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Abstract
Statistical landslide susceptibility mapping (LSM) models have been most widely used in literatures. However, limitations and
uncertainties remain in these methods. The main goal of the current study was to test and compare the efficiency of a bivariate
model (the weight of evidence (WoE)), a multivariate model (logistic regression (LR)) and a machine-learning algorithm (the
support vector machine (SVM)) in LSM. Lushan County of China was chosen because of its mountainous terrain and high risky of
devastating seismic activities. An inventory of 867 landslides was utilized in this study, 70% of which were used to train these
models, and the rest 30% were used to validate their accuracies. Ten factors of aspect, elevation, slope, curvature, peak ground
acceleration (PGA), distance to the river (DtoR), lithology, topographic wetness index (TWI), stream power index (SPI) and
percentage of tree cover (PTC) were used as input of the landslide susceptibility mapping (LSM) models. Accuracy evaluation
based on the areas under the receiver operating characteristic curves (AUC) showed that the LRmodel gives the highest success rate
(78.2%) and prediction rate (76.4%), the SVM has the second-highest success rate (75.9%) and the WoE had the second-highest
prediction rate (75.6%). Comparison results suggested that the LR and the SVM are proper models for LSM of the study area. The
obtained susceptibility maps would benefit regional land planning and seismic landslide hazard mitigation in the study area.

Keywords Landslide susceptibility mapping . GIS . Seismic-prone region . Weight of evidence . Logistic regression . Support
vector machine

Introduction

Landslide represents a major geohazard type globally, inducing
a great many casualties and immense property losses every
year. Taking China as an example, an average of 6000 land-
slides occurred in China, causing an estimated property loss of
5–8 billion CNY and hundreds of deaths every year (www.cgs.

gov.cn). With the rapid urbanization and economic
development in China, there is an increasing risk of frequent
and high magnitude landslide geohazard due to expansions of
infrastructures and human settlements and serious degradations
of the environment. Earthquake, heavy rainfall and human
activities are the main triggers of landsliding. Especially,
damages from earthquake-induced landslidesmay exceed dam-
ages from the earthquake itself (Fan et al. 2018). Therefore, the
pre-identification of the landslide-susceptible areas proved a
cost-effective way and an urgent task for reducing the socio-
economic losses in seismic-prone regions. Although temporal
and magnitude information of future landslide occurrences are
not involved in the “susceptibility” term, landslide susceptibil-
ity map is very helpful for rational decisions in regional land
management and infrastructure planning.

Landslide susceptibility mapping (LSM) remains a chal-
lenging task as landsliding is controlled by various factors,
i.e., geology, geomorphology, topography and seismic activ-
ities, etc. To date, various methods have been developed and
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introduced for LSM, including knowledge-based methods,
statistical methods and physically based methods. The pros
and cons of these methods have been intensively reviewed
in literature (Huang and Zhao 2018; Lee 2019; Reichenbach
et al. 2018). Of these methods, the statistical approaches were
most widely applied due to their suitability for LSM over
broad areas and complex terrains (Lee 2019). Based on the
expression of the statistical relationship between landslides
and predicting factors, the statistical methods can be catego-
rized as bivariate, multivariate and machine-learning-based
(Reichenbach et al. 2018).

The bivariate analysis investigates the relationship between
landslide predictive factors and landslide distribution one by
one. Weights of each category within each factor were calcu-
lated based on landslide densities. Dozens of bivariate
methods have been successfully applied in literatures
(Shahabi et al. 2013; Sujatha and Rajamanickam 2015;
Hong et al. 2018; Shrestha et al. 2017), such as frequency ratio
(FR), weight of evidence (WoE) and information value (IV).
Particularly, the Bayesian theory model, using the WoEmeth-
od, has proved promising and very useful in LSM as its ro-
bustness and flexibility.

The multivariate analysis considers all independent predic-
tive factors together to rate their contribution in causing land-
slides based on the presence and absence of historical land-
slides within a defined mapping unit. Logistic regression (LR)
is a popular and widely adopted multivariate method in LSM
at various scales (Wang et al. 2014). The LR has a number of
attractive features: (1) it solves a complex problem by output-
ting a simple binary result representing the presence and ab-
sence of future landslides; (2) the independent input factors for
LR can be nominal, numerical, categorical or any combination
of them; and (3) the independent variable are not required to
be normally distributed (Pham et al. 2016).

Literatures have shown that the effectiveness of statistical
methods in LSM largely depends on the nature of the factor,
sampling way of the data, and even the size of the data set
(Schicker and Moon 2012; Kavzoglu et al. 2015). However,
in practical LSM applications, such requirements are hard to be
satisfied. Hence, machine-learning-based methods are increas-
ingly preferred in LSM (Reichenbach et al. 2018) inmost recent
LSM studies, especially when the input data are not normally
distributed (Arabameri et al. 2019a, b; Kavzoglu et al. 2015).
Popular machine-learning-based LSMmethods include support
vector machine (SVM) (Fanos et al. 2020), radial basis function
(RBF) (Javdanian and Pradhan 2019), convolutional neural
network (CNN) (Jena et al. 2020) and so on. These machine-
learning algorithms had shown great potential in mapping of
geohazards like landslides, rockfalls, earth dams and gully ero-
sion. As a representative machine-learning tool, SVM has
shown a good capacity to solve highly complicated nonlinear
problems (Tehrany et al. 2015; Huang and Zhao 2018; Pham
et al. 2018). Overall, each method mentioned above had shown

efficiency for LSM in many individual studies. The perfor-
mance of an LSM method largely depends on nature, the scale
and the data availability of the study area (Kavzoglu et al.
2015). Given that, several comparative studies have been pro-
posed in recent years and can be found in (Schicker and Moon
2012; Kavzoglu et al. 2015; Pham et al. 2018). The results of
comparative studies differ among cases. An accurate landslide
susceptibility map would be of paramount significance for re-
gional sustainable development by pre-identifying of landslide-
prone regions. Nevertheless, selection of appropriate LSM
methods is an exigent task since no method is always
outperformed than others (Pham et al. 2016; Chapi et al.
2017; Khosravi et al. 2018). Hence, a detailed comparative
evaluation of different LSMs for a given area will aid to assess
their performances and to optimize the suitable methods.

After an extensive literature survey and contemplating the
sensitivity of addressing problem to practical obstacles, three
kinds of statistical LSM models such as WoE, which is bivar-
iate, LR, which is multivariate, and SVM, which is a machine-
learning-based algorithmwere adopted in the present case study
a seismic-prone region in China along with their performance’s
comparison. The Lushan County in Sichuan Province of China,
a mountainous and inland county which had suffered heavily
from seismic activities and induced landslides, was taken as
study area for the GIS-based LSM using different statistical
models. The objectives of the present study aimed to evaluate
and compare the performance of these models and finally to
produce an accurate landslide susceptibility map of the study
area, which would benefit for regional sustainable development
and landslide hazard mitigation. The outcome of this study with
a reliable map would also provide a reference for the surround-
ings of the study area and other similar terrains.

Study area

For the present study, the southern part of Lushan County,
Ya’an city, Sichuan Province in China, was selected as a study
area. It is situated between 102.52° E and 103.11° E longi-
tudes, and 30.01° N to 30.49° N latitudes (Fig. 1). Located at
the western margin of the Sichuan basin and the southwest of
the Longmenshan fault zones (LFZ), the study area is charac-
terized by frequent seismic activities, and it was the worst-hit
region of the Lushan Earthquake in 2013. The mountainous
terrains account for up to 90% of the Lushan County, ranging
from high in the northwest to low in the southeast. Frequent
seismic activities and the mountainous terrains make Lushan
County and its surroundings very susceptible to landsliding.

Geological units in the study area mainly range from the
Upper Proterozoic Sinian to the Mesozoic Cretaceous. The
main rocks are gabbro, pyroclastics, carbonates, sandstones,
shale and dolomites. Due to abundant precipitation and plenty
of sunlight, the majority of these rocks had weathered in
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varying degrees on the surface. In some regions, the
weathering even penetrated deep into the rock masses through
joints and structural planes. As a segment of the Longmenshan
fault and the source fault of the 2013 Lushan event, the
Shuangshi-Dachuan fault (SDF) is the main active fault in
Lushan County. According to Chen et al. (2013), the Lushan
event did not significantly reduce the seismic risk of the SDF.
A high risk of potential earthquakes with a magnitude be-
tween Mw7.2 and Mw7.3 still exists in Lushan County and
its surroundings. Therefore, it is of great importance to iden-
tify landslide-susceptible regions for the study area.

Materials

Landslide inventory

A landslide inventory registers the location, occurring time and
characteristics of past landslides. It not only plays an indispens-
able role in LSM but also benefits seismic hazard mitigations.
Until now, compiling of a detailed landslide inventory remains a
challenging task. Generally, there were two kinds of landslide
inventory. One is the historical inventory, recording all the land-
slides that happened within an historical period and regardless of
their triggers. The other one is the event inventory, which por-
trays all the landslides triggered by a specific trigger (e.g., an

earthquake or an intensive rainfall). Since no historical inventory
was available and seismic is a dominant inducing factor for land-
slides in the study area, an event inventory of landslides induced
during the Lushan earthquake was used in this study.

As an outcome of emergency response to the devastating
Lushan earthquake, the adopted inventory containing 942
landslides was produced using high-resolution aerial photos
and satellite images by the Chinese Academy of Science
(CAS) (Fig. 2). The boundaries of these landslides were de-
lineated and mapped with the help of GIS. According to the
post-seismic field investigations of some landslides, they are
of three types, namely, translational landslides, rotational
landslides, rockfalls and debris flows. Landslide mechanism
differs in each type. Even so, it is impossible to check the type
of all landslides, as their locations are hard to be reached.
Therefore, all landslides were considered in this present study.

Landslide predictive factors

Landslide occurrence is a comprehensive consequence
of geological and environmental factors. Hence, the first
step in performing LSM using statistical methods is to
select landslide predictive factors. There are no univer-
sal rules for the selection of landslide predictive factors.
Different researchers have applied different sets of fac-
tors in LSMs (Reichenbach et al. 2018; Lee 2019).

(a)

(b) (c)

(d)

Fig. 1 Location of the study area: a China; b Sichuan; c Ya’an City and d Lushan County
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Despite this situation, it has been widely accepted that
data availability, analysis scale and characteristics of the
study area determine the set of landslide predictive fac-
tors. In this study, landslide predictive factors were se-
lected based on the following criteria: (1) data of pre-
dictive factors available from reliable organizations or
government; (2) resolution of data is sufficient to facil-
itate the LSMs; (3) digitalized format is preferred in
order to minimize the errors. Based on the above con-
siderations, ten landslide predictive factors including
four topographic factors (including elevation, slope,
slope aspect and curvature), three hydrological factors
(including distance to the river, topographic wetness in-
dex and stream power index), the geological factor, the

landcover factor and the seismic factor (PGA) have
been used in this study (Table 1). A brief introduction
to these factors is given in the following sections.

Topographic factors

Several topographic factors can be derived from a digital ele-
vation model (DEM). In this study, the DEM with a spatial
resolution of 12.5 m was a product of ALOS PALSAR, which
is freely available at Alaska Satellite Facility Distributed
Active Archive Centre (ASF DAAC) (www.asf.alaska.edu).
As illustrated in Fig. 3a, the study area ranges from 610 to
1951 m in elevation. Using a 200-m interval, the elevation
factor was divided into 8 subsets: (1) <700 m; (2) 700–900

Fig. 2 Map showing the
distribution of landslides in the
study area

440    Page 4 of 19 Arab J Geosci (2021) 14: 440

http://www.asf.alaska.edu


m; (3) 900–1100 m; (4) 1100–1300 m; (5) 1300–1500 m; (6)
1500–1700 m; (7) 1700–1900 m; and (8) >1900 m.

Using a DEM, factors of slope gradient, aspect and curvature
were produced. The slope gradient is a direct driver for land-
slides. The possibilities of landsliding become high as the slope
gradient increases. The slope gradient of the study area was
calculated from a first derivate of the DEM, which ranges be-
tween 0 and 82°. Using a 10° interval, slope gradient was divided
into seven categories: (1) 0–10°; (2) 10–20°; (3) 20–30°; (4) 30–
40°; (5) 40–50°; (6) 50–60°; (7) 60–70°; (8) 70–82° (Fig. 3b).
The slope aspect describes the facing direction of the slope

surface. Vegetation cover and degree of weathering of the slope
materials vary in different slope aspects, due to the differences in
precipitation, temperature and wind. In this study, the slope as-
pects were categorized as follows: (1) north (N); (2) northeast
(NE); (3) east (E); (4) southeast (SE); (5) south (S); (6) southwest
(SW); (7) west (W); (8) northwest (NW); and (9) flat (F) (Fig.
3c). Curvature is a second-order derivative of the DEM. A pos-
itive curvature value indicates an outwards convex surface, while
a negative value means an inwards concave surface. A curvature
value near zero (e.g., between −1.0 and 1.0) means that the slope
is close to flat. Three general categories of curvature factor were

Table 1 List of landslide
predictive factors Factors Format Source

Topographic factors Elevation Raster Derivation of DEM (DEM is freely
available at Alaska Satellite Facility
Distributed Active Archive Centre)

Slope Raster

Aspect Raster

Curvature Raster

Hydrological factors DtoR Raster National Geology Library of China

TWI Raster Secondly derivation of DEM
SPI Raster

Geological factor Lithology Shapefile National Geology Library of China

Land cover PTC Raster Geospatial Information Authority of Japan

Seismic factor PGA Shapefile USGS

Fig. 3 Landslide predictive factors: a elevation; b slope gradient; c aspect; d curvature; e distance to the river; f TWI; g SPI; h lithology; i percentage of
tree cover; and j PGA
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defined herein: (1) < −1.0 (concave); (2) −1.0–1.0 (flat); (3) >1.0
(convex) (Fig. 3d).

Hydrologic factors

Hydrological factors play an important role in the regional
landscape evolution. Landslides are usually distributed along
drainages because erosion and excavation near rivers provide
the accumulation of the necessary potential energy and the
free surface for landslide occurrences. Hence, the factor of
distance to the river (DtoR) was taken into account to assess
the correlations between landslides and rivers. The DtoR was
reclassified into four categories using a 2-km distance interval
using the buffer function in GIS: (1) 0–2 km; (2) 2–4 km; (3)
4–6 km; and (4) 6–8 km (Fig. 3e).

The topographic wetness index (TWI) and the stream pow-
er index (SPI) are two widely used factors modelling the run-
off process. The TWI indicates the conditions of soil moisture,
groundwater flowing and accumulation. The TWI of the study
area ranges from 0 to 23.83. As shown in Fig. 3f, the TWI
factor was classified into five categories: (1) 0.0–5.0; (2) 5.0–
10.0; (3) 10.0–15.0; (4) 15.0–20.0; and (5) >20.0. The SPI is
another topographic factor measuring the erosive power of
flowing water. The SPI values within the study area were
arranged in four classes: (1) −7 to −2; (2) −1–0; (3) 1–2; (4)
3–4; (5) 5–17 (Fig. 3g). Both TWI and SPI can be calculated
using slope gradient and catchment area. Built on the steady-
state assumption, for the uniform soil condition, the TWI and
the SPI can be calculated using Eq. 1 and Eq. 2, respectively,
as follows (Sorensen et al. 2006):

TWI ¼ ln As=tanβð Þ ð1Þ
SPI ¼ ln AS � tanβð Þ ð2Þ
where AS is the upslope contributing area per unit length of
contour (m2/m) of the cell, and β is the slope gradient of the
cell.

Geological factors

Lithology of rocks is among the deterministic factors of land-
slides in literature. Differences in lithology lead to the vari-
ance of strength, permeability and structure development. The
1:200,000 geology map in digital GIS shapefile format was
collected from the National Geology Library of China. Within
the study area, four lithological groups were included, namely,
the Guankou group, the Baitianba group, the Guanwushan
group and the Lushan group (Fig. 3h). The Guankou group
mainly consists of limestone, dolomite, mudstone and carbon-
ate rocks. The Baitianba group is composed of tuff, gravel and
siltstone. The Guanwushan group constituted volcaniclastic
and carbonate rocks. In the case of the Lushan group, phyllite,

slate, metamorphic sandstone and marble with volcanic rocks
are the dominant lithology rocks.

Percentage of tree cover factor

Bare ground is more prone to landsliding than ground with
vegetation or tree cover. Therefore, the tree cover percentage
was taken into account as a predictive factor related to the
landslide occurrence. Percentage of tree cover (PTC) is a
quantitative parameter, defined as the ratio of surface area
with branches and leaves of trees coverage to the total surface
area. In this study, the PTC factor was derived from the
Geospatial Information Authority of Japan. Five classes of
PTC were set in this study: (1) 0–20%; (2) 20–40%; (3) 40–
60%; (4) 60–80%; and (5) 80–100% (Fig. 3i).

Seismic factor

Landslides were triggered by strong ground shaking on slope
masses. Peak ground acceleration (PGA) represents the leading
indicator of seismic scenarios, measuring the maximum shak-
ing intensity at a given ground point. The parameter of PGA is
widely used by engineers for the purpose of seismic resistance
designing. In the field of seismic hazard mitigation, PGAmaps
of a particular seismic event have been very helpful in damage
assessment at a regional scale. The regional PGA data of the
Lushan earthquake was obtained from the USGS ShakeMap
(http://earthquake.usgs.gov) in GIS shapefile format. The
highest PGA value of 0.3 g occurred near the epicenter of the
mainshock. In the USGS ShakeMap, the study area was
reclassified into four categories according to the PGA values
as (1) 0.2 g; (2) 0.24 g; (3) 0.28 g, and (4) 0.30 g (Fig. 3j).

Methods

Flowchart of LSM

Even for the same dataset, the results of LSM using different
models may vary. Literature reviews have shown that it is hard
to tell which model outperformed the others (Huang and Zhao
2018; Reichenbach et al. 2018; Lee 2019). Hence, the efficiency
and accuracy of different LSM models should be evaluated and
compared in order to obtain a reliable landslide susceptibility
map. This paper demonstrates the application and comparison
of the WoE, the LR and the SVM in generating landslide sus-
ceptibility maps of a selected area affected by the Lushan earth-
quake. The theoretical background and implementation of these
models is briefly introduced in this section.

The general flowchart of conducting the LSMs is shown in
Fig. 4. Firstly, the landslide inventory and all the landslide
predictive factors were rasterized into raster of 12.5 m. The
landslide raster was randomly divided into two parts. 70% of
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landslide raster cells were used to develop or train the model.
30% of landslide raster cells were used to validate the results.
Then, each of the LSM models (WoE, LR and the SVM) was
applied individually to produce the landslide susceptibility
map. After that, accuracies of resultant maps were validated
and compared.

Generation of training and testing datasets

For present study, the identified 867 landslides polygons were
first rasterized into 18,712 pixels having a spatial resolution of
12.5 m using ArcGIS10.2. Then, the whole dataset was ran-
domly split into 2 subsets: (i) the training dataset containing
13,099 pixels (70% of the total) and (ii) the validation dataset
containing 5613 pixels (30% of the total). For the WoE model,
only the landslide dataset is required as input. However, both
the landslide and non-landslide datasets are required in the LR
and SVM modelling. In order to generate the non-landslide
dataset, an assumption was made in this study; the pixels locat-
ed 50 m (4 times of the raster resolution) away from the known
landslide pixel were considered as non-landslide regions, be-
cause the pixel approximating the landslides display similar
conditions as the landslide pixel and might cause problems in
building the prediction model. Finally, the same counts of non-
landslide pixels (18,712 pixels) were randomly selected in the
non-landslide regions. Hence, for the WoE model, there were
only 13,099 landslide pixels in the training dataset. As a

comparison, there were 13,099 landslide pixels and 13,099
non-landslide pixels in the training dataset of the LR and the
SVM. For the validation dataset of all the three models, there
were 5613 landslide pixels and 5613 non-landslide pixels.

LSM models

Weight of evidence

Based on the Bayesian theory of conditional probability, the
weight of evidence (WoE) is among the most popular bivariate
statistical models for quantification of spatial correlations be-
tween evidence (landslide-predicting factors) and known land-
slide occurrences. More detailed information about the theory
and formulations of WoE can be found in Bonham-Carter
(1994). Derived from the Bayesian rules, the weight of each
landslide-predicting factor is calculated as the posterior probabil-
ity of landsliding given the presence or absence of the landslide-
predicting factors, the WoE can be mathematically defined as
follows:

wþ
i ¼ ln

P BijLf g
P BijL
n o

w−
i ¼ ln

P Bi

���Ln o

P Bi

���Ln o

8>>>>>><
>>>>>>:

ð3Þ

Database construction
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PGA
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Fig. 4 Flowchart of LSM in this study
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where P is the conditional probability; Bi and Bi denote the
existence and absence of a landslide-predicting factor, respec-

tively. L and L are the existence and absence of a landslide.
For each factor, the positive weight w+ is used to measure the
importance of factor existence for landsliding. A w+ > 0 indi-
cates the factor’s existence is favourable for landsliding, while
aw+ < 0means it is unfavourable for landsliding. The negative
weightw− evaluates the importance of the factor’s absence for
landsliding. When w− > 0 , the absence of the factor is
favourable for landsliding, andwhenw− < 0, it is unfavourable
for landsliding.

The overall correlations between a landslide predictive fac-
tor and the landslides occurrences can be measured using the
magnitude of contrast weight (C) defined as the difference
between the positive weight and the negative weight. The
contrast can be calculated as follows:

C ¼ wþ
i −w

−
i ð4Þ

The primary WoE was performed for the binary factors,
which include only two classes (absence and presence of the
factor). However, most of the factors in the LSM were multi-
class factors (e.g., slope gradient). By writing Eq. 3 in the
number of GIS raster pixels, the WoE was performed with
each landslide predictive factor in a more practical way to
calculate w+ and w−. For each landslide predictive factor, the
weights of each class can be obtained using Eq. 5:

wþ ¼ ln
n1= n1 þ n2ð Þ
n3= n3 þ n4ð Þ

� �

w− ¼ ln
n2= n1 þ n2ð Þ
n4= n3 þ n4ð Þ

� �
8>><
>>:

ð5Þ

where n1 is the count of landslide pixels in the current class, n2
is the count of landslide pixels not in the current class, n3 is the
count of non-landslides pixels in the current class and n4 is the
number of non-landslide pixels not in the current class.

Finally, all of the conditional independent landslide predic-
tive factors were spatially integrated to calculate the landslide
susceptibility index (LSI) of each pixel as follows:

LSI x;yð Þ ¼ ∑
n

i¼1
Ci

x;y ð6Þ

where (x, y) denotes the spatial location of each pixel and n is
the total number of factors.

Logistic regression

The logistic regression (LR) is a representative multivariate
statistical method. It assesses the correlations between one
dependent variable (landsliding) and several independent var-
iables (predictive factors). One of the distinguishing features
of the LR is that the types of landslide predictive factors can be

nominal, discrete, continuous or any mix of them. In a com-
mon LR modelling, the dependent variable has only two
values (“1” and “0”). Through a link function, the dependent
variable of the usual linear regression model was transformed
into a logit variable in the LR. The probability of the depen-
dent variable showing the value of “1” was estimated using
the maximum likelihood estimation.

For the LSM using LR, it aims to optimize a best-fitting
model to interpret the correlations between the landslides and
their predictive factors. The dependent variable was coded by
two values, “1” indicating the occurrence of a landslide, while
“0” indicating its absence. The landslide predictive factors can
be measured as follows: the nominal (e.g., slope aspect), the
continuous (e.g., slope gradient, altitude) and the discrete
(e.g., seismic intensity). The probability of landslide occur-
rence can be calculated through LR modelling, using Eq. 7
and Eq. 8:

Y ¼ Logit pð Þ ¼ ln
p

1−p

� �
ð7Þ

p ¼ β0 þ β1x1 þ β2x2 þ…þ βnxn ð8Þ

where p is the probability when the value of the dependent
variable Y is 1, n is the count of factors, β0 is the intercept
parameters in linear regression and βi (i = 1, 2, …, n) is the
regression coefficient, which can be used to measure the in-
fluence of each factor xi (i = 1, 2, …, n) on landsliding.

Support vector machine

The support vector machine (SVM) has shown great potential
in solving the classification and regressions problems. As a
supervised machine-learning algorithm, a detailed description
of SVM algorithms can be found in Cortes and Vapnik (1995)
and more recently in Kumar et al. (2017). The general algo-
rithm of the SVM can be summarized as follows: Given a
linearly separable problem, a set of vectors V ¼ x!1

��
; y1Þ ;

x!2

�
; y2Þ;…; x!n

�
; ynÞg, has n points x!i, with two labels (y

= ±1) indicating the two classes the x!i belonging to. The
principle of the SVM is to find the optimized decision bound-
ary separating x!i belonging to the group y = +1 from the x!i

for y = −1 with a maximum margin. An optimized decision
boundary can be mathematically written as:

w!� x!−b ¼ 0 ð9Þ

where w! is the normal vector of the hyperplane. b

w!�� �� is the

offset of the hyperplane from the origin along the direction of
w!. Geometrically, the distance between the two hyperplanes
is 2

w!�� ��. To separate the two classes of points x!i, there are

many possible hyperplanes that can be chosen. Optimal
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classification occurs when a hyperplane provides a maximum
distance to the nearest training data points. Thus, the classifi-
cation can be stated as a constrained optimization problem:

Minimize
w;b

w!
��� ��� ð10Þ

Subject to:

yi w!⋅ x!−b
� 	

≥1−ξi; i ¼ 1; 2;…; n ð11Þ

For the non-separable problems, a slack variable ξi was
introduced in the original constrains (Eq. 8) to allow for the
error tolerance as follows:

yi w!⋅ x!−b
� 	

≥1−ξi; i ¼ 1; 2;…; n ð12Þ

By introducing a Lagrange multiplier, the cost function can
be mathematically expressed as:

Minimize ∑
n

i¼1
αi−

1

2
∑
n

i¼1
∑
n

j¼1
αiα jyiy j xix j

� 
 ð13Þ

Subject to:

∑
n

i¼1
αiyi ¼ 0; 0≤αi≤C ð14Þ

where α = (α1,α2,…,αn) ∈ Rn is the Lagrange multiplier and
C is the penalty term.

The cost function can be written as:

g xð Þ ¼ sign ∑
n

i¼1
yiαixi þ b

� �
ð15Þ

In some cases, when there existed no linear hyperplane
separating the input vectors, some kernel functions were used
to project the input data into a higher dimensional feature
space. The cost function is rewritten as:

g xð Þ ¼ sign ∑
n

i¼1
yiαik xi; x j

� 
þ b
� �

ð16Þ

where k(xi, xj) is the kernel function. The mathematical for-
mulations of the four most frequently used kernels in SVM are
listed in Table 2.

Validation of the accuracy

For LSM, a landslide pixel was labelled as “positive”, while a
non-landslide pixel was labelled as “negative”. If the predicted
label of any pixel agrees with its true label, a prefix “true”was
added to the label of the pixel. On the contrary, if the predicted
label of any pixel disagrees with its true label, a prefix “false”
was added to the label of the pixel. Given this, any pixel can
be labelled as “true positive” (TP), “true negative” (TN),

“false positive” (FP) or “false negative” (FN) according to
its true state and predicted condition (Table 3). The false pos-
itive rate (FPR) refers to the proportion of actual negative but
wrongly predicted as positive cases among the total positive
cases (Eq. 17). The true positive rate (TPR) refers to the pro-
portion of actual positive and correctly predicted as positive
cases among the total positive cases (Eq. 18).

FPR ¼ FP

FPþ TN
ð17Þ

TPR ¼ TP

TPþ FN
ð18Þ

Accuracy validation was the final and indispensable step in
LSM. The receiver operating characteristic (ROC) analysis is
the most popular validation method for classification. The
ROC analysis was performed by drawing a curve on an x-y-
plane, with the horizontal axis showing FPR and the vertical
axis showing TPR. For LSM, the predicted output for each
landslide pixel is an LSI value, which is continuous rather than
a binary result. In order to obtain the ROC curve, a series of
threshold values “T” was set to define the predicted labels of
each pixel. If LSI> T, then it was predicted as “positive” oth-
erwise “negative”. For each “T”, the corresponding pair of
(TPR, FPR) can be calculated and plotted as a point on the
ROC plane. The ROC curve was then obtained by connecting
all the points. For the present study, the training dataset and
the validation dataset were analysed using ROC curve,
respectively.

The area under the ROC curve (AUC) was a quantitative
index for the overall performance evaluation of the LSM
models. Typically, the AUC value varies between 0.5 and 1.
If the AUC value of a classification model is 0.5, the classifi-
cation model performed no better than chance. A higher AUC
value indicates a better performance of a classification model.
An AUC value of 1.0 is provided by a perfect classification
model.

Implementation of LSM models

Implementation of the WoE

As shown in Table 4, the weight of each landslide predictive
factor category was calculated using Eq. 6 by overlaying the
13,099 landslide pixels and the landslide predictive factors. In
order to measure the contribution magnitude of each predictive
factor, the contrast values were also calculated using Eq. 4.

The conditional independence (CI) between the landslide
predictive factors used in WoE should be evaluated before
they can be used to produce the LS map using WoE. In this
study, the CI was tested using the Chi-square method. Based
on the positive or negative contrast values of each category,
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each landslide predictive factor was first converted into a bi-
nary pattern. Then, x2 value for each pair of 10 binary factors
was calculated at the 99% confidence level and 1 degree of
freedom. An x2 value less than 6.635 indicates that the pairs
were conditionally independent in predicting landslides. As
shown in Table 5, 18 of the total 45 pairs of landslide predic-
tive factors were conditionally independent (CI). Therefore,
two potential combinations of factors can be used in the LSM
(Table 6). Since slope gradient is an indispensable controlling
factor of landslide occurrences, combination II was finally
used in this study.

Implementation of the LR

A database containing 26,198 cells was created. Each cell in
the database has 10 attributes representing the category value
of each factor and a binary label value of 1 and 0 (existence
and absence of landslide). In LR modelling, the attributes
were used as independent variables, while the binary labels
were used as the dependent ones. For the current study, the
binary LR statistical analysis was performed using Python.
The correlation between landslides and predictive factors is
shown in Table 7, where the multicollinearity of independent
variables was examined using the tolerance (TOL) and vari-
ance inflation variables (VIF).

Since not all the independent factors contribute significant-
ly to landsliding, a forward stepwise LR was carried out to
select the factors closely related to landslide occurrences. In
the beginning of this type of regression, only one variable was
included in this model. Then for each step followed, indepen-
dent variables were added in the regression one by one after
evaluation. During each step, the regression model with an

independent variable added was evaluated using the maxi-
mum likelihood ratio (MLR). If the change in the logarithm
of likelihood was less than the probability of factors kept in
the model, the variable was entered in the regression.
Otherwise, it was excluded. After repeating this process for
each factor, a regression model including all significant inde-
pendent variables was built, and the coefficients were
assigned to each independent variable. In the present study,
the threshold probability for variables to be included in the
regression model was set to 0.05.

Implementation of the SVM

The SVMmodelling was performed through Python program-
ming in this study. The free python machine-learning python
package “scikit-learn” (Pedregosa et al. 2011) was used to
facilitate the modelling. Four common types of kernel func-
tions mentioned in Table 2 are given in the “scikit-learn”. The
LN is a case of the PL, when γ = 1 and d = 1. Despite its good
extrapolation abilities in lower-order fitting, “overfitting” fail-
ure may occur if the order of a polynomial is high while using
the PL. The SIG are derived from neural networks and are
widely used in deep learning. The RBF has good interpolation
abilities in mapping a sample into a higher dimensional space.
The RBF performs well in both large and small samples and
has fewer parameters as compared to the polynomial kernel
function. Previous studies of LSM using SVM have indicated
that in most cases, the RBF works best among the four types
of kernels (Tehrany et al. 2015; Huang and Zhao 2018).
Therefore, the RBF kernel was used in this study.

The accuracy of the SVM using kernel was largely depen-
dent on the kernel parameters. In the SVM modelling with

Table 2 Four commonly used
kernel functions Kernel function Formulation* Kernel parameters

1 Linear (LN) k xið ; x jÞ ¼ xTi x j
2 Polynomial (PL) k xið ; x jÞ ¼ γxTi xi þ r

� 

d γ, d

3 Radial basis functions (RBF) k(xi,xj)=exp(−γ‖xi−xj‖2) γ

4 Sigmoid (SIG) k xið ; x jÞ ¼ tanh γxTi x j þ r
� 


γ

* γ is gamma term in all kernels except the LN; d is the polynomial degree; r is the bias term

Table 3 Confusion matrix for the
ROC analysis Predicted label

Landslide (positive) Non-landslide (negative)

Actual label Landslide (positive) TP1 FN2

Non-landslide (negative) FP3 TN4

1 TP, no. of the actual positive and correctly predicted cases
2FN, no. of the actual positive but wrongly predicted cases
3FP, no. of the actual negative but wrongly predicted cases
4 TN, no. of the actual negative but correctly predicted cases
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Table 4 Results of the WoE analysis

Factor Class No. of landslide pixels No. of total pixels w+ w− C

Aspect North 1357 282,347 −0.088 0.011 −0.099
Northeast 911 199,741 −0.141 0.011 −0.152
East 2071 259,355 0.423 −0.063 0.485

Southeast 1604 421,118 −0.322 0.054 −0.376
South 2307 341,578 0.254 −0.047 0.301

Southwest 1296 297,453 −0.187 0.023 −0.210
West 1832 353,333 −0.012 0.002 −0.014
Northwest 1720 341,160 −0.040 0.006 −0.046

Elevation (m) <700 50 249,104 −3.269 0.102 −3.371
700–900 1271 541,233 −0.807 0.143 −0.950
900–1100 2657 462,820 0.090 −0.022 0.112

1100–1300 4662 569,189 0.448 −0.182 0.630

1300–1500 3807 523,774 0.328 −0.108 0.436

1500–1700 652 131,533 −0.057 0.003 −0.060
1700-1900 0 18,185 0.000 0.007 0.000

>1900 0 247 0.000 0.000 0.000

Slope (°) <10 1400 605,554 −0.823 0.166 −0.989
10–20 1614 602,170 −0.675 0.145 −0.820
20–30 3318 682,483 −0.077 0.027 −0.104
30–40 2807 375,862 0.355 −0.078 0.433

40–50 2164 176,524 0.855 −0.108 0.963

50–60 1093 39,582 1.683 −0.071 1.755

60–70 507 12,838 2.053 −0.034 2.088

70–82 197 1072 3.754 −0.015 3.768

Curvature <−1.0 7453 716,572 0.689 −0.505 1.195

−1.0–1.0 476 121,621 −0.295 0.013 −0.308
>1.0 5170 1,658,168 −0.523 0.594 −1.116

DtoR (km) <2 9435 1,763,753 0.019 −0.048 0.068

2–4 3616 651,300 0.057 −0.021 0.078

4–6 47 63,743 −1.967 0.022 −1.989
6–8 0 17,565 0.000 0.007 0.000

Lithology Group A 6301 1,174,740 0.022 −0.020 0.042

Group B 4447 548,203 0.439 −0.168 0.606

Group C 1768 172,355 0.675 −0.074 0.749

Group D 582 601,063 −1.694 0.231 −1.926
PGA 0.2 7 92,329 −4.242 0.037 −4.280

0.24 106 98,422 −1.588 0.032 −1.620
0.28 4032 780,915 −0.016 0.007 −0.023
0.30 8953 1,524,695 0.113 −0.208 0.321

SPI −7.0 to −2.0 24 27,315 −1.792 0.009 −1.801
−2.0–0.0 440 158,451 −0.639 0.032 −0.671
0.0–2.0 1720 529,837 −0.482 0.098 −0.581
2.0–4.0 5139 1,054,266 −0.074 0.051 −0.125
>4.0 5775 725,749 0.419 −0.239 0.658

PTC (%) <20 1086 538,873 −0.960 0.158 −1.118
20–40 717 222,386 −0.489 0.037 −0.526
40–60 3695 562,560 0.226 −0.076 0.302

60–80 4861 674,743 0.319 −0.149 0.468

>80 2740 497,796 0.048 −0.012 0.060
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RBF kernel, the γ and the penalty term C need to be opti-
mized. The γ determines the nonlinearity degree in SVM,
while the penalty term C was used to avoid overfitting of
SVM by controlling the trade-off between training errors
and the margin. A grid search with C = 2−10, 2−9, …, 210

and γ = 2−10, 2−9, …, 210 was carried out to search the best
pairs of (C, γ). For each pair, a multi-folder cross-validation
method (MFCV) was adopted in this study (Chen et al. 2017).

Results

Correlations between predictive factors and landslide
distribution

Landslides distributed unevenly within the study area. As
shown in Fig. 5a, the majority of landslides occurred in area
between 700 and 1500 m in elevation. The category of 1100–
1300 m was most vulnerable for landsliding since its 22.8%
area coverage accounts for 35.6% landslide occurrences. For
the slope gradient, the highest percentage of landslides occu-
pation (25.3%) was found in the category of 20–30°, while the
category of 60–82° accounts for the lowest landslide percent-
age of 27.3% (Fig. 5b). In the case of slope aspect, no general
correlation has been found between landslides and aspects.
Landslides mostly concentrated on south and east-facing
slopes (Fig. 5c). The result has indicated that slopes with the

inwards concave surface (56.9%) were more favourable for
landslides than that with an outwards convex surface (39.5%),
as 28.7% of landslides occupied in the former and 66.4% of
them occupied in the latter (Fig. 5d).

As shown in Fig. 5e, 72.3% of the landslides concentrated
within 2 km buffer of rivers. Moreover, the concentration
decreases as the distance increases. In general, the high satu-
ration level favours the landslide initiation by weakening the
shear strength of slope masses and increasing the sliding force.
As can be seen from Fig. 5f, 47.32% of the landslides occurred
in the area with the TWI value of 5.0–10.0, and 18.8% of total
landslides occurred in the category of 10.0–15.0. In the case of
the SPI, possibilities of landslide occurrences are greater in the
high value of stream power. 39.23% and 44.09% of the land-
slides occurred in the SPI category of 2.0–4.0 and >4.0, re-
spectively (Fig. 5g). Landslide susceptibility levels varied in
different lithology of rocks.

For the case of lithological rocks, the Guankou group ac-
counts for 48.1% of total landslides. Followed by the
Baitianba group, 34% of the landslides occupied this group.
As can be seen from Fig. 3a, b, coverages of these two litho-
logical groups were dominated bymountainous terrains with a
higher elevation and steeper slopes. In addition, due to plen-
tiful precipitation, sufficient illumination and frequent seismic
events within the study area, most of the lithological rocks
have undergone some certain degree of weathering, making
slopes more vulnerable to landsliding. As a comparison, only

Table 4 (continued)

Factor Class No. of landslide pixels No. of total pixels w+ w− C

TWI 0.0–5.0 4318 1,073,334 −0.267 0.163 −0.430
5.0–10.0 6198 1,143,291 0.032 −0.028 0.061

10.0–15.0 2461 256,292 0.608 −0.100 0.709

15.0–20.0 81 18,659 −0.191 0.001 −0.192
>20.0 41 4042 0.664 −0.002 0.665

Table 5 Conditional independence test using pairwise chi-square statistics

Factors Elevation Slope Curvature DtoR* Lithology PGA SPI PTC TWI

Aspect 2.56 106.93 65.39 112.36 0.85 99.51 550.21 105.28 462.53

Elevation 4.53 322.42 5.76 47.14 1.65 5.08 2.54 139.65

Slope 198.72 1.23 39.76 2.32 4.65 15.41 76.51

Curvature 115.82 1.23 181.92 95.24 278.32 5.79

DtoR* 36.79 4.81 4.67 0.61 112.51

Lithology 550.62 220.18 421.74 46.86

PGA 5.3 0.51 337.69

SPI 2.12 93.03

PTC 64.47

*DtoR: distance to the river

The bold values indicate that the pairs are conditionally independent
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4.44% of landslides occurred in the Lushan group, which
accounts for 24% of the total area (Fig. 5h).

Distribution of landslides has shown that the area with tree
cover of 60%–80% accounted for most landslide occurrences
(37.1%), while the PTC of 20–40% had the lowest percentage
of landslides (5.47%) (Fig. 5i). For the factor of PGA, the
areas suffering from stronger ground shaking are more vulner-
able to landsliding. 68.35% of the landslides concentrated
within the PGA category of 0.30 g (Fig. 5j).

Results of the WoE

The landslide susceptibility map produced using the WoE is
illustrated in Fig. 6a and the results of the WoE analysis are
summarized in Table 2. The magnitude of spatial associations
between landslide occurrences and each category of each
landslide predictive factor was measured using the contrast
values. A positive contrast value indicates a positive spatial
association. The higher the contrast value is, the more positive
the association is.

As illustrated in Table 2, east-facing slopes are most sus-
ceptible for landsliding, while the southeast-facing slopes
have the lowest contrast value. In the case of elevation, the
landslides were the most abundant in the category of 1100–
1300 m. As for slope, steeper terrains were more prone to
landsliding. The contrast values increase as the slope gradient
increases. The category >60 had the highest contrast value of
1.986. In terms of curvature, the contrast values for concave,
flat and convex regions were 0.501, −0.678 and −1.659,

respectively. For the lithology, the highest contrast value
was observed in the category of volcaniclastic and carbonate
rocks (the Guanwushan Group). In the case of distance to the
river, no category had a positive contrast value. The lowest
contrast value of −2.351 was observed in the category of 2–4
km away from the river. Contrast values of all PGA categories
were also negative. The category of 0.30 g had the lowest
contrast value of −0.541. However, as the PGA increased,
the contrast value got higher. For the factor of PCT, the cate-
gory of <20% showed the lowest contrast of −1.504, while the
category 60–80% had the highest value of −0.054. In terms of
SPI, the more positive the SPI value, the higher is the contrast.
As for the TWI, the highest contrast value of 0.709 was ob-
served in the category of 10.0–15.0.

As previously stated, only conditionally independent fac-
tors were finally included in the WoE model to create the
landslide susceptibility map. According to the CI test result
(Table 5), the landslide susceptibility map was produced using
elevation, slope, distance to the river, PGA and SPI. The
weight of each category within these factors is calculated
using Eq. 5. The LSI of each pixel within the study area was
calculated by summing the contrast values of all conditionally
independent landslide predictive factors (Eq. 19). After that,
the LSI was normalized between 0 and 1. Finally, The LSmap
was divided into 5 susceptibility levels (namely, “very high”,
“high”, “moderate”, “low” and “very low”) using the “natural
breaks” classification method in ArcGIS ver10.2. As shown in
Fig. 6a, 25.60% and 45.17% of the study area show “very
high” and “high” proneness to landsliding, respectively. The
“low” and “very low” areas covered only 9.85% and 2.32% of
the total area, respectively.

LSI x;yð Þ
WoE ¼ C x;yð Þ

Elevation þ C x;yð Þ
Slope þ C x;yð Þ

DtoR þ C x;yð Þ
PGA þ C x;yð Þ

SPI ð19Þ

where C is the contrast weights of a given pixel spatially
located at (x, y).

Results of the LR

As illustrated in Table 8, the −2-log likelihood decreases from
33,271.404 at the first step to 29,628.017 at the final step.
Nine factors were included in the LRmodel, including aspect,
elevation, slope, curvature, distance to the river, PGA, SPI,
PCT and TWI. The lithology factor was not significantly re-
lated to the landslides at the given confidence level (95%).
Cox and Snell’s R2 was observed ranging from 0.264 to
0.648 and Nagelkerke’s R2 ranged from 0.311 to 0.719. A
high value of these two indexes means high accuracy of the
model. Table 9 shows the coefficients of all factors finally
kept in the regression. Coefficients of aspect, elevation, slope,
PGA and TWI are positive, indicating these factors were pos-
itively related to the landslide occurrences. The highest coef-
ficient of 6.011(positive) was assigned to PGA, while the

Table 6 Possible combinations of conditionally independent factors
used in WoE

Combination type Factors included

Combination I Elevation, slope, distance to the river, PGA, SPI

Combination II Elevation, distance to the river, PGA, SPI, PTC

Table 7 The
multicollinearity check
among landslide
predictive factors

Factors TOL VIF

Aspect 0.987 1.013

Elevation 0.452 2.212

Slope 0.319 3.136

Curvature 0.837 1.194

DtoR 0.722 1.384

Lithology 0.774 1.291

PGA 0.945 1.058

SPI 0.502 1.994

PTC 0.556 1.798

TWI 0.438 2.285
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lowest one (negative) was detected for the factor distance to
the river. Both the factors TWI and SPI had little impact on
landsliding, having coefficients of 0.112 and −0.103,
respectively.

Ultimately, by assigning the coefficients to the variables
used in the LR model, a weighted linear combination of land-
slide predictive factors was carried out in ArcGIS using Eq.
20. In order to create the landslide susceptibility map, the LSI

Fig. 5 Correlations between predictive factors and landslide distribution: a elevation; b slope gradient; c aspect; d curvature; e distance to the river; f
TWI; g SPI; h lithology; i percentage of tree cover; and j PGA
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for each pixel with the study area was calculated by inserting
Eq. 20 into Eq. 7. The obtained map was categorized into five
susceptibility zones using the “natural breaks” methods. As
indicated in Fig. 6b, the “moderate” susceptibility category
took the biggest portion (28.80%) of the study area. 10.56%
and 25.53% of the total area had “very high” and “high”
susceptibilities of landsliding, respectively. Meanwhile,
19.48% and 15.62% of the total area were mapped as “very
low” and “low” landside-susceptible regions, respectively.

p ¼ βAspect*Aspectþ βElevation*Elevationþ βSlope*Slopeþ βPGA*PGA
þβTWI

*TWIþ βDtoR
*DtoRþ βPTC

*PTCþ βSPI
*SPIþ Constant

ð20Þ

where β is the regression coefficient in LR.

Results of the SVM

Through the aforementioned grid searching and MFCV, the
highest accuracy 89.3% was obtained with C = 8 and γ =

0.125, respectively. The final LS map was created by entering
each pixel with 10 attributes into the SVM model using RBF
kernels with optimized C and γ values. The output value of
SVM for each pixel ranged between 0 (indicating 0% likeli-
hood of landsliding) and 1 (indicating 100% likelihood of
landsliding). The final LS map using SVM was also divided
into five susceptible classes using the “natural breaks”
methods. As illustrated in Fig.6c, 7.94% and 11.48% of the
study area belong to the “very high” and “high” category,
respectively. The coverage percentages of “moderate”,
“low” and “very low” susceptibility category were 32.94%,
32.23% and 15.41%, respectively.

Accuracy validation

The ROC results are illustrated in Fig. 7; the LR model pro-
vides the highest AUC values for the training dataset (0.782)
and the validation dataset (0.764). For the training dataset, the
lowest AUC of 0.733 was observed for theWoEmodel. In the

Fig. 5 (continued)
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(a) (b)

(c)

Fig. 6 Landslide susceptibility maps obtained using a WoE, b LR and c SVM

Table 8 The −2-log likelihood, Cox and Snell’s and Nagelkerke’s R2

estimators for the LR

Step −2 log likelihood Cox and Snell R2 Nagelkerke’s R2

1 33,271.404 0.264 0.311

2 31,387.148 0.316 0.347

3 30,738.531 0.388 0.402

4 30,325.984 0.427 0.451

5 29,938.826 0.469 0.495

6 29,807.918 0.512 0.538

7 29,702.657 0.548 0.591

8 29,638.83 0.563 0.624

9 29,628.017 0.648 0.719

Table 9 The coefficient
and significance of each
factor in the LR model

Factors Coefficient Significance

Aspect 0.502 0.000

Elevation 1.053 0.000

Slope 2.636 0.000

Curvature -- 0.780

DtoR −1.648 0.000

Lithology -- 0.610

PGA 6.011 0.000

SPI −0.103 0.000

PTC −0.402 0.000

TWI 0.112 0.000

Constant −6.935 --
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case of the testing dataset, the SVM provided the lowest AUC
of 0.742.

In order to compare the obtained LS maps produced using
different models, the training and validation landslide datasets
were overlaid with the LS maps, respectively. As illustrated in
Fig. 8a, for all models, the landslide concentrations increased as
the susceptibility level became high. For the training datasets, the
result of the WoE shows that 58.03% and 38.41% of the land-
slide pixels occurred in the “very high” and “high” susceptibility
category, respectively. As for the SVM model, the highest con-
centration (30.04%) of landslide pixels was found in the “high”
category. In the case of LR model, the landslides percentages
were 28.61%, 30.41%, 19.47%, 11.56% and 9.67% from “very
high” level to “very low” level, respectively. Figure 8 b shows
validation result using the testing dataset, and gradual increase of
landslide concentration from “very low” to “very high” is ob-
served for the LR model, with the highest percentage of 39.58%
in “very high” and the lowest percentage of 1.79% in “very low”.
In terms of WoE, 46.07% and 43.25% of the total landslide
pixels fell within the “very high” and “high” susceptible regions,

respectively. As for the SVM, the “high” category had the most
landslide pixels (31.41%), followed by the “very high” category
(28.1%). However, there were 6.45% of the total landslide pixels
observed in the “very low” category using the SVM.

Discussions

Validation using both training dataset and validation dataset
showed that no obvious differences were observed among the
accuracies of the three models. If validated by training dataset,
the accuracy varied from 73.3% (theWoE) to 78.2% (the LR),
while it varied from 74.2% (the SVM) to 76.4% (the LR) for
the testing dataset. Despite the fact that more than 90% of the
landslides fell within the “very high” (58.03%) and “high”
(38.41%) susceptibility zones mapped using the WoE, an
overestimation of LSI might have occurred, since the resulting
WoE map may fail to facilitate the LSM for this study as sum
of the “very high” and “high” landslide-susceptible regions
had exceeded 70% of the total area. A possible reason

Fig. 7 Validation results of the models using ROC curves: (a) Training dataset; (b) Test dataset

Fig. 8 Distribution of landslides in each landslide susceptibility category. a Training dataset; b validation dataset
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accounts for such conditions may arise from the ignorance of
the nonlinear correlations between landslides and their predic-
tive factors. A predictive factor with a big contrast difference
of different classes would significantly affect the final WoE
wights, since all predictive factors were treated equally.
Despite no conditional independence or specific distribution
pattern (e.g., normal distribution) of the input data was re-
quired for the SVM, there is still room to improve the SVM
through optimization of its kernels and the corresponding pa-
rameters (Kavzoglu et al. 2015). In addition, the implementa-
tion of the SVM in GIS modelling remains a challenging issue
(Pham et al. 2016). It is noteworthy that several ensemble
models have proposed and succeeded in most recent literature
for LSM in order to utilize the advantages of individual
models (Wang et al. 2014; Arabameri et al. 2019a, b; Lee
2019). Based on a general consideration of the given condi-
tions discussed above, the LR and the SVM are more prefer-
ably recommended for LSM of the study area than the WoE.

In recent years, many studies have examined the efficiency
of various machine-learning algorithms in LSM (Kalantar
et al. 2017; Nhu et al. 2020; Yu and Chen 2020). The neural
network (NN) and SVM were the two most frequently used
algorithms, which were firstly developed to solve nonlinear
classification problems. Nevertheless, it is more difficult to
distinguish the good from the bad than to distinguish the better
from the good. For example, Kalantar et al. (2017) and Yu and
Chen (2020) suggested that SVM outperformed than ANN,
while Işık (2010) and Nhu et al. (2020) found ANN showed a
higher accuracy than SVM. Hence, a comparative study be-
tween LSM models for each case would help to optimize the
result. Moreover, hybrid use of different algorithms has be-
come increasingly popular in more recent years in making use
of the advantage of each individual method. Such kind of
hybrid methods had shown outstanding performance than in-
dividual methods (Yan et al. 2019; Sahana et al. 2020).

Conclusions

The LSM over a broad area has proved a cost-effective way to
mitigate landslide hazards. However, the efficiency and accu-
racy of different models should be compared and evaluated in
order to obtain a reliable LS map of a given study area. In this
study, performances of three types of statistical LSM models
were evaluated, including the bivariate WoE, the multivariate
LR and a machine-learning model SVM, in seismic-prone
regions of Sichuan Province, China.

An historical inventory of earthquake-induced landslides was
utilized and randomly divided into training (70%) and testing
(30%) groups. Ten factors were selected as an input of LSM
models to develop landslide susceptibility maps. All data were
elaborated in a GIS environment. In the obtained final LS maps,
the study area had been classified into five different susceptibility

zones. Although the LR model provided the highest accuracy
among the three models, validation results show that there are
no obvious differences in the accuracy of the obtained maps. In
general, all the models had shown good performance with AUC
values greatly than 0.75, when verified using the validation
dataset, while all the AUC values were greater than 0.70, when
verified using the training dataset.

Possible overestimation was detected in the maps produced
using the WoE. Therefore, the LR and the SVM are found more
suitable for the LSM in the study area. The resultant maps of this
study can be of great help for the decision-makers in urban plan-
ning, for hazard mitigations of landslides and for the identifica-
tion of existing infrastructures potentially exposed to future land-
slide risk. Moreover, a precise comparative examining and sug-
gestion of different kinds of statistical models carried out in this
study will aid future model selection of LSM in similar terrain
conditions for the purpose of landslide disaster risk reduction.
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