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Abstract
Over the years, studies have been conducted to examine not only the relationship between land use and water pollution using
ordinary least square (OLS) regression but also their spatially varying relationships using geographical weighted regression
(GWR). However, the relationships between land use and water quality indicators may vary not only spatially but also over time.
Therefore, this study was conducted to analyse the spatiotemporal variations in land use-water quality relations over timewithin a
tropical watershed. To achieve this goal, land use data for 2006, 2010, and 2015 and the corresponding years of frequently
sampled water quality data were utilised. The kriging interpolation technique was applied to estimate the unknown water quality
values at 12 unmonitored sampling points using the measured values from the 9 monitored sites that were used for the regression
analyses. Both OLS and GWR were applied using four groups of land use and seven water quality variables. The study found
better performances of GWR models over OLS models throughout these investigation periods. The GWR results indicated that
the ability of land use indicators to explain water quality change is not the same with time and space and neither the same among
the different water quality parameters. For examples, in 2015, agricultural land most predicted the change in most water quality
variables compared with its prediction proportion in 2010 and 2006, while urban land most predicted the change in most water
quality variables in 2010 compared to other years. However, other groups of lands were more positively associated with most of
the water pollutants compared to forest, agricultural, and urban areas. Therefore, this study suggests that control and management
policies be adjusted to different periods and areas according to the time-space varying sources of pollution and good predictors of
water quality. Although the approach used in this study tends to reveal the complex spatiotemporal relationships between land
use and water quality over different time periods, it should be noted that this approach is more appropriate for comparative
analysis to understand the implication of the land use chance pattern into surface water pollution
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Introduction

The quantity and quality of water resources have been affected
by patterns of accelerated land use around the world. Rapid

urbanisation and industrial and agricultural development have
been associated with the deterioration of aquatic and terrestrial
ecosystems in the watersheds of developing countries.
Numerous studies have shown a significant correlation
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between land use planning activities and water quality in var-
ious water bodies (Li et al. 2008; Buck et al. 2004; Baker
2003; Tong and Chen 2002). In general, the level of concen-
tration of water pollutants is linked to the higher percentage of
land use change resulting from land development in water-
sheds, while good water quality is mainly found in the natural
forest and undeveloped areas. However, these associations are
not constant across different zones because the anthropogenic-
and natural-induced factors of watersheds such as the physical
landscape, economic development activities, sources of pollu-
tion, and regulation policies vary often with space (Tu 2011a).
As such, the relationships between land use and water quality
studied by traditional statistical approaches, such as Pearson
correlation and OLS regression, which suppose that relation-
ships are stationary over space, would not be reliable when
analysing spatial relationships among geographical data.
Relationships may often vary spatially because the character-
istics of pollutants and their sources within a watershed may
not be the same in different locations. Therefore, the relation-
ships between one type of land use and different water pollut-
ants are inconsistent and different types of land use are not
correlated with the same water pollution issues (Tu 2011b).
To address these problems, in recent years, a simple and more
powerful statistical method known as GWR has been devel-
oped in order to explore the continuing varying interactions
between land use and water quality across space (Brunsdon
et al. 2002) and time.

GWR provides a useful technique for exploring the spatial-
ly varying associations between land use and water pollutants
across different regions. It has been the applied method to
analyse the variations in spatial relationships between various
phenomena including natural and anthropogenic factors
(Mohammadi et al. 2019; Nkeki and Asikhia 2019; Wang
et al. 2017; Huang et al. 2015; Yu et al. 2013; TU and XIA
2008). It is likely that when global models such as OLS are
used for these analyses, a certain level of relationships may be
masked. Monitoring sites are assumed to have a distinct rela-
tionship model between land use factors and water pollutants
when the results are spatially analysed. By employing GWR
to analyse the interactions between the land use and water
quality variables, it is expected that each associated land
use-water quality variable exhibits a more or less distinct pat-
tern of relationship across study region. In fact, the GWR is
able to present regression coefficient values and a spatially
varying relationship strength for each associated variable on
a map. GWR tries to account for spatial differences by letting
the parameters of the regression model to vary in space. Local
estimation of the model parameters is attained by weighting
all adjacent counts using a function of distance decay, suppos-
ing that nearby counts have a greater effect on the regression
point than those far away. Like the OLS system, GWR con-
structs a model to analyse how points may be different (Tu
2011b). Local model parameters are commonly mapped using

visualisation such as GIS, which allows local spatial variation
in regression outputs to be studied (Tu 2011b). Subsequently,
Global Moran I is performed on the OLS and GWR models’
residuals to evaluate the performance of these models with
respect to spatial autocorrelation. Moran’s I is generally used
as an indicator of spatial autocorrelation and has been used in
previous studies to test the significance of spatial autocorrela-
tion in regression models to ensure no violation of the ran-
domness assumption and independence of residuals (Buyong
2006; TU and XIA 2008; Clark 2007; Harries 2006).

However, most previous studies examined the relationship
between land use and water pollution in terms of total areas
rather than densities (Huang et al. 2015; Chen et al. 2016;
Erfanian and Alijanpour 2016). For example, they investigat-
ed the concentration of pollutants based on the percentage of a
land use class in the sub-basin area, but it would also be
relevant to evaluate pollutants in relation to land use class
within pollution potential zone (contributing area) across the
study region. In addition, it will be useful to see how these
relationship vary over time, because the major concern could
be peak pollution in time, and not regular pollution over time.
Thus, more frequent sampling data for three different periods
were needed in this study to evaluate the performance and
predictive capability of GWR model in examining how water
quality and land use variable relations vary with time and
space.

Material and methods

Study area

The study area of this research is Selangor River watershed,
located in the State of Selangor, Malaysia. It is the main river
in the State of Selangor, with an extent area of about 2200
km2, nearly a quarter of the total area of the State of Selangor
(Chowdhury et al. 2018). The Selangor River streams in a
southwest direction and runs through a total distance of
110 km before ending into the Strait of Malacca. The water-
shed is the largest water source for the States of Kuala Lumpur
and Selangor, and about 60% of the water consumed in these
States comes from the Selangor River (Sakai et al. 2017). The
main tributaries include Sungai Rawang, Sungai Buloh,
Sungai Batang Kali, Sungai Serendah, Sungai Kundang,
Sungai Kerling, and Sungai Sembah. The watershed is ap-
proximately 70 km long by 30 km wide and covers almost
28% of the State of Selangor, where about 406,000 people
lived in 2006 (Fulazzaky et al. 2010). Approximately 57%
of the watershed is still covered by natural forests, while ag-
ricultural activities use 22%, 17% is used for development
areas and 4% occupied by water (Kusin et al. 2016). The land
use maps of the Selangor River watershed are shown in Fig. 1.
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Fig. 1 Location of the study area along with sampling stations (a) and land use maps of the Selangor River Basin (b) from DOA (2019)
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Land use and water quality data

To consistently and adequately analyse the interactions be-
tween land use and water quality pollutants over time and
space, we used land use data for 2006, 2010, and 2015 and
the corresponding years of frequently sampled water quality
data, from two different sources. First, the land use maps were
obtained from the Department of agriculture (DOA),
Malaysia. The interview with the technicians of this depart-
ment indicated that the land use maps were derived from high
resolution satellite imageries (spots 2, 4, and 5). All pre-
processing and processing analyses of the satellite imageries,
including radiometric and geometric corrections, were
performed at DOA in Malaysia. These imageries were
spatially registered, corrected, and classified into several
land use classes using the field ground control points and
appropriate classification algorithm. In this study, the land
use attributes were aggregated based on level I from
Anderson (1976) Classification Scheme. Second, the water
quality data used in this study were acquired from nine mon-
itoring stations as part of the river water quality monitoring
programme by the Department of environment (DOE) of

Malaysia in 2006, 2010, and 2015. Since 2000, the DOE
regularly (every 2 months) monitors the water quality of these
stations within the Selangor River basin. This dataset includes
of a set of water quality indicators such as chemical oxygen
demand (COD), dissolved oxygen (DO), biochemical oxygen
demand (BOD), suspended solids (SS), ammonia nitrogen
(NH3-N), temperature (TEMP), and potential of hydrogen
(pH) for monitoring sites that involve the lower, middle, and
upper streams of the basin profile (Fig. 1).

In this study, LUAS comprising 12 points are estimates of
unknown values using measured values at 1SR 9 sampled
points based on a kriging estimation technique. The GWR
and OLSmodels were conducted using water quality pollutants
as dependent variables and land use classes as explanatory var-
iables. To avoid possible multicollinearity among land use in-
dicators, each of the GWR and OLSmodels used only one land
use class as an independent variable to analyse its associations
with each quality pollutant (Fig. 2). In this study, there were
four classes of land use and seven water quality pollutants for
three different years. As a result, 84 OLS models and 84 GWR
models were built in this study. Given that land units located far
from the river cannot generate pollution potential for bodies of

Dependent variables Explanatory variables

Water quality indicators for 2006, 2010, 
and 2015

Land use indicators for 2006, 2010, 
and 2015

Dissolved Oxygen (DO)

Ammonia Nitrogen (NH3-N)

Biochemical Oxygen Demand (BOD)

Suspended Solids (SS) 

Chemical Oxygen Demand (COD) 

Temperature (TEMP)  

Potential of Hydrogen (pH) 

Forest land   

Agricultural land

Urban land   

Cleared land 

Ex-mining area

Abandoned & Eroded areas

Marshland, & Miscellaneous

Variables transformation for 
normalization

Exploratory regression

Linear regression 
(OLS)

Geographically weighted
regression (GWR)

Comparison, analysis, and conclusion

Fig. 2 Methodology flowchart
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surface water (Sivertun and Prange 2003), pollutants generated
at a distance greater than 1000 m cannot reach the river or
influence the water quality of the river (Sivertun and Prange
2003; Do et al. 2011; Alilou et al. 2018). Therefore, in this
study, a 1000-m buffer radius from each monitoring station is
used to estimate the land use area and its relationship to water
quality at each monitoring site. Through this step, a linkage
between each water quality variable and land use indicators
for all sampling points was established. Apart from the three
main land use categories such as forest, agricultural, and urban
lands, the exploratory regression indicated that the other land
use classes do not individually contribute much to the predic-
tion of water quality in the study area. Therefore, these land use
classes have been grouped into one category (known as others)
for further modelling.

Statistical analysis and modelling methods

Prior to modelling the spatiotemporally varying interactions
between land use and water quality pollutants, the normality
test for all land use classes and water quality variables was
conducted using the Shapiro-Wilk test and quantile-quantile

(QQ) plots. Most land use indicators and water quality pollut-
ants were not normally distributed. Therefore, the square root
and natural log transformation techniques were performed for
transforming them to meet the normality distribution require-
ments for further analyses. Table 1, Table 2, and Table 3 show
the standardised water quality values used in OLS and GWR
analyses for 2015, 2010, and 2006, respectively. Prior to these
regression analyses, a Pearson correlation was applied to ob-
serve the overall association between land use indicators and
water quality pollutants. In this study, the spatiotemporal re-
lationships between land use and water quality were examined
by applying both the OLS and GWR modelling methods.
However, OLS is a globally homogeneous model and is un-
able to reveal the heterogeneity and non-stationarity of spatial
relationships between geographic data and assumes a consistent
relationship between variables in a given spatial region. Thus, we
relied on GWR in this study to examine the spatiotemporally
varying interactions between land use and water quality across
the study area (Eqs. (1) and (2)).

In order to understand the evolution of the DOE water
quality index (DOE-WQI) in relation to land use, a graphical
model was developed. The local WQI mainly used in
Malaysia emanated from an opinion polling formula of a

Table 1 Standardised water quality values used in OLS and GWR
analyses for 2015

Station DO BOD COD SS pH NH3-
N

TEMP

1SR01 0.000 0.875 1.000 0.876 0.000 0.472 1.000

1SR03 0.990 0.000 0.011 0.262 0.780 0.017 0.274

1SR04 0.976 0.042 0.258 0.083 0.783 0.111 0.333

1SR05 0.933 0.167 0.596 0.000 0.870 0.023 0.325

1SR06 0.994 0.125 0.348 0.415 0.824 0.000 0.000

1SR07 0.938 0.000 0.000 0.049 1.000 0.193 0.206

1SR08 0.816 0.208 0.607 0.086 0.822 0.406 0.469

1SR09 0.182 0.500 0.337 1.000 0.715 1.000 0.733

1SR10 0.264 1.000 0.596 0.894 0.681 0.540 0.696

LUAS1 0.012 0.861 0.695 0.935 0.293 0.561 0.889

LUAS2 0.099 0.805 0.626 0.898 0.483 0.618 0.785

LUAS3 0.289 0.482 0.435 0.942 0.791 0.725 0.699

LUAS4 0.284 0.471 0.430 0.929 0.805 0.713 0.685

LUAS5 0.548 0.307 0.351 0.486 0.875 0.546 0.537

LUAS6 0.716 0.398 0.416 0.515 0.762 0.359 0.380

LUAS7 0.935 0.132 0.316 0.262 0.784 0.128 0.291

LUAS8 1.000 0.075 0.291 0.259 0.782 0.116 0.283

LUAS9 0.902 0.175 0.336 0.223 0.786 0.139 0.317

LUAS10 0.934 0.285 0.406 0.382 0.800 0.106 0.120

LUAS11 0.964 0.228 0.383 0.383 0.816 0.071 0.062

LUAS12 0.979 0.238 0.388 0.467 0.817 0.069 0.002

LUASs are estimates of unknown values using measured values at 1SR
sampled points based on kriging estimation technique

Table 2 Standardised water quality values used in OLS and GWR
analyses for 2010

Station DO BOD COD SS pH NH3_N TEMP

1SR01 0.194 0.727 0.410 0.946 0.674 0.200 0.689

1SR03 0.947 0.545 0.429 0.019 0.028 0.371 0.170

1SR04 0.875 0.000 0.000 0.099 0.628 0.237 0.179

1SR05 0.743 1.000 0.632 0.084 0.000 0.000 0.294

1SR06 0.952 0.636 0.397 0.014 0.730 1.000 0.000

1SR07 0.830 0.727 0.313 0.000 1.000 0.020 0.285

1SR08 0.786 0.182 0.200 0.019 0.605 0.241 0.475

1SR09 0.035 1.000 1.000 0.679 0.116 0.823 1.000

1SR10 0.194 0.727 0.410 0.946 0.674 0.200 0.689

LUAS1 0.124 0.652 0.461 0.987 0.516 0.309 0.723

LUAS2 0.186 0.652 0.461 1.000 0.516 0.309 0.723

LUAS3 0.015 0.616 0.421 0.598 0.495 0.343 0.901

LUAS4 0.000 0.616 0.421 0.576 0.495 0.343 0.892

LUAS5 0.313 0.616 0.421 0.300 0.495 0.343 0.684

LUAS6 0.709 0.616 0.421 0.403 0.495 0.343 0.361

LUAS7 0.899 0.616 0.421 0.064 0.495 0.343 0.213

LUAS8 1.000 0.616 0.421 0.002 0.495 0.343 0.217

LUAS9 0.856 0.616 0.421 0.108 0.495 0.343 0.204

LUAS10 0.943 0.616 0.421 0.154 0.495 0.343 0.067

LUAS11 0.946 0.602 0.435 0.112 0.432 0.384 0.040

LUAS12 0.984 0.602 0.435 0.093 0.432 0.384 0.021

LUASs are estimates of unknown values using measured values at 1SR
sampled points based on kriging estimation technique
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panel of experts consulted on the choice of parameters and the
weighting of each parameter (Gazzaz et al. 2012). The six
parameters chosen for the WQI are DO, COD, BOD, SS,
pH, and NH3-N. The calculations are done on the sub-
indices rather than the parameters themselves. From the com-
puted WQI, a river can be categorised into a number of clas-
ses, each indicating the valuable uses to which that river can
be used. This classification is based on allowable limits of
designated pollution parameters. For this reason, the DOE
has defined the values of the water quality variables
(WQVs) and WQI indicators that determine each water qual-
ity class (DOE 2007). Details on the WQI calculation proce-
dures are provided in the supplementary materials of this
study.

Rather than global, GWR model lets local parameters to
estimate the location of the sample and the model is expressed
as follows:

y j ¼ βo u j; v j
� �þ ∑p

i¼1βi u j; v j
� �

xij þ ε j ð1Þ

In which yj denotes the dependent variable, uj and vj are
considered the coordinates for each location j, βo(uj, vj)

considered the intercept of location j, and βi(uj, vj) is the esti-
mation of local parameter for variable xi at location j.

The GWR is executed by weighting all observed counts
about a sampling point using a function of distance decay,
by supposing that observed counts nearer to the location of
the sampling point have a greater effect on the estimates of
local parameter for the location (TU and XIA 2008). The
weighting function can be defined using the following expo-
nential decay formula:

wij ¼ exp −d2ij
� �

=b2 ð2Þ

In whichwij is the observation weight j for observation i, dij
is considered the distance between the two observations (i and
j), and b is known as the kernel bandwidth.

When the distance is superior to the kernel bandwidth, the
weight quickly moves towards zero. The bandwidth of either
fixed or adaptive kernel can be selected for GWR. However,
GWRmodel generally works better with a large number of sam-
pling sites, but with a small number of monitoring sites in a
delimited space from the sampling points (pollution potential
zone), and by choosing a fixed kernel which has a constant band-
width across space, the GWR also provides desirable results.

In this study, the comparison between OLS and GWR
models was done on the basis of adjusted R2 and the AICc
values of both models. Higher R2 indicates that the explana-
tory variable may explain further variance in the dependent
variable. While a lower AICc value means a closeness of the
model to reality, a lower AICc value indicates better model
performance. If the difference in AICc between two models is
less than 3, they are considered equivalent in terms of explan-
atory power (Fotheringham and Chris Brunsdon 2003). When
the difference between AICCOLS and AICCGWR is greater
than 3, one model shows a statistically significant improve-
ment over the other model (Yu et al. 2013).

For comparing the ability between OLS and GWR models
in dealing with spatial autocorrelation, global Moran’s I sta-
tistics was computed for the residuals of each of the OLS and
GWR models. As it is a regularly used indicator to assess
spatial autocorrelation, Moran’s I value varies from − 1 to 1.
Where a value of 1 indicates a perfect positive spatial autocor-
relation, while a value of − 1 means a perfect negative spatial
autocorrelation, and a value of 0 designates a perfect spatial
randomness. If significant autocorrelation is found in the re-
siduals, the results of the regression analysis are not reliable
(Ishizawa and Stevens 2007).

Afterwards, the local R2 values resulted from the GWR
models were used for mapping in order to give an ideal visu-
alisation of the spatiotemporal variations in the relationships
between land use and water quality at 1SR 9 regular monitor-
ing stations, and the capabilities of the land use indicators to
explain variations in water quality. All analyses and mappings
were done using ArcGIS 10.2, SPSS, and MS Excel.

Table 3 Standardised water quality values used in OLS and GWR
analyses for 2006

Station DO BOD COD SS pH NH3_N TEMP

1SR01 0.150 0.125 0.817 0.577 0.000 0.142 0.565

1SR03 1.000 0.104 0.337 0.690 0.658 0.013 0.039

1SR04 0.841 0.042 0.221 0.116 0.566 0.000 0.274

1SR05 0.794 0.000 0.000 0.000 0.470 0.135 0.689

1SR06 0.967 0.021 0.087 0.049 0.634 0.005 0.000

1SR07 0.927 0.083 0.125 0.471 1.000 0.048 0.465

1SR08 0.843 0.146 0.279 0.233 0.754 0.079 0.477

1SR09 0.000 1.000 0.990 1.000 0.581 1.000 1.000

1SR10 0.364 0.292 1.000 0.472 0.512 0.269 0.785

LUAS1 0.114 0.289 0.963 0.605 0.222 0.259 0.631

LUAS2 0.134 0.323 0.996 0.606 0.348 0.259 0.697

LUAS3 0.296 0.362 0.917 0.519 0.659 0.188 0.850

LUAS4 0.300 0.344 0.909 0.522 0.676 0.188 0.815

LUAS5 0.559 0.258 0.571 0.489 0.784 0.188 0.623

LUAS6 0.684 0.214 0.534 0.400 0.618 0.188 0.413

LUAS7 0.900 0.145 0.320 0.337 0.633 0.188 0.107

LUAS8 0.940 0.159 0.305 0.340 0.650 0.188 0.145

LUAS9 0.877 0.146 0.322 0.334 0.623 0.188 0.198

LUAS10 0.886 0.146 0.224 0.303 0.618 0.188 0.182

LUAS11 0.907 0.145 0.163 0.286 0.628 0.205 0.128

LUAS12 0.910 0.145 0.139 0.279 0.628 0.205 0.103

LUASs are estimates of unknown values using measured values at 1SR
sampled points based on kriging estimation technique
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Results

Land use composition in the pollution zones

In this study, a 1-km buffer zone from each sampling station is
used to estimate the land use area and its relation to water
quality at each monitoring site in 2006, 2010, and 2015.

Figure 3 shows the composition of land uses in the buffer
zones which include forest, agricultural, urban, and other land
groups. It is not surprising that agricultural and forest lands are
the most dominant in the contributory buffer zones, as these
lands occupied about 80% of the total area of the river basin.
However, the urban area, which is significant in only a few
contributing areas, is expected to increase more rapidly over
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Fig. 3 Land use composition in
the pollution zones
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the next decades, while other land use areas which include
cleared land, ex-mining areas, marshes, and abandoned and
eroded areas changed relatively little during these periods.

Pearson correlations between land use and water
quality variables

Table 4 shows the results of Pearson correlation analysis be-
tween land use and water quality variables. From the results, it
can be seen that in 2015, forest land is negatively correlated
with all the water quality variables except DO and pH which
are positively correlated with it. However, agricultural and
urban lands are positively correlated with most variables,
and agricultural area is significantly correlated with SS.
With the exception of DO, all other water quality variables
in 2015 are positively correlated with other land groups that
include abandoned mining areas and miscellaneous land.
Based on this result, it is evident that in 2015, apart from forest
area, all other land use activities including agricultural and
urban areas were important non-point sources of water pollu-
tion in the Selangor River. In addition, the result of correlation
analysis between land use and water quality pollutants in 2010
indicate that forest land is positively correlated with three
water pollutants which are DO, BOD, and pH, and negatively
correlated with other pollutants. However, agricultural activi-
ties, urban area, and other land groups exhibit positive rela-
tionship with most of the pollutants, with urban land showing
significantly positive correlation with BOD, and other land
groups indicating significant positive correlation with COD
and TEMP and significantly negative correlation with DO.
Moreover, in 2006, while forest, agricultural, and urban lands
are negatively correlated with most of the water pollutants,
other land groups which include cleared land and ex-mining
areas, however, are positively correlated with all the pollutants
except DO and pH. These land groups could be considered the

major non-point source of the river pollution in this year. In
general, the level of concentration of water pollutants at a
particular site is related to the change of forest or natural areas
to urban or agricultural land, while goodwater quality is main-
ly found in natural forest and undeveloped areas. However, it
should be noted that various qualitative and management
criteria may also influence the concentration of pollution at
sites where the river receives pollutant loads from poultry
farms, municipal wastewater and industrial wastewater (point
sources). This may alter the trends of some parameters in time
and space, regardless of the land use type or percentage in that
area. Therefore, efforts to control both pollutant sources and
pollution processes are needed.

Evaluation of performances of OLS versus GWR
models

The performance of the OLS and GWR models was compared
primarily based on the average adjusted R2 values (ranging from
0 to 1) of all the land use indicators and the result is given in
Table 5. A considerable improvement in GWR R2 over the OLS
R2 for each water quality variable and the land use indicators is
observed during these investigation periods. The R2 values from
GWR range from 0.65 to 0.07, 0.50 to 0.04, and 0.25 to 0.03 for
2015, 2010, and 2006, respectively. The R2 values from OLS
range from 0.44 to 0.04, 0.25 to 0.01, and 0.10 to 0.01 for 2015,
2010, and 2006, respectively. Thus, theR2 values fromGWR are
all considerably higher than the corresponding R2 values from
OLS. In addition, the result also indicates that the two models
most predict the variation in DO for all the three periods com-
paredwith the other pollutants, while themodels explain the least
the variation in NH3-N for these periods.

In addition to evaluating the performance of the OLS and
GWRmodels by considering higher values of global R2 (adjust-
ed R2), to identify the statistical significance of one model

Table 4 The results of Pearson correlations between land use and water quality variables in 2015, 2010, and 2006

Year Variables DO (mg/L) BOD (mg/L) COD (mg/L) SS (mg/L) pH NH3-N (mg/L) TEMP

2015 Forest 0.377 − 0.415 − 0.264 − 0.600 0.480 − 0.233 − 0.318

Agriculture − 0.541 0.495 0.087 0.712 − 0.593 0.334 0.489

Urban 0.286 0.270 0.112 − 0.457 0.186 0.037 − 0.064

Others − 0.523 0.567 0.164 0.582 0.043 0.643 0.421

2010 Forest 0.277 0.210 − 0.081 − 0.362 0.486 − 0.304 − 0.228

Agriculture − 0.030 − 0.565 − 0.472 0.262 0.030 0.110 0.006

Urban 0.379 0.784 − 0.622 − 0.336 0.031 0.221 − 0.325

Others − 0.746 0.552 0.805 0.534 − 0.403 0.366 0.773

2006 Forest 0.128 − 0.128 − 0.427 − 0.262 0.306 − 0.239 0.118

Agriculture − 0.187 − 0.042 0.367 0.471 − 0.470 0.123 − 0.255

Urban 0.265 0.165 − 0.229 − 0.355 0.222 − 0.234 − 0.101

Others − 0.260 0.076 0.488 0.038 − 0.070 0.081 0.377

Values in bold are different from 0 with a significance level alpha = 0.05
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improvement over the other, we used another measure of
goodness-of-fit which is the AICc values presented in Table 6.
In this case, models with smaller AICc values are better than
models with higher values. When the difference in AICc values
between two models is greater than 3, one model shows a statis-
tically significant improvement over the other model (Yu et al.
2013).

As shown in Table 6, significant perfections in the fit of the
GWR over OLS models are found for the forest models with
DO, BOD, COD, and TEMP in 2015; DO, TEMP, and SS in
2010; and TEMP in 2006. For agriculture, the GWR models
present significant improvements compared with their corre-
sponding OLS models for DO and pH in 2015; SS and TEMP
in 2010; and DO, SS, and pH in 2006. For urban, the improve-
ment of GWR models is significant for DO, SS, and TEMP in
2015, and only for TEMP in 2006. The improvement of GWR
models over OLSmodels for others is significant for DO, BOD,
and pH in 2015; for DO, SS, and TEMP in 2010; and only for

BOD and COD in 2006. Overall, 27 of the 84 GWR models in
total show significant perfections over their corresponding OLS
models. The remaining 57 models are considered to be insignif-
icant improvements over the OLSmodels, although in few cases
the OLS models show improvements slightly greater than their
correspondingGWRmodels, but none of these improvements is
greater than 3 in values of difference.

Comparison of spatial autocorrelations of OLS and
GWR residuals

The results of theMoran’s I statistics based on the residuals of the
GWR and OLS models for 2015, 2010, and 2006 are presented
in Table 7. Both positively and negatively spatial autocorrela-
tions are identified for all the OLS models. Significantly positive
spatial autocorrelations are also identified in the models. In
Table 7, bold number indicates values with significant autocor-
relation at p ≤ 0.05; bold and italic number indicates significant

Table 5 Comparison of average
coefficient of determination
(adjusted R2) between GWR and
OLS

Dependent variables Predictor variables GWR (R2) OLS (R2)

2015 2010 2006 2015 2010 2006

DO (mg/L) Forest, agriculture, urban, others 0.65 0.39 0.23 0.44 0.19 0.10

BOD (mg/L) Forest, agriculture, urban, others 0.34 0.26 0.05 0.20 0.25 0.03

COD (mg/L) Forest, agriculture, urban, others 0.07 0.25 0.15 0.04 0.25 0.07

SS (mg/L) Forest, agriculture, urban, others 0.35 0.50 0.11 0.26 0.23 0.04

pH Forest, agriculture, urban, others 0.42 0.04 0.25 0.13 0.04 0.06

NH3-N (mg/L) Forest, agriculture, urban, others 0.15 0.04 0.03 0.09 0.01 0.01

TEMP (mg/L) Forest, agriculture, urban, others 0.44 0.27 0.09 0.22 0.16 0.06

Table 6 Results of statistical test showing the improvement in the model fit of GWR over OLS

Water quality Model Forest Agriculture Urban Others

2015 2010 2006 2015 2010 2006 2015 2010 2006 2015 2010 2006

DO (mg/L) OLS 33.90 34.56 35.13 34.17 34.27 35.96 34.51 33.88 34.62 32.40 27.95 34.65

GWR 26.98 31.04 35.94 30.66 35.27 30.97 31.08 33.35 34.14 26.97 21.54 34.08

BOD (mg/L) OLS 35.58 34.88 33.13 32.75 31.82 35.27 34.60 26.71 35.03 34.60 32.01 35.23

GWR 31.95 34.89 35.14 32.34 30.83 33.28 33.86 26.52 33.04 31.44 32.03 29.24

COD (mg/L) OLS 34.63 35.22 33.47 35.21 33.02 33.98 33.17 30.87 34.80 35.03 25.89 32.83

GWR 29.63 33.23 33.48 34.70 32.03 31.99 35.17 28.88 34.09 35.04 25.91 27.22

SS (mg/L) OLS 31.26 34.02 35.64 28.91 34.64 33.02 35.17 34.20 34.07 31.56 32.25 35.27

GWR 31.12 30.39 34.05 28.22 30.61 29.04 30.76 32.59 34.07 31.46 29.84 35.27

pH OLS 32.92 31.85 34.39 31.38 35.27 35.04 34.97 35.27 34.83 35.26 33.69 35.24

GWR 32.84 32.86 34.36 27.89 35.29 31.53 34.48 35.28 32.83 29.21 33.69 34.92

NH3-N (mg/L) OLS 32.78 34.41 34.75 34.22 35.17 33.14 35.27 34.83 34.77 30.48 33.99 35.22

GWR 34.78 34.42 34.27 34.13 33.19 35.16 35.20 33.84 34.79 30.48 34.00 33.23

TEMP (mg/L) OLS 34.32 34.80 35.15 32.82 35.28 34.68 35.24 34.28 35.19 33.53 28.09 33.90

GWR 28.85 27.92 28.16 32.20 30.29 34.39 31.49 34.17 30.20 32.31 24.80 33.21

Bold numbers indicate a significant perfection of GWR over OLS, with AICOLS − AICGWR > 3
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autocorrelation at p ≤ 0.01. Based on these results, in 2015,
significant autocorrelations are found in 11 of the 28 OLS
models, while they are found in 9 models for 2010, and only in
5 models for 2006. However, most OLSmodels show no spatial
autocorrelation which indicates that most of these models are
suitable for examining the relationships between land use and
water quality variables. In addition, the results of the Moran’s I
statistics derived from the residuals of the GWRmodels are also
presented in Table 7. From these results, both positively and
negatively spatial autocorrelations are found for all the GWR
models. As shown in Table 7, in 2015, significant autocorrela-
tions are identified in 6 of the 28 GWR models, while they are
only found in 4 models for 2010, and in 5 models for 2006. This
result indicates that GWR models increase the reliability of the
relationships by minimising the spatial autocorrelations in the
model residuals.

Temporal variations in relationship between forest
land and water quality pollutants

Figure 4 shows the result of temporal variations in local
R2 values for forest land in relation to each water qual-
ity variable. This result indicates the capacity of forest
land to explain the variance of each water quality var-
iable at each monitoring site according to its proportion
of annual prediction. In Fig. 4, we can observe that in
2015, forest land most predicts the variation in DO,

BOD, SS, and TEMP compared to its prediction propor-
tion in 2010 and 2006. However, for pH and NH3-N,
the 2010 proportion of prediction is the highest, while
for the COD, the highest proportion is recorded in
2006, followed by the prediction of 2015, and no nota-
ble prediction in 2010 for this variable.

Temporal variations in interactions between
agricultural land and water quality pollutants

The result of temporal variations in local R2 values for
agricultural land in relation with each water quality pol-
lutant is shown in Fig. 4. This result indicates the abil-
ity of agricultural land to explain the variance in each
water quality variable at each monitoring station accord-
ing to its proportion of annual prediction. Figure 4
shows that in 2015, agricultural land most predicts the
change in most water quality variables compared with
its prediction proportion in 2010 and 2006. However, it
is only for BOD and COD that the proportion of pre-
diction for 2010 is dominant compared to other years.

Temporal variations in relationship between urban
land and water quality pollutants

The result of temporal variations of local R2 values for urban
land in relation to each indicator of water quality is shown in

Table 7 Comparison of Moran’s I of the residuals from the OLS and GWR models

Year Variables DO BOD COD SS pH NH3-
N

TEMP

2015 Forest OLS 0.5953 0.5402 -0.1590 0.6144 0.0930 0.5532 0.3822
GWR 0.5720 0.4724 -0.1595 0.5765 0.0623 0.5527 0.3074

Agriculture OLS 0.3990 0.2760 -0.1390 0.3084 -0.0951 0.4469 0.2109
GWR 0.3980 0.2283 -0.1749 0.3080 -0.1165 0.4463 0.1672

Urban OLS 0.4120 0.3852 0.0034 0.2305 0.0626 0.4343 0.3161
GWR 0.2212 0.2798 0.0032 0.1362 0.0234 0.3924 0.1283

Others OLS 0.2471 0.3852 -0.1285 0.0344 0.1467 0.2426 0.1542
GWR -0.0930 0.2023 -0.1290 -0.0359 0.0177 0.2417 0.0031

2010 Forest OLS 0.6000 -0.0406 0.1645 0.6396 -0.2371 -0.3034 0.5820
GWR 0.3991 -0.0409 -0.1647 0.4730 -0.2376 -0.3034 0.4222

Agriculture OLS 0.4716 0.0707 -0.1838 0.5259 -0.2318 -0.3430 0.4487
GWR 0.4711 0.0701 -0.1841 0.5172 -0.2323 -0.3430 0.4480

Urban OLS 0.2429 -0.2545 -0.3708 0.3254 -0.2230 -0.3089 0.2590
GWR 0.1572 -0.2545 -0.3708 0.2705 -0.2234 -0.3091 0.2115

Others OLS 0.3756 -0.1295 -0.2813 0.4013 0.0430 -0.2580 0.2781
GWR 0.1590 -0.1295 -0.2814 0.2564 0.0421 -0.2581 0.0944

2006 Forest OLS 0.2788 0.1092 0.3872 0.0257 0.0394 0.0950 0.3070
GWR 0.2782 0.1088 0.3867 0.0251 0.0279 0.0945 0.3063

Agriculture OLS 0.3287 0.0746 0.4963 0.3230 -0.0024 0.0099 0.3053
GWR 0.3282 0.0741 0.4957 0.3225 0.0062 0.0094 0.3045

Urban OLS 0.2716 0.1079 0.3965 0.1570 0.0557 0.0507 0.2432
GWR 0.1519 0.1074 0.2713 0.1563 0.0558 0.0503 0.2425

Others OLS 0.0845 0.0392 0.0669 0.0050 0.0971 -0.0164 0.0647
GWR -0.0350 0.0388 -0.0594 0.0043 0.0458 -0.0167 0.0642

Bold number indicates values with significant autocorrelation at p ≤ 0.05; bold and italic number indicates significant autocorrelation at p ≤ 0.01
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Fig. 4. This result indicates the capacity of urban land to ex-
plain the variance of each water quality variable at each mon-
itoring site based on its annual prediction proportion. Figure 4
indicates that in 2010, the proportion of annual prediction of
urban land was higher in DO, BOD, COD, and TEMP com-
pared with its prediction in 2015 and 2006 for these variables.
However, the proportion of prediction from urban land is
higher in 2006 for pH and NH3-N, while for SS, its prediction
for 2015 is dominant over other periods.

Temporal variations in relationship between other
lands and water quality pollutants

Figure 4 shows the result of temporal variations in local R2

values for other lands in relation to each water quality vari-
able; based on this result, the ability of other lands to explain
the variance in each water quality variable at each monitoring
site based on its yearly prediction proportion is observable.
Figure 4 indicates that other lands have higher prediction pro-
portion for most water quality variables in 2010 compared to

other periods. However, only for BOD and NH3-N, the pre-
diction proportion from these lands is higher in 2015 com-
pared with 2010 and 2006 predictions.

Spatial relationship between land use and water
quality variables in 2015

Figure 5 shows the result of spatial variations in local R2

values between land use and water quality variables at the
monitoring sites in 2015. This result indicates that the associ-
ation between land use and water quality variables varies spa-
tially from one monitoring station to another; thus, other land
groups which include abandoned mining areas and miscella-
neous land can explain most of the spatial variations inmost of
the water quality indicators, including DO, BOD, NH3-N, and
TEM. However, forest land can explain the most the variation
in CODwhile agricultural land explains the most the variation
in SS and pH parameters in 2015. This result is consistent with
the result obtained from the Pearson correlation analysis be-
tween land use and water quality in 2015 (Table 4).

Local R 
2
 of GWR models for forest land  

a

Fig. 4 Local R2 of GWR models for forest (a), agricultural (b), urban (c), and other lands (d)
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Spatial relationship between land use and water
quality variables in 2010

Figure 5 shows the result of spatial variations in local R2

values between land use and water quality variables at the
monitoring sites in 2010. This result indicates that the associ-
ation between land use and water quality variables varies spa-
tially from one monitoring station to another; therefore, other
land groups including cleared land, abandoned mining areas,
and eroded land may account for most of the spatial variation
in most of the water quality indicators in this year. While
urban land appears to be the most important predictor for
BOD and a good predictor for COD, forest land indicates
the greatest association only with pH. And agricultural land
has considerable association with BOD and COD. This result
also reflects the result of the correlation analysis between land
use and water quality in 2010 (Table 4).

Spatial relationship between land use and water
quality variables in 2006

Figure 5 shows the result of spatial variations in local R2 values
between land use and water quality variables at the monitoring
sites in 2006. This result indicates that the association between
land use and water quality variables is not the same at all the
monitoring sites. Figure 5 indicates that agricultural land can
account for most of the SS and pH variations in 2006, while
urban and forest lands are the greatest predictors of BOD and
NH3-N this year. However, other lands predict more variation
in DO, COD, and TEMP. This result is also in line with the
result of Pearson correlation analysis between land use and
water quality in 2006 presented in Table 4. However, unlike
Pearson’s correlation and OLS regression, the result of local R2

from GWR models allows us to observe how the relationship
between variables varies in space between sampling sites.

Local R 
2 

of GWR models for agricultural land  

b

Fig. 4 (continued)
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Temporal variations in relationship between land
uses and local water quality index

This research employed the local WQI to evaluate the state of
water quality in relation to land use indicators for the three
different periods. In this process, the water quality data was
converted into usable information that reflects the level of
water quality degradation in the river (Fig. 6). The water qual-
ity status expressed in terms of WQI indicates that the river
water is generally of good quality and can therefore be used
directly for recreational activities with body contact, but con-
ventional treatment is required for other uses such as domestic
supply. However, the river water is of average quality at
SR01, 1SR09, and 1SR10 for all 3-year periods, indicating
the level of water quality degradation requiring extensive
treatment. These monitoring stations are located downstream
of the watershed where anthropogenic activities are dominant
and they are classified in class III by the DOE-water quality
index (WQI). In addition, Fig. 6 clearly shows that

predominantly agricultural areas are associated with good wa-
ter quality status, while areas of agricultural, urban, and other
land use activities locate sampling stations that have generally
a moderate water quality status in the river basin.

Discussion

Relationship between land use and water quality
indicators

All the land use indicators have more or less interactions with
all the water quality variables at certain monitoring sites or even
throughout the study area. These interactions varied between
different variables of water quality and land use. These vari-
ables also showed an important spatial non-stationarity. The
interactions for the same pair of land use and water quality
variables at different monitoring sites varied not only in re-
sponse to different time periods but also according to different

Local R 
2
 of GWR models for urban land  

c

Fig. 4 (continued)
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levels of land use indicators in the contributing areas. Large
spatial differences in interactions were observed between a
low and a high percentage of each land use indicator at different
monitoring sites. While the Pearson’s correlation and OLS re-
sults primarily indicated the global associations between land
use indicators and water quality pollutants, GWR results en-
abled to observe the spatial non-stationarity of these associa-
tions, as also demonstrated by the previous studies
(Mohammadi et al. 2019; Tu 2011; TU and XIA 2008; Yu
et al. 2013; Chen et al. 2016; Huang et al. 2015). However,
unlike these previous studies, the present study also demon-
strated considerable temporal differences in the interactions be-
tween the same pair of land use indicators and water quality
pollutants at different monitoring sites over different periods. It
was relevant to see how these interactions vary over time, as the
main concern could be the peak of pollution over time, not
regular pollution over time. Thus, both the temporal irregularity
and the spatial non-stationarity between land use and water
quality indicators at different sites were covered in this study.

Temporally varying relationship between land use
and water quality pollutants

While all of the land use indicators used in this study were
relatively important predictors of water quality, it is important
to note that the predictive ability of the same pair of land use
indicators varies from period to period, which could be due to
the fact that the percentage of each category of land use was not
the same in different periods. The Selangor River watershed
has undergone various land use changes in recent decades, with
a considerable conversion of forest land to either agricultural,
urban, or other development areas (Fig. 1). Although the forest
area is affected by various anthropogenic activities, however,
the vegetative landscape of the river basin is still covered by
about 57% of natural forests (Kusin et al. 2016). This is an
important area for maintaining water quality in good condition,
as forest land showed a negative correlation with most water
quality pollutants in all the investigation periods. However,
forest became a more important predictor of most pollutants

Local R 2 of GWR models for other lands  

d

Fig. 4 (continued)
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in 2015 compared to 2010 and 2006 where the forest area was
correlated with fewer pollutants. Likewise, agricultural land
most predicted the change in most water quality variables in
2015, while urban areas and other land groups including
cleared land, abandoned mining areas, and eroded land were
the most important predictors of water quality in 2010. Thus,
the variation in prediction capability of an explanatory variable
is consistently the result its level of correlation with the depen-
dent variable under observation. As such, only GWR models
have the predictive ability to examine how these interactions
vary across the study area and over time. Traditional statistical
methods such as the OLS and Pearson correlation techniques
are global and do not reveal local relationships.

Spatially varying relationship between land use and
water quality pollutants

Forest is commonly associated with good water quality in
various studies on watersheds worldwide (Bahar et al. 2008;

Huang et al. 2014; Camara et al. 2019; Nainar et al. 2017).
Similarly, in this study, negative associations were found be-
tween forest land andmost water quality pollutants. The GWR
results showed that these associations were not constant
among the different sampling sites. Although natural forest
covers the largest area of the total study area, however, in most
contributing areas, local estimates indicate that forest frag-
mentation is not very useful in improving the quality of water
in the study area, since the forest area has a higher explanatory
power only for COD in 2015, pH in 2010, and BOD andNH3-
N in 2006. Thus, the ability of forest land to explain the
change in water quality not only varied with time and space
but also differed among different water quality pollutants.

Agricultural land is generally considered to be an important
source of non-point pollution for surface water quality, signif-
icantly positive association is often found between agricultural
land and increased pollution of water quality due to various
farming activities such as fertiliser application, crop produc-
tion, and livestock (Camara et al. 2019; Stutter et al. 2007;

a

Local R 2 of GWR models for 2015 

Fig. 5 Local R2 of GWR models for land use indicators in 2015 (a), 2010 (b), and 2006 (c)
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Ariffin et al. 2016). Although agricultural land represented the
lowest percentage of land use in the contributing areas at 1SR
sites, it could nonetheless make a great contribution to water
pollution in the river watershed by having positive correlation
with several water quality parameters and significantly posi-
tive association with SS in 2015. It is not surprising that with
its lowest percentage, agricultural land had a high predictive
power for the parameters SS and pH in 2015, BOD and COD
in 2010, and SS and pH in 2006, because studies indicated that
agricultural land usually represent less than 10% in most wa-
tersheds, but continues to contribute considerably to water
pollution (Tu 2011a, b; Mehaffey et al. 2005). In this study,
the ability of agricultural land to explain the variation in water
quality not only varied over time and space but also differed
among the different water quality pollutants (Fig. 5).

Urban land, including residential and recreational lands,
facilities, and public service areas, is generality related to

water quality deterioration resulting from various anthropo-
genic activities, such as food waste, construction residues,
municipal sewage, and wastewaters from treatment plants,
which more correlate with higher concentration of water qual-
ity pollutants in watersheds, particularly in developing coun-
tries (Azyana et al. 2012; Tong and Chen 2002; Nurhidayu
et al. 2016; Camara et al. 2019). Urban areas also influence
surface runoff and erosion patterns and alter hydrological pro-
cesses (Camara et al. 2019). However, in the present study,
urban land exhibited positive relationship with most of the
water quality pollutants, with significantly positive correlation
with BOD in 2010. Tong and Chen 2002 also found signifi-
cantly positive relationships between urban land and many
water quality parameters including BOD in the State of Ohio
watersheds, USA. In this study, the ability of urban land to
explain water quality change was revealed by GWR (Fig. 5),
the results also indicated that this explanatory ability was not

Local R 2 of GWR models for 2010 

b

Fig. 5 (continued)
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the same over time and space and neither the same among the
different water quality parameters. Thus, urban land appeared
to be the most important predictor of BOD and a good predic-
tor of COD in 2010, and a greater predictor of BOD and NH3-
N in 2006.

Another important group of land use in this study included
cleared land, abandoned mining area, eroded land, and mis-
cellaneous area. This land use group showed positive relation-
ships withmost of the water quality variables throughout these
investigation periods. The results of the Pearson correlation
and OLS, as well as the GWR results, indicated that this group
of lands was more positively associated with most of the water
pollutants in the study area compared to other land use indi-
cators such as forest, agricultural, and urban areas. Mining
activities were a major source of pollution in many parts of
the world, and several studies have addressed this issue (Kusin
et al. 2018; Gomez-Gonzalez et al. 2016; Diami et al. 2016).
Cleared and eroded lands could also make a significant con-
tribution to water pollution through continuous accumulation

of sediments in nearby river systems. However, the results of
GWR in this study indicated that these lands could explain
most of the spatial variations of most of the water quality
parameters, including DO, BOD, NH3-N, and TEM in 2015
and 2010. Thus, this explanatory power was different not only
over time and space but also among the different water quality
parameters.

Conclusion

This study analysed the influence of four predictors of water
quality, including forest and agricultural, urban, and other
lands, on seven water quality parameters in the Selangor
River watershed for three different periods. By performing
the analysis within the potential pollution zones, the results
of the Pearson correlation and OLS, as well as the GWR
results, showed consistency regarding interactions between
land use and water quality indicators.

Local R 2 of GWR models for 2006 

c

Fig. 5 (continued)
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The performance of the OLS and GWR models was com-
pared using the average adjusted R2 values of all the land use
indicators; the results showed considerable improvement in
GWR R2 over the OLS R2 for each water quality variable for
all the three different periods. The performance of the GWR
models over OLS models was also demonstrated by measur-
ing the model goodness-of-fit based on AICc values. In this
regard, there are many significant improvements in the fit of
the GWR models compared to the OLS models. In addition,
the capacity of the two models in dealing with spatial autocor-
relation was compared; the results of Global Moran’s I indi-
cated that the GWRmodels increase the reliability of relation-
ships by minimising spatial autocorrelations in the model
residuals.

To examine the temporal variations in relationship between
each land use and water quality pollutants, the local R2 values
from the GWR models were mapped at 1SR 9 regular moni-
toring stations for clear visualisation of their varying temporal
relationship across the river basin. The proportion of predic-
tive ability of the same land use type varied not only with time
and space but also among the water quality parameters. In
addition, to compare spatial relationships between land use
and water quality indicators for the different years, the local
R2 values from the GWR models were equally mapped. The
results indicated that the ability of land use indicators to ex-
plain water quality change was not the same in time and space
and neither the same among the different water quality param-
eters. GWR can be a useful tool for water resource managers
and multi-decision-makers to discover the causes of local pol-
lution on a temporal and spatial scale, to improve understand-
ing of the state of local pollution and to adopt appropriate land
use planning and management policies to ensure the sustain-
ability of the local watershed. However, this study

recommends that future research considers more land use
and water quality variables, as well as more sampling sites.
The study also suggests that future studies take into account
topography, precipitation, surface flow, and the nature of pol-
lutants to identify areas of pollution or contributing area, as
these factors, in addition to distance, may also alter the influ-
ence level of pollution to rivers. Future studies should also
identify the best measures to prevent a serious threat to the
availability of water resources in the basin, which could pro-
mote the sustainable management of water resources within
the framework of the State’s access to sustainable develop-
ment, which involves the achievement of environmental, eco-
nomic, and social sustainability measures.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.1007/s12517-021-06596-4.
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