Umm Hishah sabkha via the discharge of increasing quantities of
drainage water to the oasis. This researchwas conducted to assess changes in land cover using four satellite images collected from
1990 to 2020. The study used a Landsat 5 TM image (1990), a Landsat 7 ETM+ image (2000), a Landsat 8 OLI-TIRS image
(2010), and a Landsat Sentinel-2 L2A image to examine land cover in the Al-Asfar wetland. The normalized difference
vegetation index (NDVI) and normalized difference water index (NDWI) were used to evaluate the tendency of ecosystem
evolution. The results indicate that for the past three decades, the wetland area has increased significantly. Approximately 15.46
km2 (24.69%) of the body of water was added during this time frame, and the vegetation areas expanded to approximately 10.74
km2 (17.15%). The changes detected in the study area can be explained by the discharge of agricultural drainage water and semi-
treated water from sewage treatment plants and the spread of reed mites (Phragmites australis) which covered approximately
23.81% of the area of the Al-Asfar wetland in 2020. For these reasons, the study recommends the necessity of imperative
consideration for the protection of the resources of other wetlands in Saudi Arabia to ensure their sustainable use for future
generations.
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Introduction

Wetlands are important areas for the conservation of fauna
and flora and production of economic income (Zhang et al.
2010; Rapinel et al. 2015; Youssef et al. 2009; Al-Dakheel
et al. 2009; Fathi et al. 2009; Al-Sheikh and Fathi 2010;
Ojaghi et al. 2017; Al-Obaid et al. 2017; Eid et al. 2020).
Wetland conservation efforts were formulated under the
Ramsar Convention after an abundance of studies related to
the monitoring of wetlands were developed to help managers
solve the many problems they face. The Al-Asfar wetland,
which is part of the El Jafura dune field, has experienced
significant evolutionary dynamic changes in recent decades

due to an increased inflow of agriculturally derived drainage
water. At the Al-Ahsa Oasis, a 1450-km concrete irrigation
system and a soil drainage system began operating in 1971.
Drainage water is collected by the channel system and
discharged into two wet depressions, namely, the Al-Asfar,
and Al-Uyoun depressions (Fig. 1). The water collected in
the drainage channel (D2) flows towards the sabkha of Al-
Asfar 11 km east of the oasis. Between 1974 and 2018, the
wetland received 2,186,407 m3 of water with a daily average
input of 170,000 m3. The wetland has been negatively affect-
ed by the discharge of water polluted with chemical fertilizers
(Al-Dakheel et al. 2009; Fathi et al. 2009; Al-Sheikh and Fathi
2010; Abdel-Moneim 2014). However, currently, the Al-
Asfar depression provides a refuge for reed flora, acts as a
habitat for wildlife, participates in flood protection, contrib-
utes to the reduction of the impact of water pollution, and aids
the recharge of shallow groundwater (20 cm deep) (El
Mahmoudi et al. 2011).

To study the evolution of this dynamic environment,
image-processing techniques have been developed to extract
water characteristics from satellite data. Various techniques of
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surface water extraction were first examined in this study
(McFeeters 1996). This research aims to assess the spatio-
temporal dynamics of the Al-Asfar wetland over the period
of 1990–2020 using Landsat TM, ETM+, OLI, and Sentinel
multitemporal data. The article evaluates the use of NDWI and
NDVI to assess the importance of the evolution of the Al-
Asfar wetlands to inform decision-makers about these devel-
opments and improve future management of depressions.

Materials and methods

To accomplish the objectives of this research, the outlined
steps were followed: the study area was delimited, a database
was created using under Arc GIS, satellite images were
preprocessed using ERDAS Imagine, indices capable of de-
tecting water bodies were tested, the wetland was delimited in
each scene, and the land use/land cover dynamics were eval-
uated. Figure 1 explains the procedures followed in this re-
search to distinguish wetland changes.

Study area

The Al-Asfar depression is one of the most famous wetlands
in the Arabian Peninsula. It is located east of the Al-Ahsa
oasis. The depression used to be a sabkha, referred to as the
Umm Hishah sabkha, which was fed spring water, storm wa-
ter, and groundwater near the surface. The wetland is now fed
by the discharge of partially treated agricultural drainage wa-
ter from the oasis and participates in the protection of the oasis
against the dynamics of sand dunes (Fig. 2).

The basin of Al-Ahsa is characterized by a general slope that
inclines towards the northeast. The irrigation and drainage canals

follow this direction and flow into the Al-Asfar wetland. In the
west, the elevation at the outlet of channel D2 does not exceed
113m abovemean sea level. The average altitude is 103m in the
central part of the depression and 94 m in the eastern part. The
Al-Asfar wetland is highly reliant on the amount of water
drained, which is conveyed through channel D2. It is subject to
annual and seasonal fluctuations. Generally, during the summer,
evaporation contributes to reductions in the water level of the
depression and consequential increase in salinity.

On the banks of the wetland, current dynamics, character-
ized by a constant conflict between water and sand, have pro-
duced jagged and continuously changing shores. The water
body is subdivided into three main zones: a western zone
covering 7.7 km2, a central zone dismantled, covering 3.1
km2 which is subject to strong wind activity, and finally a
western zone covering 4.41 km2. The three zones are connect-
ed by wide passages. The large supply of drainage contributes
to the flooding of flat shores and spread of salinity.

Processing and analysis methodology of satellite
images

A technique for extracting wetland characteristics was used to
model spatial-temporal changes in the Al-Asfar wetland over
the period of 1990–2020 using multitemporal Landsat images
(Tuxen et al. 2011; Kaptué et al. 2013; Rokni et al. 2014;
Chen et al. 2014; Huang et al. 2014; Petropoulos et al. 2015;
Nhu et al. 2020; Eid et al. 2020). Therefore, identification of
the different land cover classes was performed for the years of
1990 and 2020 using a maximum likelihood classification
algorithm. The two designated indices, NDVI and NDWI,
were examined and studied independently (using thresholds
specific to each image) to extract the wetland area during each

Fig. 1 Flowchart of the
methodological procedures
followed in this study
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date (Zoffoli et al. 2008; Dong et al. 2014). Finally, the maps
generated were superimposed to produce a map of wetland
area’s evolution during the 1990–2020 period.

Pre-processing

The research exploited four types of satellite imagery, Landsat
TM (Thematic Mapper), ETM+ (Enhanced Thematic Mapper
Plus), OLI-TIRS (Operational Land Imager-Thermal Infrared
Sensor), and Sentinel satellite images. These images were
downloaded from the US Geological Survey site. These im-
ages were used to examine spatio-temporal changes in land
use/land cover in the Al-Asfar wetland. All satellite images
were obtained during the summer season (during the clear
days of June and July) to mitigate the effects of clouds and

seasonal variations on the processing of satellite images and
guarantee the quality of the results obtained (Table 1).

The research was undertaken for three decades to under-
stand the state of the ecosystem of Al-Asfar. Twenty ground
control points (GCPs) were taken throughout field investiga-
tions using a Global Positioning System (GPS) to evaluate
the diverse stages of data treatment for change detection and
field verification (Fig. 1). These ground control points
(GCPs) were used in the geometric correction of the selected
satellite images. The process of correcting satellite data is an
essential step in the superposition and analysis of multi-
source and multiscale data. When capturing satellite images,
they are distorted by the projection, tilt angle of the sensor,
atmospheric condition, curvature of the Earth’s surface, and
local topography. To overlay classified maps, analyse the
results of change detection, and derive expressive statistics,

Fig. 2 Study area

Table 1 Characteristics of
Landsat TM, ETM+, OLI+TIRS,
and Sentinel-2 data

Satellite Sensor Path/row Acquisition date Spatial resolution

Landsat 5 TM 164/042 15-07-1990 30 m

Landsat 7 ETM+ 164/042 02-07-2000 15 m

Landsat 8 OLI + TIRS 164/042 28-06-2010 15 m

Landsat Sentinel-2 L2A 164/042 28-06-2020 10 m
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geometric distortions must be corrected or rectified in the
same map projection (Fontinovo et al. 2012; Gianinetto
2012; Wang et al. 2012; Nguyen 2015).

Accordingly, raw remote sensing images cannot be used
directly with mapping products in a geographic information
system. The most widely applied model is based on the use of
ground control points (GCPs) to achieve high geodetic accu-
racies. Geometric corrections explicitly implement mapping
functions using ground control points (GCPs) and determine
the brightness of pixels in a corrected image (Wang et al.
2012). The GCPs are an important data source for geometry
correction by remote sensing. Thus, the satellite images were
georeferenced using a topographic sheet at a scale of 1:25000
and rectified according to the WGS 1984 datum (World
Geodetic System) and the Universal Transverse Mercator
(UTM) coordinate system to guarantee consistency between
satellite data during the analysis phase.

Geometrically corrected Landsat images were imported in-
to ERDAS Imagine after overlapping individual strip layers.
The combined bands provided a colour composition for all
Landsat datasets. This included bands 7, 4, and 2 for the
Landsat TM images, which signify red, green, and blue
(RGB); bands 3, 2, and 1 for the Landsat ETM+ image; bands
7, 5, and 3 for the Landsat OLI+TIRS image; and bands 4, 3,
and 2 for the Sentinel 2 image. In addition, a subset of images
was created to define the “area of interest” (AOI) that was
digitalized on the screen from the selected images. The images
were cut by a space analyst tool (extracted by a mask). In
addition, a subset of images was created in Arc GIS to delin-
eate the area of interest (AOI) based on a vector shape file of
the perimeter of the wet depression.

Processing

A classification system was applied to estimate the impact of
land cover/land use changes over a 30-year period from 1990
to 2020. The first image used TM captures from 1990 with a
spatial resolution of 30 m (Table 1). This resolution was im-
proved with the use of the Sentinel-2 satellite image. The
spectral bands used for the two satellite images were green,
red, and near-infrared. On the basis of these three bands, a
false colour composite image was produced. These bands
are commonly used for land cover mapping and vegetation
discrimination. After selecting the channels that were subject-
ed to classification, training areas were selected by digitizing
polygons of homogeneous surface areas. Based on the knowl-
edge of the field, the ground control points (GCPs) were lo-
cated on each image. The identification of the different land
cover classes was carried out using a maximum likelihood
classification algorithm.

Other studies have used both NDVI, NDWI, and NDMI to
detect changes in wetlands such as Zoffoli et al. (2008), Dong
et al. (2014), Gandhi et al. (2015), Mousazadeh et al. (2015),

Das (2017), Ojaghi et al. (2017), Kadhim (2018), Ahangarha
et al. (2019), and Eid et al. (2020). All of the aforementioned
studies noted that there were expressive changes in the NDVI,
NDWI, and NDMI values throughout the study period. The
calculation of NDVI relies on the fact that chlorophyll in veg-
etation strongly absorbs radiation in the visible range of red
light and robustly reflects radiation in the near-infrared range
of the spectrum. Hence, NDVI is defined as the normalized
relationship between reflection in the near-infrared (NIR)
range and red portions of the spectrum (Zoffoli et al. 2008;
Peters et al. 2002; Dong et al. 2014; Ke et al. 2015; Shao et al.
2016). Other scholars have applied NDVI to evaluate vegeta-
tion cover (Shao et al. 2016), observe vegetation trends, and
monitor agrarian drought (Peters et al. 2002). NDVI is a mea-
surement index applied to the management of natural re-
sources that offers indications concerning the monitoring of
crop cover evolution and plant growth stages (Bhandari et al.
2012; Rokni et al. 2014). In addition, NDVI can be used to
effectively extract water bodies from Landsat data. In this
index, near-infrared (NIR) represents the nearby infrared re-
flectance in a section of the band. Red is the reflectance in the
red portion of the band. NDVI values range between −1 and
+1 and are distributed between positive values which indicate
green vegetation, and negative or near zero values,
representing nonvegetated land covers, such as deserts, water
bodies, and urban areas. Open soil areas have a similar reflec-
tance in the aforementioned two bands, and the resulting
NDVI is near zero (Chen et al. 2014).

NDWI was proposed by McFeeters (1996). NDWI is used
to detect changes relevant to the water content of water sur-
faces. This satellite-derived index is calculated as the ratio
difference between the calculated canopy reflectance of the
green band response and the near-infrared band response for
each pixel in a satellite image. In general, near-infrared (NIR)
bands are able to detect the moisture content of soil and veg-
etation and, then, are valuable in wetland detection
(McFeeters 1996; Xu 2006; Eid et al. 2020). The index is
sensitive to built-up land and can overestimate water bodies.
NDWI increases with increasing water contents in leaves or
when moving from dry soil to open water. The use of NDWI
humidity masks, generated from Landsat images, has multiple
benefits. These masks make it possible to avoid nonhumid
zones and thus allow a more precise detection of effective
wet zones (Sheng et al. 2016; Table 2).

To extract the best features, NDVI and NDWI values range
from +1 to −1. However, NDMI is a normalized difference
moisture index that exploits NIR and SWIR bands to extract
moisture. NDMI is used to control variations in water content
in water bodies based on the NIR and SWIR wavelengths
(McFeeters 1996). In addition, NDMI was established for
the exploration of vegetation-water liquids and thus would
not be efficient extracting water features. Indeed, this is related
to the type of image tested, the season during which the image
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is taken, and the land cover/land use classes in the image.
Accordingly, the best practice for obtaining the best values
for the indices applied in this study (NDVI and NDWI) is to
experiment with diverse edge values. Table 3 presents the
NDVI intervals and concordant classes in accordance with
the classification advanced by the Foundation of Remote
Sensing Phenology.

The NDWI and NDVI values were defined using the select-
ed Landsat images and classified according to the unsupervised
iso-cluster classification. The results were exploited to confront
variations in wetland extension during the selected dates. The
different extracted NDVI values were also reclassified into
three essential classes: vegetation, no vegetation, and open soil.
In addition, the different NDWI values were reclassified into
three classes: water bodies, hydromorphic areas, and non-
aqueous areas. The NDWI class for hydromorphic areas
corresponded to the NDVI class for open soil areas (Table 4).
The Arc Map calculation tool was used to define the zoning of
the six detected classes of NDVI and NDWI.

In this regard, NDWI and NDVIwere defined from the TM
1990, ETM + 2000, OLI + TIRS 2010, and Sentinel-2 L2A
2020 images to assess their performance in water body extrac-
tion. An edge was applied to group the pixels into land and
water bodies. Appropriate land-water edges for the two indi-
ces were defined by comparison with reference maps pro-
duced by visual photointerpretation.

The rationale behind using this classification method was
to detect the two main components of the Al-Asfar wetland:
water bodies and vegetated areas. The vegetation class cov-
ered all plant species in the Al-Asfar depression, of which
95% consisted of reed beds such as Phragmites australis,
Halocnemum strobilaceum, Zygophyllum mandavillei, and
Haloxylon salicornicum (Youssef et al. 2009). The open soil
class was described as “bare sand dune areas.” The water body
corresponds to the water surface of the Al-Asfar wetland. This
classification made it possible to compare changes in the wet-
land over the last three decades.

Change detection

To determine land cover changes in the Al-Asfar wetland
during the period of 1990–2020, the water body of the study
area was defined individually in all selected images.
Consequently, the relevance of indices derived from the sat-
ellite, such as NDWI and NDVI, was inspected for the deter-
mination of water bodies from Landsat data (Rokni et al.
2014).

The phase of numerical determination of changes cor-
responds to the process of estimating differences in the
land use/land cover classes across the four dates. This
process supplies the ability to measure temporal effects
using multispectral image data. Pixel-to-pixel and post-
classification comparisons are two application methods
that reflect the advantages of remote sensing. They en-
sure automatic detection of changes by confronting im-
ages of the same area taken on different dates (Othman
et al. 2013; Tuxen et al. 2011; Rokni et al. 2014; Chen
et al. 2014; Huang et al. 2014; Petropoulos et al. 2015;
Prasad and Ramesh 2019; Eid et al. 2020).

The method of post-classification detection is among
the most suitable and commonly applied techniques for
detecting changes (Tuxen et al. 2011; Rokni et al. 2014;
Chen et al. 2014; Huang et al. 2014; Petropoulos et al.
2015). This method was used to confront three scenes
of change in 1990, 2000, and 2010 based on that ob-
served in 2020. It easily offers a change matrix in
which transfers from one land use/land cover type to
another can be visually estimated. This method begins
with the classification step that generates classified im-
ages that recognize change surfaces as pixel-by-pixel
differences in class membership (Acharya et al. 2017;
Buma et al. 2018).

Table 2 The most common satellite-derived indices applied for water feature extraction (in Landsat imagery: green, band 2; red, band 3; NIR (near-
infrared), band 4; MIR (middle-infrared), band 5; and SWIR (shortwave-infrared), band 7) (Rokni et al. 2014)

Indices Equations Remarks

Normalized difference vegetation index NDVI = (NIR − Red)/(NIR + Red) Water has a negative value

Normalized difference water index NDWI = (Green − NIR)/(Green + NIR) Water has a positive value

Normalized difference moisture index NDMI = (NIR − SWIR)/(NIR + SWIR) Water has a positive value

Table 3 NDVI value
range in accordance with
data from the Foundation
for Remote Sensing
Phenology (US
Geological Survey)

NDVI value Class

≤ 0.1 Very low NDVI

0.2 to 0.5 Moderate NDVI

0.6 to 0.9 High NDVI

Table 4 NDVI and NDWI classes for the Al-Asfar wetland

NDVI values Classes NDWI values Classes

−1 to 0.1 No-vegetation 0.2 to 1 Water body

0.1 to 0.2 Open soil 0 to 0.2 Hydromorphic surfaces

0.2 to 1 Vegetation −1 to 0 Non-aqueous surfaces
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Results and discussion

Land use/land cover status in the Al-Asfar wetland

Land use/land cover was mapped for 1990, 2000, 2010, and
2020 to study the changes that have occurred over the past 30
years. Figure 3 shows a superimposed map resulting from
vector maps of the Al-Asfar wetland dated 1990, 2000,
2010, and 2020, as well as AOI maps for the Landsat
multitemporal satellite images of the wetland.

The implementation of new satellite sensors in the optical
domain characterized by high spatial resolution such as
Sentinel-2 makes it possible to envisage, in particular, a de-
tailed mapping of land cover.Water surfaces are distinguished
from other landscape elements by a strong absorption in the
wavelengths of the near and middle infrared. This is manifest-
ed in the image by dark areas. The visual interpretation of the
coloured compositions, of the Sentinel-2 image made with
false colour channels (Red8, SWIR1, Red), shows the rich-
ness of its informative content, especially for the detection of
wetlands. The processed satellite images (1990 and 2020)
made it possible to differentiate nine land cover classes: water
bodies, sabkhas, hydromorphic surfaces, vegetated areas, bar-
chan dunes, barchanoid ridges, transverse dunes, dune

complexes, and nabka dunes. Three of the land cover classes,
i.e., water bodies, vegetated areas, and sand dunes, each have
a distinctive spectral behaviour in the two satellite images
used. However, the differentiation between the six remaining
classes is sometimes not perfect and can therefore induce con-
fusion. Likewise, the comparison between the two contingen-
cy matrices produced for 1990 and 2020 displays an enhance-
ment in the distinction of the land cover classes. The mean of
this distinction was assessed at 78 and 85 for the land cover
maps of 1990 and 2020, respectively. Thus, there is an im-
provement in the accuracy of the land cover map of the most
recent date (2020) compared to that mapped on the older date
(1990). In addition, with a reduced number of classes (<3), the
results are generally better. The classification confusion noted
comes from the choice of samples based on the objects
resulting from poor pixel aggregation. The confusion between
water and vegetation is explained by the fact that the water is
very rich in nutritious algae and the vegetation is very discon-
tinuous, which makes them difficult to individualize.

The comparison of the different land cover classes between
1990 and 2020 highlights a significant dynamic in the Al-
Asfar wetland. There was a positive trend between these two
dates in the water body (200%) and vegetated areas (300%).
This dynamic is mainly explained by the conflict between

Fig. 3 Variation in the shoreline and area of the Al-Asfar wetland in 1990, 2000, 2010, and 2020
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water and sand. The progression of the water body was detri-
mental to the sand dunes and their response to the increase in
the quantities of water drained towards the depression.

The accuracy of the land use/land cover classification was
widely acceptable for all classes mapped. However, inaccura-
cies are noted in the sand dune form classes, and that corre-
spond to nabka dunes or hydromorphic surfaces. Then, this
classification implies detailed knowledge of the information
that will be extracted, and various tests are necessary for de-
fining the optimal segmentation parameters (Fig. 4).

Furthermore, precision assessment analyses show that
NDMI was unable to extract the water body from the Al-
Asfar wetland, although NDWI and NDVI produced the most
accurate maps. It appears that the errors in the maps are gen-
erally focused around the banks of the wetland and overlaps
between water bodies and hydromorphic surfaces. As a result,
NDVI and NDWIwere used to model spatial-temporal chang-
es in the Al-Asfar wetland over the period of 1990–2020. The
wetland area was extracted by classification according to
NDWI and NDVI using thresholds specific to each image.
Finally, multidate maps of wetland area were superimposed
to produce maps of changes in the wetland area over the pe-
riod of 1990–2020. Figures 5 and 6 show the classified NDVI
and NDWI maps of the Al-Asfar wetland for the selected
dates in 1990, 2000, 2010, and 2020, respectively.

Analysis of the classification results shows that NDVI
subdivided the study area into three surfaces: the first surface
without vegetation indicates the wetland water body; the sec-
ond surface is open soil; and the third surface is vegetation.
NDWI also classifies the study area into three surfaces: the
water body surface, the hydromorphic surface (water soaked)
that corresponds to the open soil class of NDVI, and the non-
aqueous surface class that corresponds to the vegetation class
of NDVI.

Tables 5 and 6 present the areas in square kilometre and
percentage of each class covering the wet depressions for the
four selected dates. In Table 4, the no-vegetation class corre-
sponds to the water surface class in Table 5. Additionally, the
change detection of the open soil class was not analysed given
the change in the boundary of the study area between 1990
and 2020. The comparison of the NDVI and NDWI classes
shows that the error between the no-vegetation zone in NDVI
and the water body zone in NDWI is 9.19%, which is
acceptable.

The detailed situation of land use/land cover in the Al-
Asfar wetland is as follows over three decades; the water body
and vegetation classes reflected positive growth; however, the
open soil class (hydromorphic surfaces) showed a positive and
negative trend in the Al-Asfar wetland due to the change in the
boundary of the depression.

Fig. 4 Land use/land cover of the Al-Asfar wetland in 1990 and 2020
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Water body This is the most dynamic type of land cover,
accounting for 7.74 km2 (16.42%) of the overall Al-Asfar
wetland area in 1990. The surface water area amounted to
15.21 km2 (24.3%) in 2020. The wetland doubled its water
body over the past 30 years at an annual average rate of +0.25
km2 between 1990 and 2020, although the annual rate of in-
crease decreased between 2010 and 2020 (+0.73 km2). This
extension of the water body was attributed to the increased
inflow of drainage water into the wetland and opening of new
drains through the sand dunes.

Vegetation This land use/land cover class showed consider-
able expansion in comparison with the water body class over
the past three decades. The overall extent of the vegetation
class increased from 4.17 km2 (8.85%) in 1990 to 14.91 km2

(23.82%) in 2020. This represents an increase in the area oc-
cupied by reed beds (mainly, Phragmites australis, Typha,
and Juncus actus). The continued development of this

vegetation has led to the drying of parts of the wetland, in-
cluding the shallowest areas, and conversion of the wetland
into connected islands.

Change detection analysis

On the basis of the 2020 data, land cover evolution detection
was performed to reveal the transformations occurring for the
1990–2020, 2000–2020, and 2010–2020 periods using of the
NDVI and NDWI, as presented in Figs. 7 and 8. Statistics
from the classification method applied showed that there
was a marked increase in the total area of the wetland, as
shown in Tables 5 and 6. The area of the depression was
47.14 km2 in 1990, and it increased to 62.6 km2 in 2020
because of the rise in the quantity of water discharged (Fig. 3).

Change detection maps were produced to show changes
among the three compared intervals of 1990–2020, 2000–
2020, and 2010–2020 (Figs. 7 and 8).

Fig. 5 NDVI maps for the Al-
Asfar wetland dated 1990, 2000,
2010, and 2020
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Analysis of the change results of the changes shows that
between 1990 and 2020, the total increase in the wetland,
vegetation class, and water surface class areas was 15.46
km2, 10.74 km2, and 7.47 km2, respectively, and the total
decrease in the open soil class (sand dunes) area was 2.75
km2 (Table 6).

The area of the water body class was 7.74 km2 in
1990; however, it amounted to 15.46 km2 in 2020. Of
the area of the water body class, approximately 11.78

km2 remained unchanged, 4.35 km2 changed within the
vegetation zone, and 8.03 km2 changed within the open
soil class. Most of the water body class changed to the
open soil class due to the wind dynamics and conse-
quent dune accumulations.

The inflow of effluents, fertilizers, and agricultural nutri-
ents into the Al-Asfar wetland caused the eutrophication of the
water body and the growth of reed beds. The total area of
vegetation was 4.17 km2 in 1990; it expanded to 14.91 km2

Fig. 6 NDWI maps for the Al-
Asfar wetland dated 1990, 2000,
2010, and 2020

Table 5 NDVI classes in km2 and
percentages in the Al-Asfar
wetland

Class name 1990 2000 2010 2020

Area (km2) % Area (km2) % Area (km2) % Area (km2) %

Water body 7.74 16.42 11.29 23.36 14.48 24.29 15.21 24.30

Vegetation 4.17 8.85 6.72 8.30 9.92 16.64 14.91 23.82

Total 11.91 25.27 18.01 31.66 24.4 40.93 30.12 48.12
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in 2020. Of the entire area of vegetation, approximately 5.57
km2 remained unchanged (in 2020), 0.75 km2 shifted to the

water surface class, and 3.6 km2 shifted to the open soil class
(Table 7).

Table 6 Detection of NDVI class
changes for the Al-Asfar wetland
in 1990, 2000, and 2010 based on
2020

Class name 1990–2020 2000–2020 2010–2020

Area (km2) % Area (km2) % Area (km2) %

Water body→ no change 6.2 13.15 9.17 16.12 11.78 19.76

Water body→ vegetation 1.33 2.82 1.92 3.37 0.34 0.57

Water body→ open soil 0.21 0.45 0.2 0.35 2.36 3.96

Vegetation → no change 4.15 8.80 5.64 9.91 5.57 9.34

Vegetation → water body 0.02 0.04 0.7 1.23 0.75 1.26

Vegetation → open soil 0 0.00 0.38 0.67 3.6 6.04

Open soil → water body 3.55 7.53 9.06 15.92 4.11 6.89

Open soil → vegetation 10.51 22.30 8.23 14.46 3.92 6.58

Total 25.97 55.09 35.3 62.03 29.43 54.4

Fig. 7 Detection of changes in
NDVI in the Al-Asfar wetland in
1990, 2000, and 2010 based on
2020
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Accuracy assessment

NDVI was essentially proposed for separating green crop cov-
er areas from other land covers. Nevertheless, it did achieve
good water body detection results. Water features improved

by using NDWI are frequently mixed with the open soil class,
and thus the area of extracted water can be overestimated
(Rokni et al. 2014). Table 8 presents an assessment of the
kappa statistics and overall accuracy of the NDVI method
covering the selected dates in 1990, 2000, 2010, and 2020.

Fig. 8 Detection of changes in
NDWI for the Al-Asfar wetland
in 1990, 2000, and 2010 based on
2020

Table 7 Detection of NDWI class changes for the Al-Asfar wetland in 1990, 2000, and 2010 based on 2020

Class name 1990–2020 2000–2020 2010–2020

Area (km2) % Area (km2) % Area (km2) %

Water body→ no change 5.11 10.84 8.11 14.25 11.22 18.85

Water body→ non-aqueous surfaces 0.27 0.57 0.45 0.79 0.28 0.47

Water body→ hydromorphic surfaces 0.13 0.28 0.64 1.12 2.45 4.12

Non-aqueous surfaces → no change 2.83 6.00 3.45 6.06 7.51 12.62

Non-aqueous surfaces → water body 0.25 0.53 0.15 0.26 0.1 0.17

Non-aqueous surfaces → hydromorphic surfaces 0 0.00 0.22 0.39 2.3 3.86

Hydromorphic surfaces→ water body 6.41 13.60 5.11 8.98 4.03 6.77

Hydromorphic surfaces→ non-aqueous surfaces 9.76 20.70 8.02 14.09 3.98 6.69

Total 24.76 52.52 26.15 45.94 31.97 53.55
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The overall accuracy and the kappa statistics are 91% and 0.89
in 1990, 91% and 0.89 in 2000, 92% and 0.93 in 2010, and
98% and 0.95 in 2020, respectively. However, that of the
NDWI classified images are 88% and 0.85, 90% and 0.88,
91% and 0.89, and 97% and 0.95, respectively. These statis-
tics reflect that the different ranked maps meet the minimum
recommended overall accuracy of 85%. They also show that
there is remarkable symmetry between the reference data and
the land use/land cover classification according to the selected
indices (Foody 2002) (Table 8).

This study may be of interest because it shows the dynam-
ics of the two main land cover types in the Al-Asfar depres-
sion: water surface and vegetation. The overall results enhance
the understanding of the causes and factors of the evolution of
the Al-Asfar wetland. The results of this mapping study re-
vealed that the water surface class of the Al-Asfar depression
is continuously increasing. The area is exposed to the dangers
of flooding at the expense of adjacent farmland, salinity
spread, and rising water table levels.

Due to the extent and pervasiveness of the land cover
change effects in the Al-Asfar wetland, scholars are invited
to objectively assess past public policies and decision-making
processes. Management policies should consider practical ac-
tions that can allow the Al-Asfar wetland to adapt to anthro-
pogenic interventions and natural dynamics to improve its
adaptive capacity and reduce anthropogenic disturbances
and actions that influence the components of the wetland.
Such research helps to comprehend the recent status of the
study area by confronting historical and recent Landsat im-
ages. This research can also help tomake predictions about the
future that can subsequently direct environmental decisions,
particularly in the area of optimizing water use in this arid
environment.

Conclusion

Remote sensing methods offer a precise, fast, and cost-
effective technique to detect changes in wetlands. These
methods solve the problems encountered when applying tra-
ditional techniques that are hard to implement and time-

consuming (aerial photographs and topographical maps).
Land use/land cover classification maps realized by an unsu-
pervised iso-cluster classification method revealed changes in
the different resulting classes in the study area. The water
body and vegetation class developed the most in favour of
the open soil class. The optimized use of land use/land cover
information is indispensable for the implementation of land
use/land cover plans to establish links between water bodies,
sand dunes, soil, flora, and fauna. The results revealed that the
Al-Asfar ecosystem underwent significant transformations in
land use/land cover between 1990 and 2020. The influence of
land cover change affects approximately 50% of the total area
of the Al-Asfar wetland over these three decades.
Additionally, there have been observable increases in the wa-
ter surface and vegetation classes. Approximately 18.21 km2

of open soils were lost due to the conversion to vegetated areas
and water bodies; however, the area of vegetation increased
by 10.74 km2. Therefore, this research proposes crucial con-
siderations to decision-makers regarding the protection of re-
sidual wetland resources, to take the needed actions to reduce
ecological risks for this wetland, thus improving the sustain-
able usage of the water body due to its worldwide importance
and conserving its threatened biodiverse species.
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