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Abstract
In order to improve the accuracy, sensitivity, and convergence, the particle swarm optimization (PSO) algorithm is optimized and
applied in the calculation of hydrogeological parameters to improve the accuracy of the hydrogeological model. The sensitivity and
accuracy of the algorithm are improved through derivation of the appropriate value of the particles. Based on convergency analysis
of this algorithm with the three intelligent optimization algorithms (Sphere function, Rosenbrock function, and Griewank function),
the convergence of the algorithm is analyzed through different intelligently optimized algorithms. At the same time, the accuracy is
validated through comparison between the optimized and unoptimized particle swarm algorithm as well as the actually observed
hydrogeological data, and the sensitivity of the water conductivity coefficient and water storage coefficient under the algorithm is
analyzed. The results show that the calculated value of the optimized PSO algorithm is very close to the theoretical value 0 of the
intelligent optimization algorithm Sphere function and the theoretical value 1 of the Rosenbrock function as well as the theoretical
value 1 of the Griewank function. The results reveal that the calculation results are very close to the theoretical value in the intelligent
optimization algorithm test of optimized particle swarm algorithm; the maximum absolute error between the calculated value and
the observed value of the optimized particle swarm algorithm is 0.011, and the maximum relative error of which is 8.1%; the
maximum absolute error between the calculated value of particle swarm algorithm and the observed value is 0.021, and the
maximum relative error reaches 29.1%; the number of iterations of the optimized particle swarm algorithm is 87 on average, while
it of the unoptimized particle swarm algorithm is 450, reaching the optimal value. In addition, the optimized PSO algorithm has a
standard function of 0.00659, which is significantly smaller than that of the PSO algorithm of 0.00684. When the interference
coefficient is −20%~20%, the water conductivity coefficient and water storage coefficient are in negative phase with the drop depth
of the aquifer. It suggests that the optimized particle swarm optimization algorithm has high accuracy and convergence, and its
sensitivity of water conductivity coefficient and sensitivity of water storage coefficient are both good, which can provide a reliable
algorithm basis for the construction of hydrogeological model and the establishment of aquifer parameters.
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Introduction

The mathematical model of groundwater flow and solute
transport is an effective tool for scientific and rational devel-
opment, utilization, and protection of the groundwater re-
sources. The hydrogeological parameters are quantitative in-
dicators describing the characteristics of groundwater aqui-
fers. Correct identification of hydrogeological parameters is
a prerequisite for the use of this mathematical model. The
main problems of hydrogeology are to obtain the numerical
model parameters of the groundwater and establish the model.
At present, the hydrogeological parameters are mainly obtain-
ed through two methods: model establishment in laboratory
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and field pumping test. The field pumping test is the main
method to investigate the hydrological parameters of ground-
water, because the test data are safe and reliable due to field
survey (Şahin 2018). After acquiring the hydrogeological pa-
rameters through the pumping test, the depth of water level
drop is observed through the observation hole, and the
hydrogeological parameters are identified by solving the cor-
responding inverse problems. The direct and indirect solutions
are commonly used to solve the inverse problems (Abdelaziz
et al. 2019). Due to the poor stability of the direct solution, the
indirect method is currently usedmore. Indirect solutions such
as the simplex method, modified Gauss-Newton method, and
optimization method are optimization methods related to the
initial point, which are easy to fall into the local optimum
(Neighbors et al. 2017). In order to compensate this shortcom-
ing, many scholars have proposed to solve the
hydrogeological parameters by the intelligent algorithms,
such as neural network algorithm, simulated annealing algo-
rithm, and ant colony algorithm. However, these algorithms
generally have the defects of slow convergence speed and low
calculation accuracy (Dragonetti et al. 2017), resulting in the
distortion of the parameters for construction of the
hydrogeological model, and large error between the construct-
ed model and the actual model.

Particle swarm optimization, as a kind of global optimization
algorithm (Zhang et al. 2020), is an intelligent optimization
algorithm based on the observation of the behaviors of animal
groups. Compared with other intelligent algorithms, PSO is
featured with simple form and high performance. At the same
time, it has a memory mechanism to store and maintain the best
solutions found by each particle and the entire group, to ensure
that no degradation occurs during the iteration process, so that it
has been used widely in many fields. However, the PSO suffers
from a premature convergence in the application. Current
scholars in China and overseas have proposed a variety of im-
proved algorithms to overcome the premature convergence of
the PSO (Moayedi et al. 2020; Nhu et al. 2020). Most of them
refer to combine the PSO with other algorithms to promote
strengths and avoid weaknesses, so that the advantages of both
algorithms can be exerted effectively. This algorithm can en-
hance the local convergency ability of the PSO, but the calcu-
lating process is complex and the time consumption is high.

Based on the shortcomings of other algorithms and the
advantages of PSO as well as the characteristics of premature
convergence of the PSO, the calculation method of PSO algo-
rithm is optimized in this paper. The gradient descent method
with faster convergence in the traditional method is used to
form an intelligent optimization algorithm with derivatives to
improve the accuracy, sensitivity, and convergence of PSO
algori thm. Thus, i t is used in the calculat ion of
hydrogeological parameters to provide a reliable algorithm
basis for constructing the hydrogeological models and estab-
lishing the parameters of aquifer.

Methodology

Calculation method of PSO

In the PSO algorithm, the individuals are regarded as particles
without mass and volume in order to describe the complexity
of the algorithm. The particle population is set as m, the spatial
search dimension is set as n, the position of particle i is set as
xi = [xi1, xi2,…, xin], the flying speed is set as vi = [vi1, vi2,…,
vin] i = 1, 2, …m, the historical optimal search position of
particle i is set as Pi = (Pi1, Pi2,…Pin), and the historical opti-
mal search position of the entire population is set as Pg = (Pg1,
Pg2,…Pgn). The calculation equations of the position and ve-
locity of the particle are as below:

vik tþ 1ð Þ ¼ wvik tð Þ þ c1r pik tð Þ−xik tð Þ½ � þ c2r pgk tð Þ−xik tð Þ
h i

ð1Þ
vik t þ 1ð Þ ¼ xik tð Þ þ vik t þ 1ð Þ ð2Þ
w ¼ wmax−k

wmax−wmin

T
ð3Þ

xik ¼ xi þ vik ð4Þ

In the equation, c1 and c2 are acceleration factors and non-
negative constants; w is inertia weight coefficient; wmax and
wmin are the maximum and minimum values of inertia weight
coefficients, respectively, and r is a pseudo-random number
distributed randomly in [0, 1], which can increase the search
traversal; particle speed is usually limited within ‐vmax

k ; vmax
k

� �
.

k is the actual number of iteration, and the T is the maximum
number of iteration.

Calculation method of optimized PSO

The individuals are regarded as particles without mass and
volume. The particle population is set as m, the spatial search
dimension is set as n, the position of particle i is set as xi = [xi1,
xi2,…, xin], the flying speed is set as vi = [vi1, vi2,…, vin] i = 1,
2,…m, the historical optimal search position of particle i is set
as Pbest, and the historical optimal search position of the entire
population is set as gbest. The appropriate value of the particle
is solved by di = − ∇ f(xi). r is a randomly distributed pseudo-
random number within [0, 1], w is an inertial weight coeffi-
cient, a is the set step size, thus, the calculation equations of
the position and velocity of the particle are as below:

vik tþ 1ð Þ ¼ wvik tð Þ þ c1r pbest tð Þ−xik tð Þ½ � þ c2r gbest tð Þ−xik tð Þ½ � ð5Þ
xik ¼ xi þ vik þ adi ð6Þ

Calculating process of optimized PSO

The specific calculating process of the optimized PSO is
shown as below: the number of population in the PSO
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algorithm m is determined firstly, the particle length is set to l,
the maximum number of iterations is set to T, and the particle
velocity vi and position xi are initialized within the feasible
solution range; then, the fitness value of each particle is cal-
culated or the optimal fitness value of particle is acquired, and
a judgment is made to check if the function is derivable. If it is
possible, the ∇f(xi) is calculated, otherwise the approximate
derivative is calculated. The step is set to a, and di = − ∇
f(xi); the speed and position of the particle is calculated with
the optimized algorithm. If the termination condition is met, it
can exit; otherwise, it has to return. The specific algorithm
flowchart is shown in Fig. 1 as below.

Convergence analysis of optimized PSO

The convergence of the PSO algorithm with derivatives is
tested through Sphere function, Rosenbrock function, and
Griewank function, which are used widely. The Sphere func-
tion is a commonly used single-peak function with the intelli-
gent optimization algorithm test (De et al. 2020), and its cal-
culation method is as below:

f 1 ¼ ∑
N

i¼1
x2i ð7Þ

Scope of xi is ‐100 ≤ xi ≤ 100. If xi = 0, the function has the
optimal value fmin(xi) = 0.

The Rosenbrock function (Moslehi and Haeri 2020) is a
non-convex single-peak function, commonly used for the test
of intelligent optimization algorithm. The Rosenbrock func-
tion can be calculated with below equation:

f 2 ¼ ∑
N

i¼1
100 xiþ1−xið Þ2 þ 1−xið Þ2
h i

ð8Þ

Scope of xi is ‐100 ≤ xi ≤ 100. If xi = 1, the function has the
optimal value fmin(xi) = 0

The Griewank function is also a commonly used test func-
tion of standard intelligent optimization algorithm (Huang
et al. 2019), and its calculation method is as below:

f 3 xð Þ ¼ 1

4000
∑
N

i¼1
xi2− ∏

N

i−1
cos

xiffiffi
i

p
� �

þ 1 ð9Þ

If xi = 0, the function has the global minimum fmin(xi) = 0.

Model establishment of hydrogeological parameters

Regarding the establishment of hydrogeological models, the
Theis equation is commonly used for pumping test currently
to determine the hydrogeological parameters (Zech et al.
2016). It is assumed that each aquifer is homogeneous and
isotropic, and can be extended indefinitely without bound-
aries. The thickness of the aquifer is equal to the thickness
of the permeable layer, floor of the aquifer is in a horizontal
state, and the pumping velocity in the aquifer is constant.
Thus, the drop depth of the pumping water level can be cal-
culated with below equation:

h ¼ Q
4πA

W uð Þ ð10Þ

In the equation, h is the drop depth of pumping water level
drop depth, expressed as m; Q is the pumping velocity of
aquifer, expressed as m3/s; A is the parameter coefficient of
aquifer, expressed as m2/s; andW(u) is the Theis function. Its
calculation method is as given below:

W uð Þ ¼ ∫
∞

u

exp −xð Þ
x

dx ð11Þ

In the equation, u represents the dimensionless time, and its
calculation equation is given in equation (12). μ is the flow
coefficient of elastic release, and t is the pumping time,
expressed as s:

u ¼ r2μ
4At

ð12Þ

Combining the PSO algorithm with derivatives to solve the
parameters, the aquifer parameter A and u are estimated based
on the approximate expressionist of Srivastava R. Thus, the
model of the hydrogeological parameters can be established as
below.

minφ A;μð Þ ¼ ∑
N

i¼1
h0i −h

c
i

� �2 ð13Þ

In which, A ∈ (0, 3.0), and μ ∈ (0, 0.1); h0i is the actual drop
depth of aquifer water level detected at the ith moment of
pumping; hci is the drop depth of aquifer water level at the
ith moment calculated with the Theis function; and A and u
are to be estimated. The optimization of model is mainly to

start
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Obtained particle 
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and Set step 
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Y

N

Fig. 1 Algorithm flowchart of optimized PSO
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obtain the optimal value of A and u, so that the square sum of
the difference between the actual drop depth of the aquifer
water level and the calculated values of parameters to be esti-
mated can be minimal.

The data obtained during the actual pumping test are re-
corded in this study. It can be known that the pumping flow is
Q = 9.54 m3/s, the pumping duration is 580 min, and the
distance between the observation hole and the pumping well
is r = 21.63 m. The recorded data of the drop depth of the
water layer within 580 min are given in Table 1 below.

Optimized PSO to solve the hydrogeological
parameters

The calculation method and conditions of equation (13) are
used in combination with the PSO algorithm with derivatives
to solve the hydrogeological parameters. Different number of
particles, the step size, the number of iterations, and the mul-
tiple of the parameter to be estimated are respectively utilized
in this study, and the convergence condition is set as that the
objective function is less than 2 × 10−2; otherwise, it is
regarded as non-convergence. The operation time after each
calcula t ion is analyzed. Solving process of the
hydrogeological parameters is shown in Fig. 2 as below.

Results

Convergence analysis of optimized PSO

The convergence of PSO algorithmwith derivatives is verified
by Sphere function, Rosenbrock function, and Griewank func-
tion. The verification results using the Sphere function are
shown in Table 2. It can be seen from the table that the calcu-
lated average values are 0.097 × 10−5, 0.127 × 10−3, 0.193 ×
10−3, −0.118 × 10−3, 0.549 × 10−3, and −0.296 × 10−3 respec-
tively after the independent calculation using the PSO with
derivatives is performed for 50 times when the number of
particles is 10, the step size is 10−2, and the maximum number
of iterations is 600. Differences between such values and the
theoretical value 0 of the Sphere function are small. The
Rosenbrock function is used to further verify the convergence
of the PSO algorithm with derivatives. The results are shown
in Table 3. As it reveals that the calculated average values are

0.015 × 10−2, 0.098, 1.001, 1.006, 0.095, and 1.004 respec-
tively after the independent calculation using the PSO with
derivatives is performed for 50 times when the number of
particles is 20, the step size is 10−2, and the maximum number
of iterations is 400. Differences between such values and the
theoretical value 1 are small. The Griewank function is used to
verify the convergence of the PSO algorithm with derivatives,
and the results are shown in Table 4. As can be seen from the
table that the calculated average values are 1.19 × 10−6,
−0.296 × 10−3, 0.321 × 10−3, −0.157 × 10−3, 0.373 × 10−3,
and −0.254 × 10−3 respectively after the independent calcula-
tion using the PSO with derivatives is performed for 50 times
when the number of particles is 100, the step size is 10−2, and
the maximum number of iterations is 1000. Differences be-
tween such values and the theoretical value 0 are small.

Hydrogeological parameters to validate the accuracy
of PSO algorithm

In order to validate the accuracy of the optimized PSO algo-
rithm, the drop depth of water layer at each time is calculated
with the PSO algorithm and the optimized PSO algorithm
under the same conditions, and the calculated values are com-
pared with the actual observed values, as shown in Fig. 3. It
can be seen that drop depth of water layer at each time calcu-
lated with the optimized PSO algorithm is very close to the
observed value, and the error between the two is small. Of
which, the maximum absolute error between value calculated
by the optimized PSO algorithm and the observed value is
0.011, the maximum relative error is 8.1%, the minimum ab-
solute error is 0.002, and the minimum relative error is 0.25%.
While, there are some differences between the drop depths of
water layer calculated by the PSO and the observation values,
the maximum absolute error is 0.021, the maximum relative
error is 29.1%, the minimum absolute error is 0.004, and the
minimum relative error is 0.76%.

Table 1 Data of the pumping test

t/min 5 10 15 20 30 40 60 80 100

s/min 0.037 0.072 0.103 0.134 0.165 0.186 0.219 0.241 0.266

t/min 150 200 250 300 350 400 460 520 580

s/min 0.327 0.354 0.397 0.426 0.467 0.495 0.524 0.527 0.583

Establish hydrogeological 
parameter model

Determine optimized 
particle swarm parameters

Get the optimal value of 
particles

To meet the conditions

Y

Record the optimal 
position of particles

Output optimal 
hydrogeological 

parameters

N

Fig. 2 Solving process of the hydrogeological parameters
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Reliability analysis of PSO

The parameters of the aquifer are calculated and numbers
of iterations are compared with the PSO algorithm and the
optimized PSO algorithm respectively under the same
conditions. The results are shown in Fig. 4. It can be seen
that the convergence speed of optimized PSO is faster
than the unoptimized PSO under the same conditions with
the average number of iterations of 87 times; the conver-
gence speed of unoptimized PSO is relatively slow with
the number of iterations of 450 times to reach the optimal
value. At the same time, the parameters of the aquifer are
calculated with the PSO algorithm and the optimized PSO
algorithm under the same conditions. The results are
shown in Table 5. It can be seen that the objective func-
tion φ (T, μ) is 0.00659 calculated by the optimized PSO
algorithm and 0.00684 calculated by the unoptimized
PSO algorithm, respectively. Thereby, the objective func-
tion calculated with the optimized PSO algorithm is obvi-
ously smaller than that calculated with the unoptimized
PSO algorithm.

Sensitivity analysis of water conductivity coefficient

The hydrogeological parameter A = 2.745 calculated with
the optimized PSO algorithm. The parameter is disturbed
at −20%, −10%, −5%, 5%, 10%, and 20%, respectively,
with no change of the other parameters. The drop depths
of the aquifer water level at 90 min, 180 min, and
580 min of the pumping time are calculated under such
conditions, and then the calculated values are compared
with the actual detection values to analyze the relationship
between the water conductivity coefficient and the drop
depth of water level. The results are shown in Table 6. It
can be seen that the A increases with the increase of the

disturbance coefficient, and A changes accordingly as the
disturbance coefficient is disturbed between −20 and
20%. Compared with the case without disturbance, the
maximal absolute error of A change is 0.218, the mini-
mum absolute error is 0.03, the maximum relative error is
7.9%, and the minimum relative error is 0.65%. In addi-
tion, it can be seen from the table that the larger the A, the
smaller the drop depth of aquifer.

Sensitivity analysis of water storage coefficient

The hydrogeological parameter is A = 2.745 calculated
with the optimized PSO algorithm. The parameter is dis-
turbed at −20%, −10%, −5%, 5%, 10%, and 20%, respec-
tively, with no change of the other parameters. The drop
depths of the aquifer water level at 90 min, 180 min, and
580 min of the pumping time are calculated under such
conditions, and then the calculated values are compared
with the actual detection values to analyze the relationship
between the water storage coefficient and the drop depth
of water level. The results are shown in Table 7. It can be
seen that the μ increases with the increase of the distur-
bance coefficient, and μ changes accordingly as the dis-
turbance coefficient is disturbed between −20 and 20%.
Compared with the case without disturbance, the maximal
absolute error of μ change is 0.012, the minimum abso-
lute error is 0.002, the maximum relative error is 21%,
and the minimum relative error is 3.5%. In addition, it
can be seen from the table that the larger the μ, the small-
er the drop depth of aquifer.

Discussion

PSO is a random optimization algorithm emphasizing the
groupness based on swarm intelligence. Compared with tra-
ditional optimization algorithms, it has the advantages of
high computational efficiency, simple operation, and wide
application range. The PSO has been widely used in con-
struction, hydrology and geology, electricity, and transporta-
tion vehicles. However, the PSO suffers from a premature
convergence in the application. Current scholars have pro-
posed a variety of improved algorithms to optimize the PSO.
Delice et al. (2017) (Delice et al. 2017) have optimized the

Table 2 Verification results of
Sphere function on PSO
algorithm with derivatives

Minimal
value

x1 x2 x3 x4 x5

Theoretical
value

0 0 0 0 0 0

Calculate value 0.067 × 10−5 0.127 ×
10−3

0.193 ×
10−3

−0.118 ×
10−3

0.549 ×
10−3

−0.296 ×
10−3

Table 3 Verification results of Rosenbrock function on PSO algorithm
with derivatives

Minimal value x1 x2 x3 x4 x5

Theoretical value 1 1 1 1 1 1

Calculate value 0.015 × 10−2 0.098 1.001 1.006 0.095 1.004
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calculation process of PSO algorithm, which not only en-
hances the ability to solve of PSO algorithm but also can
search different points in the solution space with high effec-
tiveness, and solves the problem of two-sided pipeline bal-
ance in the hybrid model. Taherkhan et al. (2016)
(Taherkhani and Safabakhsh 2016) have proposed an adap-
tive inertial weighting method based on the stability. It can
determine the inertial weight of each particle in different
dimensions through the performance of the particles and
the distance of the best position. In addition, it is applied
to the radar system design for validation. The experimental
results suggest that the adaptive inertial weighting method
based on the stability can improve the convergence speed of
PSO in both static and dynamic state. Based on previous
researches, the PSO algorithm is optimized by derivation
of its particle moderation value to avoid the premature con-
vergence of the PSO algorithm, and enhance the accuracy
and sensitivity of the PSO algorithm. The results reveal that
calculated values with the optimized PSO algorithm are very
close to the theoretical value in the three commonly used
intelligent optimization algorithm tests, which indicates that
the optimized PSO algorithm has certain correctness and
effectiveness, providing reliable algorithm basis for con-
struction of the hydrogeological model and the establish-
ment of aquifer parameters.

At the same time, the accuracy and reliability of the PSO
algorithm are analyzed in this study. By comparing the opti-
mized and unoptimized PSO algorithm, it is found that the
maximum absolute error is 0.011, and the maximum relative
error is 8.1% between the calculated value with optimized
PSO algorithm and the observed value; the maximum abso-
lute error is 0.021, and the maximum relative error is 29.1%
between the calculated value with PSO algorithm and the
observation value. It fully demonstrates that the degree of
fitting between the calculated value of the optimization algo-
rithm and the actual observation value is high. The average
number of iterations of the optimized PSO algorithm is 87,
while it of the unoptimized PSO is 450 to reach the optimal
value. In addition, the target function calculated with the op-
timized PSO algorithm is obviously much smaller than that of
calculated with the PSO, which is consistent with the research
results of Delice et al. It further validates that the reliability
and feasibility of the optimized PSO algorithm. Finally, the
sensitivity of the water conductivity coefficient and the sensi-
tivity of water storage coefficient are analyzed in this study.
The results reveal that the water conductivity coefficient and
water storage coefficient are inversely related to the drop
depth of the aquifer under various interference coefficients,
and both the sensitivity of water conductivity and the sensi-
tivity of water storage coefficient are high.
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Fig. 3 Comparison between actual drop depth and calculated value of
water layer in the observation hole

Table 4 Verification results of
Griewank function on PSO
algorithm with derivatives

Minimal
value

x1 x2 x3 x4 x5

Theoretical
value

1 1 1 1 1 1

Calculate value 1.19 × 10−6 −0.296 ×
10−3

0.321 ×
10−3

−0.157 ×
10−3

0.373 ×
10−3

−0.254 ×
10−3
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Number of iterations
Fig. 4 Comparison between calculating process of the optimized PSO
and unoptimized PSO
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Conclusion

In this study, the calculation method of PSO algorithm is
optimized and applied to hydrogeological parameters, and
the convergence, accuracy, and sensitivity are analyzed,
respectively. The results indicate that, compared with the
unoptimized PSO, the accuracy of optimized PSO algo-
rithm is significantly higher with good convergence and
sensitivity, which can provide a reliable algorithm basis
for the construction of hydrogeological model and the
establishment of aquifer parameters better. However, there
are still some shortcomings in this study. The optimized
PSO algorithm is compared with the unoptimized PSO
algorithm only, and is not compared with other algorithms
such as simplex algorithm and genetic algorithm to ana-
lyze its advantages. In future, it will continue to compare
and analyze the optimized PSO algorithm with other in-
telligent optimization algorithms to get the superiorities of

the optimized PSO algorithm. In conclusion, the accuracy
and sensitivity are enhanced through the optimization of
PSO algorithm, providing a reliable algorithm basis for
the construction of hydrogeological model and the estab-
lishment of aquifer parameters.

References

Abdelaziz R, Merkel BJ, Zambranobigiarini M et al (2019) Particle
swarm optimization for the estimation of surface complexation con-
stants with the geochemical model PHREEQC-3.1.2. Geosci Model
Dev 12(1):167–177

De A, Wang J, Tiwari MK et al (2020) Hybridizing basic variable neigh-
borhood search with Particle swarm optimization for solving sus-
tainable ship routing and bunker management problem. IEEE Trans
Intell Transp Syst 21(3):986–997

Delice Y, Aydogan EK, Ozcan U et al (2017) A modified particle swarm
optimization algorithm to mixed-model two-sided assembly line
balancing. J Intell Manuf 28(1):23–36

Dragonetti G, Comegna A, Ajeel A et al (2017) Calibrating electromag-
netic induction conductivities with time-domain reflectometry mea-
surements. Hydrol Earth Syst Sci 22(2):1509–1523

Huang Y, Li JP, Wang P et al (2019) Unusual phenomenon of optimizing
the Griewank function with the increase of dimension. Journal of
Zhejiang University Science C 20(10):1344–1360

Moayedi H, Moatamediyan A, Nguyen H et al (2020) Prediction of ulti-
mate bearing capacity through various novel evolutionary and neu-
ral network models. Eng Comput 36(2):1–17

Moslehi F, Haeri A (2020) A novel hybrid wrapper–filter approach based
on genetic algorithm, particle swarm optimization for feature subset
selection. J Ambient Intell Humaniz Comput 11(3):1105–1127

Neighbors C, Cochran ES, Ryan K et al (2017) Solving for source pa-
rameters using nested array data: a case study from the Canterbury,
New Zealand Earthquake Sequence. Pure Appl Geophys 174(3):
875–893

Nhu V, Hoang N, Duong V et al (2020) A hybrid computational
intelligence approach for predicting soil shear strength for ur-
ban housing construction: a case study at Vinhomes imperia
project, Hai Phong city (Vietnam). Eng Comput 36(2):1–14

Şahin AU (2018) A particle swarm optimization assessment for the de-
termination of non-Darcian flow parameters in a confined aquifer.
Water Resour Manag 32(2):751–767

Taherkhani M, Safabakhsh R (2016) A novel stability-based adaptive
inertia weight for particle swarm optimization. Appl Soft Comput
38:281–295

Zech A, Muller S, Mai J et al (2016) Extending theis' solution: Using
transient pumping tests to estimate parameters of aquifer heteroge-
neity. Water Resour Res 52(8):6156–6170

Zhang X, Nguyen H, Bui X et al (2020) Novel soft computing model for
predicting blast-induced ground vibration in open-pit mines based
on particle swarm optimization and XGBoost. Nat Resour Res
29(2):711–721

Table 5 Calculation results of the
optimized PSO and unoptimized
PSO

Algorithm Number of iterations during convergence A μ φ (A, μ)

PSO 450 2.753 0.052 0.00684

Optimized PSO 87 2.745 0.057 0.00659

Table 6 Drop depths of aquifer and calculated values under different
water conductivity coefficients

Disturbance coefficient A A h (t=90) h (t=180) h (t=580)

−20% 2.536 0.264 0.389 0.784

−10% 2.527 0.238 0.384 0.781

−5% 2.649 0.244 0.379 0.776

0% 2.745 0.231 0.376 0.769

5% 2.763 0.227 0.369 0.763

10% 2.778 0.225 0.363 0.757

20% 2.8 0.219 0.358 0.754

Table 7 Drop depths of aquifer and calculated values under different
water storage coefficient

Disturbance coefficient μ μ h(t=90) h (t=180) h (t=580)

-20% 0.045 0.244 0.386 0.781

-10% 0.048 0.238 0.381 0.778

-5% 0.052 0.236 0.379 0.773

0% 0.057 0.231 0.376 0.769

5% 0.059 0.229 0.371 0.765

10% 0.063 0.226 0.367 0.761

20% 0.069 0.221 0.359 0.757
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