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Abstract
Tailgate stability in a mechanized longwall mine is serious to mine productivity and personnel’s safety. Although the stability of both
roadways is critical in longwall mining, the tailgate is subjected to higher stresses and deformations than the other one. Therefore, the
prediction of tailgate stability is a distinctive challenge in mechanized coal mining to ensure its functionality during mining operations.
In this regard, an Improved Support Vector Regression (ISVR) model was developed to sustain and secure longwall mine design
through stability prediction of the tailgate roadway based on the roof displacements and geomechanical data. For model development,
the geomechanical information gathered through laboratory tests and site investigations in Tabas coal mine, Iran, was introduced to the
ISVRmodel as independent variables. The roof displacements values, which were monitored in a 1.2 km long tailgate, were also used
as the dependent variable. According to the results, the proposed ISVR model could predict roof displacements in a reasonable
accordance with measured ones. The squared correlation coefficient (R2) between ISVR predicted and measured roof displacements
showed a high conformity with R2 = 0.91. The results of the ISVR model were compared with those of Artificial Neural Networks
(ANNs) and Multivariable Linear Regression (MLR), which respectively yielded R2 = 0.87 and R2 = 0.81. In conclusion, the ISVR
model appears to be a proper measure for indicating unstable zones ahead of time in mechanized and high-speed longwall mining.
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Introduction

In recent decades, mechanized longwall mining is tending to
high-speed mining under the influence of strict safety and
health standards (Peng 2020). In each longwall panel, two
tunnels derived on both sides of the panel, in which personnel,
supplies, extracted coal, and ventilating air are to pass.
Figure 1 shows a schematic view of a retreat longwall panel
developed by two tunnels. These tunnels are the lifeline and
have unique functions during mining. Headgate is used for the
haulage of extracted material, personnel’s passageway, and
transportation of supplies. Tailgate that is situated on the other
side of the panel, is mainly used for egress and return air.

In practice, some adjacent longwall panels are designed to
exploit in turn. It means headgate in the previous panel should
play the role of tailgate in the next panel. This leads to a high-
stress distribution around the tailgate roadway, especially
around its T-junction due to the superposition of the abutment
stresses resulted from two adjacent panels. Because of high
induced stresses around the tailgate roadway in a mechanized
longwall panel, its stability is critical for both safety and con-
tinuous production. Due to the high investment costs, it is not
satisfactory that mining operations in a mechanized longwall
panel be interrupted due to the unstable tailgate.

Various parameters including geometrical parameters, geo-
logical conditions, advance rate, panel orientation, mining direc-
tion, barrier pillar sizes, in-situ and induced stresses, support
systems, and other geomechanical conditions are of importance,
and each one may be played a significant role in the tailgate
stability. However, the risky areas for roof strata instabilities
during longwall advancement arewhere the headgate and tailgate
roadways intersect the longwall face, i.e., T-junctions. This issue
is more severe in the vicinity of the intersection of tailgate and
coalface, i.e., the tailgate T-junction (Chen et al. 2017; Peng and
Biswas 1994).
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An unstable tailgate would not only cause mining opera-
tions to be slowed down or delayed but could also potentially
cause incidents leading to injuries or fatalities. Reliable tail-
gate support design is actually a complicated and case-based
procedure, which mostly depends on experience or trial and
error. Nonetheless, any tailgate instability is vital in mecha-
nized longwall mining andmay be responsible for roof failure,
mine downtime, and a threat to personnel’s safety. Although
support systems design is underway, and many empirical,
analytical, and numerical design procedures were conducted
to control roof failures, the problematic tailgate behavior is
still an essential concern in mechanized longwall panels.
This research aims at developing an Improved Support
Vector Regression (ISVR) to predict unstable zones in the
tailgate roadway based on the geomechanical information that
is routinely collected during the phase of mine development.

Literature review

When a panel in mechanized longwall mining is exploited, the
ground tends to move away from the high-stress zones to the
low-stress areas. In fact, the in situ stresses are disturbed due to
mining and will be redistributed after face advancement to
create new equilibrium conditions. Because the induced
stresses cannot be transferred through broken rock mass, they
bring about stress concentrations at the boundaries of the road-
ways, especially around the T-junctions.

A number of researches have been done to gain a better
understanding of tailgate stability in longwall mines.
Numerous techniques based on field experiences, experimen-
tal and analytical analyses, and numerical simulations were
developed by different researchers to address the problems
of tailgate instability, and provide the safe and sustainable
working conditions at the mine (Chen et al. 2017; Sears
et al. 2019; Wang et al. 2018).

Some practical approaches for tunneling in coal mines under
challenging ground conditions were introduced by Hudewentz
and Luecker (1983). Heidarieh-Zadeh and Smith (1985) investi-
gated the stability behavior of coal mine roadways using closure
data at specific distances from the coalface. This problem was
investigated by Cox (1994) through conducting a statistical anal-
ysis of tailgate convergence versus face distance over five
longwall panels to find an exponential relationship between

maximum convergences and the distance from the coalface.
Seedsman (2001) presented the failure mechanisms of longwall
tailgates through following the failure and stress paths in roof
strata to present an appropriate support system for the tailgate
roadway. Barczak et al. (2008) also emphasized that the longwall
tailgate is suffered a severe loading while the longwall face is
approached and passed. Tarrant (2003) combined empirical and
analytical methods for statistical assessments of the longwall
tailgate layout and the support design procedure. Esterhuizen
and Barczak (2006) developed ground response curves to design
the support systems for the longwall tailgate. Jiang et al. (2016)
presented an analytical model based on the elastic beam resting
on the Winkler-type foundation for roof stability analysis of the
stratified roadway in coal mines. Buddery et al. (2018) intro-
duced a remote reading telltale as a reliable real-time monitoring
system to monitor tailgate or headgate stability, and to provide
valuable data for ongoing support design. Kang et al. (2018)
combined physical and numerical methods to gain a better
understanding of failure mechanisms associated with sudden
roof collapse in longwall faces. Zhu et al. (2018) indicated that
the zone along the tailgate and ahead of its T-junction is of
importance in view of rockburst occurrence potential, and the
support systems installed in such areas are also utterly
destroyed. Kang et al. (2019) investigated the mechanics of load
transfer in longwall coal mining to indicate the zone of high
pressure in front of the coalface. Esterhuizen et al. (2019) ana-
lyzed the tailgate stability by numericalmodeling to designate the
support requirements. Wang et al. (2019) developed a numerical
model to investigate the stress redistribution in longwall tailgates
during face advancement.

A recent trend in conducting such a complex non-linear prob-
lem is to recourse to machine learning algorithms such as SVR,
which appears to be influential in solving non-linear regression
problems in various engineering fields. Li et al. (2011)
established a model based on the SVR and time-series analyses
to predict surface movements over coal mines. Mahdevari et al.
(2013) proposed a dynamical model based on the SVR to predict
the tunnel convergence during excavation. Li et al. (2016)
assessed the tunnel stability through combining uniform design
and SVR. Pu et al. (2019) summarized some applications of
SVR for prediction of the rockburst phenomenon. Shi et al.
(2019) predicted the settlement in shallow tunnels using a time-
series model based on the SVR. And, Liu et al. (2019) predicted
rockmass parameters inmechanized tunneling by employing the
SVRmodel. In this research, the SVR as awidespread and robust
technique is improved to predict the roof displacements in the
longwall tailgate.

Case study

Tabas mine is an underground coal mine in Iran, which is
exploited by the mechanized longwall mining method. This

Fig. 1 A longwall panel along with tailgate and headgate roadways
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mine is geographically situated about 85 km south of Tabas
County, South Khorasan province (Fig. 2). The annual coal
production from each longwall panel is about 1.5 Mt. The
mine is geologically placed in the Parvadeh coalfield, where
is determined by two major north-south trending fault sys-
tems, namely Kalmard and Nayband faults (IRITEC 2003).

The asymmetrical Parvadeh anticline is located on the
south side of the Rostam fault. The mine is developed in the
central part of the anticline in an area of 1200 km2. Rock
formations in the vicinity of the Rostam fault endure a severe
deformation due to tight folding and numerous faults.

The rock strata in the Tabas coal basin are typically
mudstone with noticeable coarsening up siltstone and
sandstone sequences. Thin marine limestone layers are
locally observed. The main coal horizons in Parvadeh
coalfield are seams D, C2, C1, B2, and B1. The prima-
ry coal seam to be extracted is C1, which was devel-
oped from its outcrop on the south side of the Parvadeh
anticline towards the south-west. The seam thickness of
C1 varies from 2.2 to 1.5 m (IRITEC 2003).

Theory

Support vector regression

Support Vector Regression (SVR) concept, which was devel-
oped on the basis of the Vapnik-Chervonenkis (VC) theory, is
nowadays a suitable method to tackle the problems of high-
dimensional function approximation (Cortes and Vapnik
1995; Vapnik et al. 1997). Succinctly, the unseen data are
aptly generalized using VC theory in machine learning. The
SVR algorithm uses the support vectors to solve problems of
function estimation via presenting a loss function.
Furthermore, executing the Structural Risk Minimization
(SRM) principle, SVR simultaneously minimizes the VC di-
mension and the empirical risk to present a robust generaliza-
tion by restricted learning patterns (Jap et al. 2015). The SVR
approximating function can linearly be written as:

f xð Þ ¼ w:Φ xð Þ þ b ; with wϵRd ; bϵR ð1Þ

where, b and w are respectively the bias and weight matrix,
and Φ is the high-dimensional feature space mapped from the
input space Rd. The objective of the SVR algorithm is then to
estimate f(x) for a given training set {(x1, y1),…, (xn, yn)} ⊂
Rd × R, that has nearly ε deviation from the real targets yi, and
be concurrently as flat as possible (Vapnik 2000). Therefore,
errors less than ε are accepted, while any deviation larger than
ε does not assent:

L ξð Þ ¼ o if ξj j≤ε
ξj j−ε otherwise

�
ð2Þ

where ε is the approximation accuracy resulted from the
training data. Therefore, flatness in Eq. (1) is ensured when the
norm ‖w‖2 is minimized (Cortes and Vapnik 1995):

minJ ¼ 1

2
wk k2 þ C∑n

i¼1 ξþi þ ξ−i
� � ð3Þ

Subjected to: w:Φ xið Þ þ bið Þ −yi≤εþ ξþi

yi− w:Φ xið Þ þ bið Þ≤εþ ξ−i

ξþi ; ξ−i ≥0

where slack variables ξþi and ξ−i are the upper and lower
bounds of training errors in the ε-insensitive tube. In Eq. (3),

the term 1
2 wk k2 controls the complexity of the function, and

the term C∑n
i¼1 ξþi þ ξ−i

� �
is the empirical risk. Consequently,

the empirical and structural risks are both minimized in the
SVR algorithm. The parameter C is the regularized constant
and determines the trade-off between structural and empirical
risks.

Various approaches are presented to solve Eq. (3). One
way to simply solve this equation is the implementation of
the dual formulation, which yields the function f(x) through
quadratic optimization. This approach presents a distinctive
solution that is not trapped in the local extremum. Based on
the Karush-Kuhn-Tucker (KKT) conditions, the dual formu-
lation can be rewritten by the Lagrange multipliers a*i and ai,
the training data, and the constant b (Vapnik 2000):

f xð Þ ¼ ∑
n

i¼1
ai−a*i
� �

xi; xh i þ b ð4Þ

in which:

∑
n

i¼1
ai−a*i
� � ¼ 0 and 0≤a*i ; ai≤C ð5Þ

The KKT conditions imply that the a*i and ai are zero when
a*i ; ai≠C and | f(xi) − yi| < ε. Therefore, the whole input data
are not necessary to calculate f(x), and only the training data
having an approximation error equal to or larger than ε
(a*i and ai≠0 ) are used as the support vectors.

In order to map the input data into a high-dimensional
feature space, the kernel functions are employed to carry out
the non-linear mapping. The value of a kernel function equals
the inner product of two vectors xi and xj in the feature spaces
of Φ(xi) and Φ(xj), i.e., K(xi, xj) =Φ(xi). Φ(xj). Therefore, f(x)
can be rewritten in terms of the kernel as (Vapnik 2000):

f xð Þ ¼ ∑
n

i¼1
ai−a*i
� �

K xi; xð Þ þ b ð6Þ

There are many kernel functions to produce support vec-
tors. This research employs the Gaussian kernel function as a
general radial basis function:
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K xi; x j
� � ¼ exp −γ xi−x j

�� ��2� �
ð7Þ

where, γ is the variance of the Gaussian kernel, and ‖ ‖ is
the Euclidean norm.

Improved SVR

One of the vital stages in designing any predictive model based
on the SVR is the optimal selection of the model’s parameters.
The optimization of parameters in the SVR model may sturdily
affect the performance of the predictive model. In this research,
the SVR algorithm is improved in such away that the best values
of three parameters, namely penalty factor (C), insensitivity zone
(ε), and kernel parameter (γ), are selected to control the learning
procedure of the proposed model.

In order to define the regression problem in SVR, suppose we
are given a training set of n observation as {(x1, y1),…, (xn, y-
n)} ⊂Rd ×R, and then the regression problem is to estimate yi=
f(x), which will be obtained by rewriting the Eq. (1) as:

f x;ωð Þ ¼ ω0 þ ω1ϕ1 xð Þ þ ω2ϕ2 xð Þ þ…þ ωmϕm xð Þ
¼ W⊺Φ xð Þ ð8Þ

In order to decrease the training complexity and improve
the computing speed of SVR, the constrained optimization
problem in Eq. (3) is simplified by substituting the penalty

factor C with C
2, and adding a constant term b2

2 as:

minJ ¼ 1

2
wk k2 þ b2

� �
þ C

2
∑n

i¼1 ξ
þ
i þ C

2
∑n

i¼1 ξ
−
i ð9Þ

Subjected to: w:Φ xið Þ þ bið Þ −yi≤εþ ξþi

yi− w:Φ xið Þ þ bið Þ≤εþ ξ−i

ξþi ; ξ−i ≥0

This equation can be converted to unconstrained convex qua-
dratic optimization problem by supposing zþi ¼ w:Φ xið Þ þ bið Þ
−yi−ε and z−i ¼ yi− w:Φ xið Þ þ bið Þ −ε as (Lee et al. 2005):

minJ ¼ 1

2
wk k2 þ b2

� �
þ C

2
∑n

i¼1 zij j2þ ð10Þ

where, |zi|+ = max {0, zi}. This problem is a convex minimi-
zation problem having a unique solution without any constraints.
Since the target function in Eq. (10) is not twice differentiable, a p
function (integral of the sigmoid function) with a smoothing
parameter α is used to define the strictly convex and infinitely
differentiable smooth function as (Lee et al. 2005; Xiong et al.

Fig. 2 Position of Tabas coal mine, South Khorasan, Iran
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2006):

p u;αð Þ ¼ uþ 1

α
log 1þ e−αuð Þ; α > 0 ð11Þ

Therefore, the objective function of the developed ISVR is
determined by the Newton-Armijo algorithm as (Doreswamy
and Vastrad 2013):

minJ ¼ 1

2
wk k2 þ b2

� �
þ C

2
∑n

i¼1p
2 u;αð Þ ð12Þ

The procedure of selecting the best parameters for training
the ISVR model is then executed to pick up the optimum
values for C, ε and γ with the highest coefficient of determi-
nation (R2) and the lowest cross-validation error based on the
following fitness function:

Fitness ¼ Max R2 þ 1

MSE

� 	
ð13Þ

where, MSE is the mean squared error given as (Demuth
and Beale 2002):

MSE ¼ 1

N
∑
N

i¼1

Y i−Y*
i

Y i











2

ð14Þ

in which, Yi and Y*
i are respectively the measured and

predicted values, and N is the number of input-output data
pairs.

In the ISVR model, developed in this research, different
combinations of C, ε, and γ are explored over a log2 range
of values, so that the optimum values for each parameter will
be selected by the grid search optimization with a limited step
size. The pseudo code for training the proposed scheme of
ISVR is summarized as:

Inputs: Original training set XTraining , and testing set XTesting

Goal: Finding optimum values of C, ε, and γ
Initializing: The upper and lower bounds of C∈[Cmin,Cmax], ε ϵ[εmin,

εmax], and γ∈[γmin,γmax].
For C=log2Cmin to log2Cmax

For log2γmin to log2γmax
For ε=εmin to εmax
Training the SVR model by XTraining

Defining a suitable k-fold cross-validation
Computing R2 and MSE based on the Fitnesscurrent in Eq. (13)
IF Fitnesscurrent > Fitness∗

Fitness∗←Fitnesscurrent

C∗←C
γ∗←γ
ε∗←ε
END IF
END For
END For

END For
Inputs: Evaluation of the trained ISVR model by XTesting

Results

Amongst several mining methods to extract coal seams,
longwall mining is the foremost in Iran. There are several
methods developed for extracting the coal seams through-
out the country. Tabas coal mine in the Parvadeh coalfield
as the first mechanized underground mine is exploited by
the longwall mining method. During longwall mining, a
zone of high induced stresses is concentrated ahead of the
coalface. The area in the vicinity of the T-junctions, which
will move by face advancement, is suffered maximum
stresses. This leads to large displacements occurred in
the roof strata, especially in the tailgate roadway.
Although support design knowledge has been technologi-
cally advanced, problematic tailgate behavior is now a
significant problem in the Tabas longwall mine. In this
research, an ISVR model is developed to predict unstable
zones ahead of time in the tailgate roadway and its T-
junction based on the monitored roof displacements data
and the geological and geomechanical information collect-
ed during mining. In order to investigate the prediction
capability of the proposed models, the obtained results
are compared with Artificial Neural Networks (ANNs)
and Multivariable Linear Regression (MLR).

Establishing database

In this study, a geomechanical database is established using
the geological information and laboratory tests. The
geomechanical parameters were obtained by carrying out the
rock mechanics tests on intact rock samples. Besides, roof
displacements are recorded by face advancement using telltale
instruments installed at specified distances along the tailgate
roadway. A dataset of 72 records in various sections of the
1.2 km long tailgate was recalled as independent variables for
training the ISVR model (Table 1). The input datasets contain
the uniaxial compressive strength (UCS), tensile strength (σt),
cohesion (C), angle of internal friction (ϕ), Young’s modulus
(E), shear strength (τ), density (ρ), slake durability index (Id2)
and rock mass rating (RMR). Also, the maximum roof dis-
placements (dmax) monitored in the tailgate are also selected
as the dependent variable.

Normalizing input data

Due to the fact that the input data have different units, the data
have to be normalized before training the model. Normalization
causes to dimensionless and keeps the input data between 0 and
+1. In addition, dimensionless leads to an increase in the learning
speed and an enhancement in the permanency of the model.
Input data are normalized using Eq. (15):
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X ij
Norm ¼ X ij−X j

min

X j
max−X

j
min

ð15Þ

where, X ij
Norm is the normalized value, Xij is the original

data in the ith row and the jth column, respectively. The

X j
max and X j

min are respectively the maximum and minimum
values of the related jth column.

Designing the ISVR model

Learning procedure in a machine learning model using the
same training and testing samples leads to a methodological
bias. Therefore, in order to keep away from over-fitting, it is
essential to categorize the training and testing data. Cross-
validation is a practical method to divide the input data into
two separate training and testing sets.

Cross-validation

In order to adjust the hyper-parameters in the proposed ISVR
model, the cross-validation technique is used at first. Based on
the input data applied in this research, a 4-fold cross-validation
method was found to be suitable for ISVR modeling. In fact,
the generalization error is assessed through a 4-fold cross-
validation to randomly split the training data into four mutu-
ally unique subsets of equal sizes. Therefore, in each iteration,
the decision rule will be implemented using three subsets, and
then tested on the residual subset. This procedure is repeated
four times, and the generalization error is finally approximated
by averaging the validation in the four iterations.

Parameters optimization in ISVR

The parameters C, ε, and γ have a great influence on the
prediction accuracy of the SVR model. As mentioned, param-
eter C determines the trade-off between training error and VC
dimension. The parameter ε is the insensitivity zone in the ε-

insensitive loss function. The γ that is the width of the
Gaussian kernel function outlines the non-linear mapping
from the input space to a multi-dimensional feature space.

Implementing a 4-fold cross-validation, different combina-
tions of C, ε, and γ are explored in the proposed ISVR model
over a log2 range of values, so that in the range of [2

0 , 25] for
C, and in the range of [2−3.5, 21.5] for γ, both with step sizes of
20.1. The parameter ε is also examined in the range of [0.001,
0.1] with step sizes of 0.01. This procedure iterates in three
loops for 260100 times (51 × 51 × 100), and lastly the opti-
mum values of C, ε, and γ with the highest R2 and the lowest
MSE are chosen based on the fitness function in Eq. (13). The
results of the proposed ISVR are summarized in Table 2, in
which the 4th fold yields the best values for R2 and MSE.

Training the ISVR model

In order to train the ISVR model, a Gaussian kernel function
was introduced to the model at first. Three parameters of C, ε,
and γ are then picked up via the best results of the 4-fold cross-
validation. For training the ISVR model, the code is executed
in MATLAB software. In order to be rational training and
avoid the over-fitting, 75% of the input data is randomly se-
lected for training, and the rest is retained for testing the ISVR
model. According to the results presented in Table 2, the best
values of R2 andMSE for training the ISVRmodel are respec-
tively 0.94 and 0.009. In addition, the averaged values of the

Table 1 Details of the datasets
applied for training the ISVR
model

Type of data Symbol Unit Average Standard deviation Minimum Maximum

Input UCS MPa 60.8 46.2 3.5 208.1

σt MPa 5.5 4.3 0.2 18.5

C MPa 4.0 3.2 0.1 10.4

ϕ deg 25.5 5.0 17.8 38.4

E GPa 5.2 2.5 0.3 12.3

τ MPa 19.0 9.9 2.0 42.0

ρ g/cm3 2.6 0.3 1.6 2.8

Id2 % 79.7 16.0 35.0 98.0

RMR – 37.2 16.3 15.0 90.0

Output dmax mm 85.5 101.8 4.0 317.0

Table 2 Optimal values for C, ε, and γ in four folds

Fold C ε γ MSE R2

1st 32.00 0.007 0.8706 0.0104 0.9269

2nd 1.00 0.004 0.1340 0.0342 0.9018

3rd 1.60 0.050 1.7411 0.0161 0.9173

4th 1.14 0.008 1.7411 0.0087 0.9377

Average of the best results 0.0174 0.9209
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R2 and MSE are respectively obtained 0.92 and 0.017, which
signify a suitable accuracy for training the ISVR model. The
R2 resulted from training the ISVR model including 75% of
the input data is shown in Fig. 3. As seen, a high goodness of
fit and a low error are obtained from the trained model.

The changes of the MSE and R2 during training the ISVR
model are depicted versus the log2C and log2γ in Fig. 4. As
perceived in these figures, maximum R2 and minimum MSE
are obtained based on the fitness function defined in Eq. (13)
when log2C and log2γ approximately fall in the optimum
ranges of 0.189 and 0.799, respectively.

Since the parameter C controls the trade-off between error
minimization andmarginmaximization, selecting an optimum
value for this parameter is important. Assigning a too large or
a too small value for parameter C results in the over-fitting or
under-fitting phenomenon. In the proposed ISVR model, the
C and γ parameters are chosen in such a way that the optimum
values obtain based on the described procedure, which is re-
markable for designing or updating the model.

Testing the ISVR model

The trained ISVR model is put into practice to predict tailgate
stability based on the 25% of the input data, which are unseen
testing samples. The developed ISVR model is suited by
selecting the parameters of C, ε, and γ to be respectively
implemented as 1.140, 0.008, and 1.741 while testing the
ISVR model. Figure 5 depicts the graphical output of the
regression examination for the testing data. The ISVR model
predicted values are plotted versus the measured ones. The
best linear fit is specified by a blue line. Based on the predic-
tion results, the MSE and R2 between the predicted and mea-
sured values are respectively obtained as 0.0116 and 0.9092.
According to the results, the prediction of roof displacements
using the ISVR model is reasonably in agreement with the

measured ones signified by the closeness to the equality line
and the high goodness of fit.

Examining the prediction capability

In order to evaluate the validity and performance of the ISVR
model in predicting dmax in the longwall tailgates, the obtained
results are compared with those of ANN and MLR, which are
presented in two separate subsections.

ANN results

For building an ANN model, the Levenberg–Marquardt algo-
rithm was employed. For this purpose, the relationship be-
tween the roof displacement and the geomechanical parame-
ters are established using a Multi-Layer Perceptron (MLP)
network in the MATLAB environment. The MLP neural net-
work developed in this research consists of an input layer, two
hidden layers, and an output layer with a “9-4-5-1” topology.
The hidden layers are included a logistic sigmoid (LogSig)
and a hyperbolic tangent sigmoid (TanSig) transformation
function.

Based on the trial and error, a four-layer MLP network is
tested with the various arrangements of neurons, and finally
a “9-4-5-1” topology is yielded to be optimum. The first
layer has nine nodes corresponding to the number of inputs.
The network should have one output neuron since there is
only one target. In order to train the ANN model, the whole
input data are randomly divided into three subsets of train-
ing, validating, and testing data, which respectively contain
50%, 25%, and 25% of the input data. Figure 6 illustrates
the ANN model outputs, in which the predicted values of
dmax are plotted versus the desired targets. As seen, the
maximum values of R2 for training, validation, test, and
overall data are respectively obtained as 0.990, 0.911,
0.868, and 0.939.

Fig. 3 The measured roof
displacements versus ISVR
predicted values for the trained
model
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Fig. 4 R2 and MSE changes versus log2C and log2γ during training the ISVR model

Fig. 5 Testing the ISVR model
with unseen data in 18 sections
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The MSE, as a typical performance function usually used
for training feed-forward neural networks, is applied in the
ANN model as a measure of stopping the training process to
prevent over-fitting of the model. Taking into account the
MSE curve during training of the ANN model, the best vali-
dation performance was obtained at epoch 3, and the value of
MSE is calculated as 0.1289, which shows a good level of
performance (Fig. 7).

MLR results

In statistics, MLR is a widespread method to detect the
linear relationship between some independent variables and
a dependent variable. In this research, an MLR function is
established based on the 75% of the input data using SPSS
software. The linear relationship resulted from the MLR is
obtained as:

Fig. 6 R2 for training, validation,
test, and overall data (dashed line
is equity line)

Fig. 7 The best validation
performance for the ANN model
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dmax ¼ 616:3845þ 0:1317 UCS

þ 4:6579 σt−13:5096 C þ 0:2813 ϕ

þ 2:5463 E−2:3538 τ−118:7582 ρ−2:3372 Id2

þ 0:2107 RMR ð16Þ

where the whole parameters were previously defined in the
“Establishing database” section. The MLR approximation
function was obtained by introducing the same dataset, which
was used for training the ISVR and ANN models. As present-
ed in Fig. 8, the R2 obtained for testing the MLR over 18
unseen testing data is calculated as 0.8086 with anMSE value
of 0.439.

Discussion

There is presently no unique technique that provides mining
engineers with a reliable tailgate support design in longwall
coal mining. Despite widespread developments in longwall
mining, the design of both primary and secondary support
systems for longwall tailgate still remains uncertain and often
debatable.

The reliance upon experience or trial and error is responsi-
ble for many downtimes and delays in longwall mines, which
possibly causes calamitous consequences (Tarrant 2003).
Therefore, in order to reach the sustainable coal mining, it is
vital to raise the recovery rate, and at the same time, reduce
roof instabilities, especially those occurring in the tailgate
roadway and T-junctions.

Designing a tailgate roadway in longwall mining is some-
what complicated, and is usually the primary task in the pro-
cedure of the longwall mine designing. This is due to the fact
that the coalface advancement leads to a high-stress

redistribution in the roof strata. The high-stress concentrations
may cause large fractures along roof strata in the vicinity of
the tailgate and its T-junction. Unless effectively, timely, and
adequately supported, the excessive roof displacements and
subsequently roof falls may have occurred in the tailgate road-
way. Therefore, in order to ensure that the tailgate roadway is
securely functional, a set of standing support systems are also
installed, usually determined by trial and error or experiences
gained from surrounding longwall panels.

In order to reduce the deformations of the immediate roof
rocks, and consequently to prevent further instabilities leading
to unwanted incidents or catastrophic failures, an ISVRmodel
is proposed in this research based on the geomechanical char-
acteristics and continuous monitoring of roof displacements.
Employing the proposedmodel, the areas prone to instabilities
will be predicted ahead of time by introducing the
geomechanical parameters. In fact, the ISVR model uses his-
torical data to detect unstable zones around the longwall tail-
gate and its T-junction.

The prediction capability of the ISVR model is examined
by comparing the results with those of the ANNs and MLR,
which reveals a high goodness of fit and superior accuracy for
the ISVR model. Figure 9 depicts the results of the ISVR,
ANN, andMLRmodels, in which the predicted roof displace-
ments are compared with the measured ones in 18 sections.
The R2 and MSE measures for the ISVR, ANN, and MLR
models are also presented in Table 3. Based on the results,
the measured and predicted values are comparatively matched
in the ISVRmodel, and differences are only a few millimeters
in some sections. Therefore, the ISVR model is relatively
reliable and may be valuable in predicting tailgate instabilities
ahead of time in mechanized longwall mining.

Since the severely damaged zones are accorded where
the peak stresses locate on the tailgate roadway (Zhu et al.
2018), the ISVR model can therefore be a flexible tool to
provide a safer environment in T-junctions for mine’s

Fig. 8 Testing the MLR function
with unseen data in 18 sections
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personnel. Also, the ISVR model may be more cost-
effective for support system optimization in tailgate road-
way through engineering and intelligent procedure rather
than by trial and error. In addition, unlike the black-box
models, the ISVR model will quickly be developed and
adopted by introducing new training data recorded from
other panels. The major benefit of the ISVR model is the
potential to be continuously updated by introducing new
data, and consequently understand the interaction of the
support systems with the ground conditions at the moni-
tored sections. In addition, independent variables are di-
rectly updated by introducing the historical data without
the necessity for changing the model parameters (Vapnik
et al. 1997). Thus, unlike the black-box models, the ISVR
model with the same parameter settings will give reliable
results. This implies the potential of repeatability for the
proposed ISVR model in predicting roof displacements
based on the geological and geomechanical information.
Therefore, the training runs required for selecting the op-
timum parameters are significantly decreased in the ISVR
model than the black-box ANN model.

In respect to the other AI algorithms, SVR has the follow-
ing characteristics (Mahdevari et al. 2013): (1) a global opti-
mal solution, (2) avoiding overtraining, (3) the solution is
sparse and only a limited set of training points contribute to

this solution, and (4) non-linear solutions can be calculated
efficiently due to the usage of inner products.

When cracks are initiated and propagated ahead of the
coalface, the inelastic zone is expanded, which may cause to
transfer of the overburden loads from the yielded or failed rocks
to the adjacent unmined areas (Wang et al. 2019). Since under-
standing the roof strata behavior significantly affects the optimal
designing of support systems, this study may be an intelligent
measure for a better understanding of the roof strata behavior to
timely control unstable zones in the vicinity of the T-junction and
along the tailgate roadway in longwall coal mines.

Conclusions

Although tailgate roadway in a mechanized longwall coal
mine is often subjected to high stresses and deformations,
maintaining a sustainable and functional tailgate is vital to
the success of the safe and efficient coal mining operations.
Problematic tailgate conditions in Tabas mine are recognized
as a serious concern, given that the consequences vary from
production delays to catastrophic failures. This research is
intended to predict the unstable zones in the vicinity of the
T-junction in the tailgate roadway. For this purpose, the SVR
algorithm was improved to approximate the non-linear rela-
tionship between the geomechanical features and roof dis-
placements. For this purpose, a dataset containing 72 records
in different sections of a tailgate in Tabas mine was introduced
to the ISVR model for training. The independent parameters
are UCS, σt, C, ϕ, E, τ, ρ, Id2, and RMR. In addition, datasets
of the dmax are selected as the dependent variable. Prediction
capability of the ISVR model was fulfilled by computing the
R2 andMSE between the ISVR predicted values and measured
roof displacements. Accordingly, R2 for training and testing
data was respectively obtained as 0.94 and 0.91, whereas
MSE was respectively calculated 0.009 and 0.012 for training
and testing data. In order to examine the prediction capability

Fig. 9 Results of the ISVR,
ANN, and MLR models over
testing samples

Table 3 The best values of MSE and R2 for ISVR, ANN and MLR
models

Model MSE R2

(Train) (Test) (Train) (Test)

ISVR 0.009 0.012 0.94 0.91

ANN 0.037 0.129 0.99 0.87

MLR 0.412 0.439 0.87 0.81
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of the ISVR model, the results are compared with those of the
ANN model and MLR function. By introducing the same
dataset, the R2 and MSE for testing the ANN model are re-
spectively obtained as 0.87 and 0.129, and for testing the
MLR model are respectively obtained as 0.81 and 0.439.
These results indicate a satisfactory precision for the proposed
ISVR model to monitor and control tailgate stability in mech-
anized longwall coal mines. In addition, unlike the black-box
ANN model, the ISVR model will quickly be developed and
updated by introducing new training data recorded from other
adjacent panels.
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