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Abstract

High resolutions of satellite rainfall products have been widely used for hydrometeorological and hydroclimatological studies
over the globe. However, the performance of satellite rainfall estimates varies and is affected by topography and atmospheric
characteristics. The assessment of satellite rainfall products is important over different regions. In this study, Integrated Multi-
SatellitE Retrievals’ performance for the Global Precipitation Mission version 6 (GPM-IMERG v6) was evaluated before and
after bias correction, over the Lake Hawassa catchment. A linear scaling bias correction approach was used to correct the bias
of GPM-IMERG early and late rainfall products. The satellite rainfall products were also compared with ground observed rainfall
data in the Lake Hawassa catchment. Statistical performance assessing methods were used to evaluate both raw and bias-
corrected IMERG early and late rainfall products. The percentage of bias (PBIAS) for early and late rainfall estimates was
91.54 and 77.03, respectively, for the entire periods before bias correction. It indicates that GPM-IMERG overestimated rainfall
relative to ground-gauged rainfall. The results show that IMERG rainfall products are in good agreement with ground observed
rainfall after bias correction. The correlation values (R) for IMERG early and late is 0.86 and 0.85, respectively, indicating a good
correlation between IMERG’s estimated rainfall and observed rainfall after bias correction. The performance of IMERG rainfall
estimates varies with the seasons. The bias correction for only rainy season shows a good match with observed rainfall compared
to all seasons. Bias-correction resulted in a good match between estimated and observed rainfall. Generally, evaluation of GPM-
IMERG satellite rainfall products is essential prior to use for hydrological modeling and forecasting in data-scarce areas.
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Introduction

Rainfall plays a significant role in agriculture and water re-
source availability, particularly in developing countries where
agricultural production depends on rainfed (Kawo and
Karuppannan 2018). The Ethiopian Rift Valley Lakes Basin,
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including Lake Hawassa catchment, which spans from the
south to the east of Ethiopia, has a dense population and main-
ly depends on rain-fed agriculture. The present study area,
which is characterized by freshwater and suitable for agricul-
ture and domestic use (Shankar and Kawo 2019; Haji et al.
2021a, b). However, rising temperature and the irregularities
of weather conditions (Jansen et al. 2007; Olaka et al. 2010;
Mohammed et al. 2019; Abraham et al. 2018) have had a
significant impact on rainfed agricultural production (Deressa
2007; Hadgu et al. 2015; Zeray and Demie 2016; Asfaw et al.
2018) and reduced availability of freshwater (Olaka et al.
2010). Rainfall recharges the aquifer, whereas another part
flows to streams as runoff. Fluctuation in rainfall affects water
quantity (Seleshi and Zanke 2004) and alters the frequency of
droughts and floods (Kumar et al. 2010; Frisvold and
Murugesan 2013; Igbal and Athar 2018). Therefore, under-
standing precipitation and its variations over time are essential
for water balance studies and other hydrological applications.
According to Hou et al. (2014), accurate observation or
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rainfall estimation is essential for hydrological modeling.
Proper rainfall measures or estimates are required to forecast
flood systems, drought monitoring, and water resources man-
agement. Due to the lack of rain gauge networks and a poor
data collection system, the accuracy of measured rainfall data
is low in developing countries (Haile et al. 2009; Fenta et al.
2018; Rivera et al. 2018; Gebremicael et al. 2019).

Nowadays, satellite-based rainfall products have been
commonly used for hydrological studies (Bitew et al. 2012a,
b; Hobouchian et al. 2017). Satellite rainfall products are very
important in a limited number of active rain gauge networks,
to investigate rainfall variability and its effects on water re-
source availability. In regions of Ethiopia, particularly around
mountainous and over lake basins, a limited numbers of sta-
tions are available. Hence, satellite-based rainfall data is es-
sential in the area of scare rain-gauged networks (Villarini
2010).

Satellite rainfall products have been widely used in differ-
ent parts of the world (Alexander et al. 2006; Huffman et al.
2007a, b, 2014; Kucera et al. 2013; Hou et al. 2014). Satellite
precipitation products have a systematic bias and random er-
rors (i.e., temporal sampling and instrumental errors) (Yilmaz
et al. 2005; Hossain and Anagnostou 2006; Dinku et al. 2007,
AghaKouchak et al. 2012; Habib et al. 2012; Zhang et al.
2013; Maggioni et al. 2016), and its quality needs to be eval-
uated before to use for different applications. Due to this,
performance evaluation against the rain gauge observed rain-
fall data and satellite rainfall products is vital in order to en-
hance their accuracy. It is very important to the users to un-
derstand the vagueness associated with the remotely sensed
rainfall processing algorithms and the sensors’ physical limi-
tations. Infrared (IR) and passive microwave (PMW) sensors
are the most used electromagnetic spectrum channels of satel-
lite rainfall estimations (Huffman et al. 2007a, b). IR sensors
use only top cloud temperature information from satellites to
associate with a depth of rainfall, whereas PMW sensors di-
rectly collect information about rainfall (Todd et al. 2001).

Nowadays, numerous high-resolution satellite-based rain-
fall products have been developed and studied to assess their
effectiveness. Integrated Multi-SatellitE Retrieval for Global
Precipitation Measurement (GPM-IMERG) is one of the
satellite-based rainfall products. Numerous researchers have
assessed IMERG rainfall products with observed rainfall data
and with other satellite-based rainfall products (Guo et al.
2016; Liu 2016; Sharifi et al. 2016a, b; Tang et al. 2016;
Kim et al. 2017; Liu et al. 2017a, b; Skofronick-Jackson
et al. 2017; Sungmin et al. 2017; Wang et al. 2019; Fuwan
etal. 2020). Several studies have reported that IMERG rainfall
estimates vary with seasons and elevations. For example,
IMERG is best suited to detect summer rainfall in China
(Tang et al. 2016), monsoon rainfall in India (Prakash et al.
2016), and heavy rainfall in Iran and Canada (Sharifi et al.
2016a, b; Asong et al. 2017).
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Sungmin et al. (2017) evaluated GPM-IMERG early, late,
and final products, and have reported that the satellite-based
overestimate rainfall and produce very high values, which
have a significant impact on the total rain volume. Wu et al.
(2019) evaluated the performance of GPM IMERG v5 and
TRMM 3B42 v7 precipitation products both
spatiotemporally and concluded that the GPM IMERG v5
precipitation product was more accurate compared to the
TRMM 3B42 v7 product. Alsumaiti et al. (2020) evaluated
the performance of CMORPH and IMERG v6 rainfall prod-
ucts, and they found that both IMERG v6 and CMORPH have
great potential for filling spatial gaps in rainfall observations.
The assessement of satellite rainfall estimates can provide
useful information to improve processes of satellite rainfall
retrieval (Huang et al. 2013; Kirstetter et al. 2013; Lo Conti
et al. 2014; Worqlul et al. 2018).

Several studies evaluated TRMM, ARC2, TAMSATS3,
and CHIRPS precipitation products in Ethiopia (Bitew et al.
2012a, b; Gebere et al. 2015; Ayehu et al. 2018; Tesfamariam
et al. 2019). Tesfamariam et al. (2019) evaluated the perfor-
mance of CHIRPS, ARC2, and TAMSAT3 satellite-based
rainfall products over the Ethiopian Rift Valley Lakes Basin.
They found that CHIRPS rainfall products are better-
estimated rainfall than ARC2 and TAMSATS3. This study
aims to evaluate the performance of GPM-IMERG V06 early
and late rainfall products’ over Lake Hawassa catchment. Raw
data and bias-corrected satellite rainfall products were com-
pared with ground-based rainfall data. This study is significant
to predict hydrological and climate change in subsequent stud-
ies using remote sensing precipitation products.

Materials and methods
Description of the study area

Lake Hawassa catchment is located in the Ethiopian Rift
Valley Basin, and it lies between 6° 50'-7° 15 latitude and
38° 17'-38° 44’ longitude. The study area has a total area of
1338 km?, and it is located about 275 km south of Addis
Ababa. The catchment is flat in the central part to slightly
sloping lands, escarpments, and hills. Elevation of the catch-
ment ranges between 3048 m.a.s.l. around ridges and 1665
m.a.s.l at the Lake Hawassa (Fig. 1). Topographically,
Hawassa Lake is closed, with few streams flowing from the
northwest and west to the lake. Tikur Wuha River is the
Perennial River, which fed the lake from the northeast side
of the catchment. The discharge of Tikur Wuha River in 1999
is shown in Fig. 2. According to historical data in 1999, the
river discharge is high between June and October and low
from October to May. Currently, the station is not functional.

Rainfed farming is the primary source of income for people
in the study area. According to Dessie (1995), the catchment
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Fig. 1 Location map of Hawassa catchment

climate varies from dry to subhumid, based on the definition
of'the climate or humidity regions of the Thornthwaite system.
Legesse et al. (2003) reported that the catchment has three
seasons: (1) the primary rainy season between June and
September (locally known as kiremt); (2) the dry season (lo-
cally known as baga) between October and February; (3) the
limited rainy season between March and May (locally known
as Belg).

The mean monthly precipitation observed at each station
between 2007 and 2012 is shown in Fig. 3. The locations of
the stations are shown in Fig. 1. Figure 4 shows the distribu-
tion of average monthly rainfall at Lake Hawassa catchment
from 2007 to 2012. It can be seen in Figs. 3 and 4 that the
distribution of rainfall in the Lake Hawassa catchment area is
high in kiremt between June and September, although low
rainfall occurs between October and February. The belg

Fig. 2 Mean monthly river

discharge of Tikur Wuha in 1999
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season has mild rainfall. However, in some stations, the
highest rainfalls were recorded in this season.

Data sources
Ground-based rainfall data

For this study, monthly rainfall data (2007 to 2012) obtained
from the National Meteorological Agency of Ethiopia (NMA)
were used to evaluate GPM-IMERG rainfall products over
Lake Hawassa catchment. Eleven rain gauges located in and
around the study area were used to calculate the mean monthly
rainfall using the polygon system. Table 1 shows the latitudi-
nal (degree-minute) and longitudinal (degree-minute) position
and elevation of 11 stations (m).

GPM-IMERG product dataset

GPM-IMERG is a multi-satellite precipitation product
from the GPM house generated by the combined

observations of GPM and its counterpart. The GPM is
an international satellite mission precisely designed to
unify and improve precipitation measurements from re-
search and operational microwave sensors to deliver
next-generation global precipitation data products
(Sunilkumar et al. 2019). Spatial resolution and time res-
olution estimates of GPM-IMERG precipitation are 0.1°
and half-hour, respectively. The early, late, and final runs
are three GPM-IMERG products. The periods for early
and late are 6 and 18 h respectively. GPM-IMERG prod-
uct can be downloaded free of charge using http://pmm.
nasa.gov/data-access/downloads/gpm or https://giovanni.
gsfc.nasa.gov/giovanni/. For this study, area-averaged dai-
ly accumulated early and late rainfall products of GMP-
IMERG were downloaded using https://giovanni.gsfc.
nasa.gov/giovanni/. In this study, Lake Hawassa
catchment geographic coordinates were used to
download IMERG version 6 (V06) products for the pe-
riods between 1 January 2007 and 31 December 2012.
Mean-GPM-3IMERGDE-06-precipitationCal and mean-
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Fig. 4 Mean monthly rainfall at Hawassa catchment (2007-2012)
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Table 1  Coordinates and elevation of the stations

Station name Longitude Latitude Elevation
Awassa 38.48 7.07 1694
A.Tabore 38.29 7.05 1750
Leku 38.48 6.88 1879
Sheshamane 38.6 72 1727
Kofale 38.8 7.07 2620
Morecho 384 6.87 1831
Tula 38.47 6.95 1973
Derara 383 6.85 1950
Wendo Genet 38.61 7.08 1742
Aje 38.35 7.29 1846
Hawaasita 38.7 6.93 2240

GPM-3IMERGDL-06-precipitationCal were downloaded
for early and late rainfall for IMERG, respectively.

Methods
Average rainfall computation for the study area

There are scarce and unevenly distributed rain gauge
stations in the study area. In addition, some of the stations
have missing data. The scarce distribution and a small
number of rain gauge stations in the catchment make it
challenging to characterize rainfall patterns based on
ground observations. Therefore, to compare ground-
based rainfall data with the GPM-IMERG rainfall prod-
uct, daily precipitation was converted to the monthly av-
erage areal rainfall. The area-average rainfall was calcu-
lated using the Thiessen polygon method in ARC-GIS.
The Thiessen polygon method is the weighted average
method and the area of each rain gauge was therefore
obtained using Arc-GIS (Fig. 5). The rainfall recorded at
each rain gauge station in the study area was then weight-
ed according to the area it represents. The average month-
ly rainfall area of Lake Hawassa was then calculated. The
average monthly rainfall reported by the Thiessen poly-
gon was met. The average monthly rainfall calculated by
the Thiessen polygon method for the period between 2007
and 2012 is shown in Fig. 3.

GPM-IMERG product analysis

In this study, the average daily accumulated rainfall over the
Lake Hawassa catchment area between 2007 and 2012 was
obtained from GPM-IMERG. The GPM-IMERG
rainfall products were compared with ground-based observed
monthly area-averaged rainfall between January 2007 and
December 2012.

Statistical evaluation of GPM-IMERG rainfall estimates

Error statistics were used in this analysis to evaluate the GPM-
IMERG raw and bias-corrected rainfall products. Statistical
assessments were calculated for both the rainy seasons and
the full seasons between 2007 and 2012. At the Lake
Hawassa catchment scale, four error statistics such as
Pearson correlation coefficient (R), percentage relative bias
(PBIAS), Nash-Sutcliffe efficiency (NSE), and root mean
square error (RMSE) were calculated, for GPM-IMERG raw
and bias-corrected precipitation products at monthly time
frames. In addition, GPM-IMERG raw and bias-corrected
rainfall products were also compared to ground-based rainfall
data.

PBIAS

According to Araujo (2006), BIAS shows how satellite rain-
fall estimates (Pg,) relate to observed rainfall (Pyys). Negative
BIAS values indicate that the satellite overestimates rainfall
relative to recorded rainfall, whereas positive values indicate
that GPM-IMERG underestimates rainfall relative to recorded
rainfall. Bias was computed using Eq. (1) and the relationship
between precipitation derived from GPM-IMERG (P, and
mean areal precipitation calculated using rain gauges (Pyy,) in
the catchment area of Lake Hawassa was compared.

1

PBIAS = e ——
Z?:]Pobs

71 (PsarPobs) * #100 (1)

Root mean square error

RMSE was calculated (Eq. 2) to evaluate the error variance of
the GPM-IMERG rainfall products (Pg,) and the rain gauge
(Pops)- The values of the RMSE range from 0 to co. According
to Santos (2014), the RMSE value equal to zero shows no
errors, whereas greater than zero shows errors between the
estimated rainfall of GPM-IMERG and the measured rain

gauge.

RMSE = \/l/n *Z?Zl (Psatfpobs)2 (2)

Coefficient of correlation (R)

The R measures the extent to which the estimated values cor-
respond to the observed values (Tang et al. 2020). In this
study, R was calculated using Eq. (3) to evaluate how the
precipitation estimated by GPM-IMERG corresponds to the
measured precipitation in the catchment area of Lake
Hawassa.
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Nash-Sutcliffe efficiency

NSE was used to evaluate the performance of the estimated
rainfall by GPM-IMERG with the rain gauges observed in the
catchment area of Lake Hawassa. The NSE was computed
using Eq. (4). The value of the NSE ranges between — oo
and 1.0, where the value of the NSE = 1 indicates a perfect
match between the GPM-IMERG rainfall estimates and the
observe rainfall (Liu et al. 2017a, b; Wei et al. 2018). In gen-
eral, a higher NSE value indicates good performance.

(Psat_Pobs)2

NSE = |-y - 2o/
' (P sat_P obsmean)2

(4)
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GPM-IMERG satellite bias correction

Satellite rainfall products contain enormous systematic
(bias) and random errors (Habib et al. 2014). Bias per-
sists when the estimates of satellite precipitation are
aggregated over time. Errors in satellite precipitation
products may cause significant uncertainty for hydrolog-
ical use. Correction and quantification of bias in satellite
rainfall estimates are important for hydrological model-
ing and design. Daily bias correction (DBC), daily
translation (DT), distribution mapping (DM), empirical
quantile mapping (EQM), local intensity scaling (LOCI),
linear scaling (LS), and power transmission (PT)
(Beaufort et al. 2019) are some of the approaches used
to address bias in satellite precipitation forecasts. Bias
correction techniques are divided into mean-based (LS
and LOCI) and distribution-based (DT, DBC, and EQM)
techniques (Chen et al. 2013a, b). According to Habib
et al. (2014), there are three bias correction schemes:
pixel-based, time-and-space-fixed, and time-variable bias
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corrections. Details and comparisons of the different
methods of bias correction are available in Luo et al.
(2019) and Chen et al. (2013a, b).

The technique used in this study to correct bias was the LS
method. The LS bias correction was applied on a monthly
basis to GPM-IMERG late and early rainfall. GPM-IMERG
late and early rainfall was adjusted using Eq. (5). According to
Teutschbein and Seibert (2012), LS is capable of adjusting
perfectly for climatic factors when monthly mean values are
included.

Pl’l’lO S
Pricorsat = Pmoldsat*(lupb> (5)

msat

where Pcorsat denotes the corrected rainfall of the mth
month, P,.4sat denotes the rainfall from raw GPM-IMERG
products for the study periods, and 4 is the mean.

Results and discussion

Evaluation of GPM-IMERG rainfall estimates before
bias correction

Results of statistical analysis prior to bias correction for
all periods of study are shown in Table 2. The statisti-
cal study shows that the area-averaged rainfall from
GPM-IMERG early and late is well associated with
the area-averaged rain gauges. Correlation coefficients
for IMERG early and IMERG late with rain gauges
are 0.74 and 0.76, respectively. PBIAS of both
IMERG products shows that GPM-IMERG overesti-
mates rainfall over the catchment area of Lake
Hawassa compared to the observed rainfall values.
Remarkable overestimation has been observed in all sea-
sons, and bias is evident (PBIAS 91.54% positive for
IMERG early and 77.03% positive for IMERG late).
IMERG early products have been found to be highly
overestimated as compared to IMERG late rainfall esti-
mates over catchments at Lake Hawassa. The statistical
analysis for the main rainy seasons (July to September)
was also calculated in this study (Table 3). The degree
of bias varies slightly with the seasons, with a bias of

Table2  Comparison of mean monthly observed rainfall and the GPM-
IMERG satellite estimates before bias correction for periods between
2007 and 2012

41.62% for early IMERG and 29.10% for late
IMERG rain products for rainy seasons only.
Overestimated rainfall in rainy seasons in relation to
observed rainfall in the Hawassa Lake catchment is ev-
ident from PBIAS of both rainfall derived from
IMERG. Sun et al. (2018, b) agreed that performance
of GPM products in summer and autumn is better than
that in winter and spring. The performance of GPM
products in the wet season at a monthly scale was better
than in the dry season. RMSE decreases in rainy sea-
sons due to the difference in time scales relative to full-
time rainfall estimates. However, a low correlation co-
efficient was observed for both IMERG early (0.35) and
IMERG late (0.39) rainy seasons with rain gauges. It is
observed from Fig. 6b that the correlation is good for
longer average time scales (all periods) than for short
periods (rainy seasons) (Fig. 6a). In the rainy seasons
and all periods, there was a wide scatter for both
IMERG, which shows a discrepancy between uncorrect-
ed GPM-IMERG rainfall and observed rainfall.

Figure 7 shows the cumulative rainfall and GPM-
IMERG estimates for early and late rainfall from
January 2007 to December 2012. Total precipitation
from the gauge, early IMERG, and late IMERG was
3869.31 mm, 7411.22 mm, and 6849.78 mm, respec-
tively, during the study period. The cumulative precipi-
tation from IMERG early is high and relatively close to
IMERG’s estimates of late rainfall. The cumulative pre-
cipitation from IMERG in early and late is higher than
that of the observed rainfall in the Lake Hawassa catch-
ment. The cumulative rainfall from the early estimate is
3541.90 mm higher and late is 2980.46 mm higher than
the observed rainfall.

Figure 8 shows a comparison of the monthly rainfall
from the GPM-IMERG satellite (early and late) and the
observed rainfall at the Lake Hawassa catchment area
prior to the bias correction for the period from
January 2007 to December 2012. Overall, both early
and late IMERG had a very good follow-up to the sea-
sonal cycle of observed rainfall. However, the GPM-
IMERG satellite (early and late) overestimates rainfall
in all seasons compared to the ground-based rainfall.
The IMERG product was found to have performed

Table3  Comparison of mean monthly observed rainfall and the GPM-
IMERG satellite estimates before bias correction for only rainy sessions
(kiremt) (July—September) from 2007 to 2012

GPMJIMERG  NSE(-)  PBIAS (%) R(-) RMSE(mm) GPMIMERG NSE(-) PBIAS(%) R(-)  RMSE (mm)
Early ~247 91.54 074 6693 Early ~1.76 41.62 035  27.17
Late - 1.62 77.03 076 5801 Late -0.93 29.10 039 2266
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Fig. 6 Scatter plots of main rain periods (a) and all periods (b) for monthly rainfall between station and GPM-IMERG for the period 2007-2012 in the

Lake Hawassa catchment

slightly poor at all seasons over the Lake Hawassa
catchment area. The early IMERG showed slightly
worse performance (higher peak) in some years than
the late IMERG but still generally followed a similar
pattern of variation of the ground-based rainfall data
(Fig. 8).

Statistical evaluation of GPM-IMERG rainfall estimates
after bias correction

Table 4 shows the statistical analysis of the
observed mean monthly rainfall and the GPM-IMERG
satellite rainfall estimates after the bias correction. It is
observed that both IMERG early and late have good
performance after a bias correction. The early and late

R values for IMERG are 0.86 and 0.85, respectively,
indicating a strong correlation of IMERG rainfall esti-
mates with observed rainfall. The results show that the
correlation varies from season to season. The GPM-
IMERG rainfall products are depending on rainfall in-
tensity (He et al. 2017). The IMERG rainfall products
are inclined to provide an overestimate of light rainfall
and underestimate of heavy rainfall (Xu et al. 2017). In
rainy periods, the early and late IMERG shows a good
correlation (R = 0.83 and 0.84, respectively) with ob-
served rainfall (Table 4). However, the PBIAS result
shows that GPM-IMERG overestimated (PBIAS posi-
tive) for all seasons and underestimated (PBIAS nega-
tive) for the rainy season over Lake Hawassa catchment.
It could be due to the estimated rainfall during the dry
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Fig. 7 Time series cumulative precipitation over Lake Hawassa catchment (2007-2012)
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Fig. 8 Comparison of monthly rainfall from the GPM-IMERG satellite and the rain gauges at Lake Hawassa catchment before bias correction for the

periods from January 2007 to December 2012

season and the elevation effect that was not investigated
in this study. In rainy periods, the RMSE is relatively
smaller compared to all seasonal performance measures
following a bias correction. However, the NSE is simi-
lar in magnitude for both IMERG early and late in the
rainy seasons and all periods (Tables 4 and 5).

The scattering plots in Fig. 9 compares the GPM-
IMERG rainfall after bias correction and the average
monthly rainfall recorded in the catchment areas of Lake
Hawassa. Data plots are shown for the area average at the
catchment level, covering the period from 2007 to 2012
for all periods and rainy periods. It can be seen from the
figure that there is no wide scattered after bias correction
for all periods and rainy periods. It shows a strong corre-
lation between both GPM-IMERG products and observed
precipitation following a bias correction (Gingyu et al.
2020). Overall, the performance of GPM-IMERG rainfall
is good after a bias correction over the catchment area of
Lake Hawassa. However, the performance of IMERG
early-run and IMERG late-run products varies with the
seasons.

Table 4  Statistical analysis of mean monthly rainfall observed and
GPM-IMERG satellite estimates after bias correction from 2007 to 2012.

Figure 10 shows the cumulative ground-based rainfall
and GPM-IMERG rainfall products of early and late
rainfall from January 2007 to December 2012 after bias
correction. Total observed rainfall, early IMERG, and
late IMERG was 3869.31 mm, 4367.58 mm, and
4386.90 mm, respectively, for the study period. The
cumulative rainfall of both IMERGs is fairly similar to
the observed after a bias correction for the catchment of
Lake Hawassa. Figure 11 shows the comparison of
monthly rainfall from the GPM-IMERG satellite (early
and late) and observed rainfall in the Lake Hawassa
catchment area after bias correction. The results showed
that, following a bias correction, the mean monthly rain-
fall better captured the trend of observed rainfall.
Overestimation and underestimation of IMERG products
were observed in some months of 2010 and 2007, re-
spectively. It is observed that both IMERG early and
late were satisfactorily captured the gauged rainfall
amount after bias correction especially in 2008, 2009,
and 2011 years. It is also observed that both IMERG
products have well captured observed rainfall during the

Table 5 Statistical analysis of mean monthly rainfall observed and
GPM-IMERG satellite estimates after bias correction for only rainy sea-
sons (kiremt) (July—September, 2007-2012)

GPM- NSE PBIAS R

RMSE GPM- NSE PBIAS R RMSE
IMERG IMERG
Early 0.66 12.88 0.86 20.99 Early 0.66 —-33E-14 0.83 6.84
Late 0.65 13.38 0.85 21.17 Late 0.64 — 6.68E-15 0.84 7.06
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Fig.9 Scatter plots of GPM-IMERG satellite rainfall products against rain observed rainfall from 2007 to 2012, for early (a), late (b), late in rainy periods

(c), and early in rainy periods (d)

rainy season (June—September) compared to all seasons
(Fig. 12). However, in some months during dry periods
and in some months during small rainfall periods,
IMERG overestimates rainfall compared to the measured
rain gauge. The GPM-IMERG satellite rainfall estimates
provided excellent performance during the major rainy

seasons in the study area (Fig. 12).

Conclusions

The IMERG rainfall products early and late was evaluated
before and after bias correction using error statistics. In
this study, the performance of GPM-IMERG rainfall products
was evaluted on a monthly scale for all periods, for only rainy
periods and cumulative rainfall from 2007 to 2012. The

Fig. 10 Time series of cumulative
precipitation over Lake Hawassa

catchment (2007-2012) 000 3
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Fig. 11 Comparison of monthly rainfall from the GPM-IMERG satellite and the rain gauges at Lake Hawassa catchment after bias correction for the

periods from January 2007 to December 2012)

IMERG early rainfall estimates have a bias with percentage of
bias (PBIAS) 91.54 for early rainfall estimates and 77.03 for
late rainfall estimates. It shows that during the analysis period,
GPM-IMERG overestimated the rainfall as compared
to ground-based rainfall. Correction of the GPM-IMERG pre-
cipitation estimate effectively reduced bias and resulted in a
reasonable match between the predicted GPM-IMERG pre-
cipitation and the measured rainfall. The correlation value
(R) for IMERG early and late is 0.86 and 0.85, respectively,
indicating a strong correlation between the predicted IMERG
precipitation and the measured precipitation after the correc-
tion of bias. Results also indicated that the estimated rainfall

performance of IMERG is variable over the seasons. Bias
correction of the rainy season shows a strong correlation be-
tween IMERG’s estimated rainfall and observed rainfall over
the catchment area of Lake Hawassa compared to other full
sessions. Bias correction improves the performance of
both early and late IMERG products. The impact of topo-
graphical characteristics such as elevation on the output of
GPM early and late rainfall estimates over the study re-
gion should be explored in future studies. In addition,
different bias correction methods should be applied and
compared to evaluate performance of GPM-IMERG rain-
fall estimates over the study area.
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Fig. 12 Comparison of monthly rainfall from the GPM-IMERG satellite and the rain gauges at Lake Hawassa catchment after bias correction for the

rainy periods from June to September for 2007-2012
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