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Abstract
An earthquake with Ms 7.0 (33.2° N, 103.8° E) occurred in Jiuzhaigou County of Sichuan Province in China on 8 August 2017.
This earthquake triggered a large number of landslides in the study area. Although the susceptibility quality level index has
improved, the high-quality assessments still have remained rare.We adopted three models, including the logistic regression (LR),
support vector machine (SVM), and random forest (RF) to study the quality performance of the susceptibility distribution rule of
earthquakes induced landslides. We used satellite images of before and after earthquakes and landslides as well. We used the area
under receiver operating characteristic (ROC) curve (AUC) and ratio to evaluate the model’s accuracy and quality performance,
including the mapping availability susceptibility assessment. This study reveals that RF has the highest ratio (2.07) as compared
to the LR (1.78) and SVM (1.90). The result shows that RF has more potential to implement future experiments in Sichuan
Province because of a better performance quality in the susceptibility assessment of landslides induced by earthquakes.

Keywords Earthquake-induced landslide .Randomforest (RF) .Logistic regression(LR) .Supportvectormachine (SVM) .ROC
curve

Introduction

Sometimes, landslides become critical natural issues in the
Sichuan plateau, mostly the giant panda sanctuaries. Some
of the landslides in Sichuan Province are secondary disas-
ters that are triggered by earthquakes. They generate

casualties and damage to infrastructure and environmental,
historical, and cultural heritage sites (Cao et al. 2019).
Worse still, there would be a severe implication for the
habitat for the wild giant pandas. On 8 August 2017, a
Ms 7.0 earthquake occurred in Jiuzhaigou County, Aba
Autonomous Prefecture of Sichuan Province, China
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(location: 33.2° N, 103.8° E) and focal depth of 20 km
(CENC 2017).

In the early 1960s, many countries have realized the impor-
tance of earthquake landslides susceptibility mapping, and
enormous research has been published around the world
(Carrara 1983; Brabb et al. 1972; Reichenbach et al. 2018).
Many researchers have tried to evaluate landslides suscepti-
bility utilizing different types of methods; for example, some
of them are qualitative analysis, semi-quantitative analysis,
and quantitative analysis (Lee et al. 2008; Wang and Lin
2010; Lee and Talib 2005; Li et al. 2017a, b; Reichenbach
et al. 2018; Pirasteh et al. 2020; Zhu et al. 2020). These studies
analyzed the relationships between landslides and natural
predisposing factors. They also evaluated landslide
susceptibility and mapped the landslide susceptibility
distribution. For example, Reichenbach et al. (2018) imple-
mented a susceptibility quality level index. They found that
though the quality of published models has been improved
over the years; however, high-quality assessments still
remained rare. Wang and Lin (2010) applied the infinite slope
theory to the regional analysis and development of potential
shallow landslide maps. Furthermore, Torgoev and Havenith
(2013) used seismic slope stability and Newmark displace-
ment method in 2D dynamic modeling to a landslide-prone
area in the Mailuu-Suu Valley. Li et al. (2017a) showed the
progressive failure of slope truly by calculating the warning
deformation of landslides. Faris and Wang (2014) sought to
examine the initiation mechanism of landslides that are trig-
gered by earthquake during rainfall. They developed a new
approach to evaluating landslide susceptibility through pore
pressure strain and stiffness.

Liu et al. (2020) introduced the key technologies and ma-
chine learning algorithms in data collection, data storage, and
data processing and summarized the applications of big data
technology in landslides, mudslides, and other geological di-
sasters by domestic and foreign scholars. An unsupervised
representation learning module, which features independence,
compactness, robustness, and transferability, was designed by
Zhu et al. (2020). They restricted Boltzmann machines and
denoising autoencoder to unsupervised discover the underly-
ing representations embedded in the thematic maps. They ap-
plied the transferring strategy in an adversarial manner to gen-
eralize the learned representations to the sample-scarce area.
Ye et al. (2019) studied landslides triggered by the earthquake
and proposed a deep learning framework with constraints to
detect landslides on the hyperspectral image. The framework
consisted of two steps, including a deep belief network to
extract the spectral-spatial features of a landslide, and then
inserted the high-level features and constraints into a logistic
regression classifier for verifying the landslide.

Besides, in recent years, many statistical methods, geograph-
ical information system (GIS), and remote sensing techniques
have been used to analyze landslide susceptibility (Pirasteh et al.

2020; Reichenbach et al. 2018; Wang et al. 2019; Zhu et al.
2020), including the logistic regression (Ayalew and
Yamagishi 2005; Erener and Düzgün 2012; Wei et al. 2013),
frequency ratio (FR) (Juliev et al. 2019; Yan et al. 2019), and
index of entropy (Jaafari et al. 2014; Shirani et al. 2018).
Although some of the researchers have combined statistical ap-
proach and GIS techniques and performed more suitable for the
large study area, landslide susceptibility mapping is a typical
complex and nonlinear problem (Lai and Tsai 2019).
However, the results from the statistical approach may not
achieve satisfactory accuracy. Subsequently, many machine
learning approaches are introduced, such as SVM (Pandit et al.
2017; Pawluszek et al. 2018;Wang et al. 2019; Hosseinalizadeh
et al. 2019), random forest (Hong et al. 2016), artificial neural
network (Lee et al. 2003; Pham et al. 2017), and decision trees
(Chen et al. 2018). These methods have been successfully ap-
plied in many places for landslide susceptibility assessment in-
corporated with the GIS. Meten et al. (2015) applied FR and LR
to landslides’ susceptibility assessment by using the GIS. Zhou
and Fang (2015) built SVM with four kernel function such as
radial basis function, polynomial, linear, and sigmoid kernel
function. They tested the accuracy of those models by generat-
ing landslide susceptibility maps and comparing them with
known landslides (Zhou and Fang 2015). Dou et al. (2015)
considered the spatial autocorrelation of landslide causative fac-
tors. They used CF to optimize the landslide causative factors.

The RF and LRmodels are twomodels that have been used
commonly in many studies because they are effective in map-
ping landslide susceptibility (Wei et al. 2013). Currently,
SVM is relatively mature in landslides susceptibility assess-
ment (Wang et al. 2019). Nevertheless, these models’ appli-
cation to other areas is limited without testing the prediction
accuracy and spatial generalization ability. Therefore, the per-
formance quality and a clear geographical bias in susceptibil-
ity study locations remain unknown how well these models
will perform in seismic landslides areas, respectively. To pre-
dict seismic landslide susceptibility in a new area by applying
the models, it will make sense to learn about the natural disas-
ters resulting from earthquakes. For this reason, we selected
the RF, LR, and SVM models in this study. It is because the
objective is to understand the potential application and perfor-
mance quality of each model. Notably, we consider geology
and environmental conditions incorporating remote sensing
geological interpretation to develop the earthquake-triggered
landslides susceptibility models of Jiuzhaigou.

Moreover, the application of machine learning methods in
landslide disaster prevention is still not comprehensive in
many scholars’ current research, for example, selecting land-
slide influencing factors due to many factors that affect land-
slides. The selection of factors is often ignored or did not pay
attention to the importance of analyzing the selected factors.
On the other hand, the authors noticed that the hyperparameter
optimization problem was ignored in the algorithm selection
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process, and the cross-validation and model training was not
emphasized. Similarly, in the final classification of landslide
sensitivity, only one verification method is used to prove the
mapping or model accuracy, leading to inevitable
misjudgments.

To sum up, in addition to the high research value of select-
ed areas, the research also made some remarkable improve-
ments based on traditional machine learningmethods for land-
slide susceptibility research: (1) used the variance-inflation-
factor (VIF) to evaluate the collinearity of landslide-inducing
factors and to confirm the high correlation; (2) evaluated the
three kernel functions of support vector machines and selected
the one which with the best performance, then compared with
the other two algorithms to obtain more accurate and compre-
hensive comparison results; (3) used the root mean square
error (RMSE) to select the parameters of the algorithm and
using the best one to build the model to reduce the errors
caused by the parameters; (4) we used two methods to evalu-
ate the vulnerability of the algorithms. Therefore, we can com-
prehensively draw a comparison of the advantages and disad-
vantages of the models for the landslide zoning in the study
area.

The geology of the study area is explained in the “Study
area and geology” section. The “Data acquisition” section
describes how the data are acquired. The processing of data
and the methodology are explained in the “Method” section.
This section explains the comparison of the methods and val-
idation. The “Results” section provides the study results. We
discuss how to use the techniques in this study, and which one
has a better performance than another in the “Discussion”
section. We conclude the paper in the “Conclusion” section.

Study area and geology

The study area locates in Jiuzhaigou County. It is in the north-
ern boundary of Sichuan Province, and it situates in the east of
the Bayan Har block on the eastern margin of the Qinghai–
Tibetan Plateau (Fig. 1). The regional geology comprises of
features from Devonian to Triassic outcrops, and it consists
mostly of slate, limestone, dolomite, and metamorphic sand-
stone (Li et al. 2019). Geologically, the study area has rela-
tively complex structures because of the tectonic activities and
the stresses from different directions in the regional area
(Wang et al. 2018). Morphologically, we found that the lithol-
ogy, tectonic uplift, glaciation, and river erosion control struc-
tures in the study area. This geomorphology phenomenon
results in considerable elevation differences and variable land-
forms. The terrain in the southern part of the region is rela-
tively high. The northeastern terrain has low terrain ranging
from 1788 to 4870 m above mean sea level. The valleys in the
study area trend from SSW to NNE or NWW to SEE. They
are canyons with steep slopes and high cliffs, making them

prone to landslides, mainly when it triggers by earthquakes.
For example, an Ms 7.0 earthquake happened in Jiuzhaigou
National Nature Reserve onAugust 8, 2017; it not only caused
25 deaths and property losses but it also destroyed paleontol-
ogy fossils and ancient glacial landscapes. The earthquake’s
epicenter was at 33.20° N and 103.82° E with a 20-km depth
(CENC 2017). It is considered the extension of the Huya fault
(Li et al. 2017a, b; Zhang et al. 2018). This inferred
seismogenic fault passes through the Fiver Flower Lake to
Jiuzhai Paradise, shown in the NW–SE direction. A number
of seismic geohazards, including landslides, debris flows, and
rockfalls have been generated by the triggered-earthquake
phenomenon. Moreover, it resulted in major injuries to the
panda habitat, cultural heritage, and environment.

Data acquisition

We used remote sensing images, terrain, seismic, and regional
planning data, in conjunction with some field observation
sampling data. Remote sensing data include Ziyuan-3 survey-
ing satellite image (ZY-3, 2.1 m) and Landsat-5 satellite image
(30 m). We acquired the terrain data of Advanced Spaceborne
Thermal Emission and Reflection Radiometer (ASTER)
Global Digital Elevation Model (GDEM) (V2.0, 30 m,
UTM/WGS84) from NASA (http://www.nasa.gov/). The
seismic data of the peak ground acceleration (PGA) is derived
from the USGS (http://glovis.usgs.gov/). We collect the
regional planning data from the State Bureau of Surveying
and Mapping of Sichuan Province of China to define
administrative divisions in the study area.

We used China satellite ZY-3 images (2.1 m, UTM/
WGS84, spectral range: 0.50–0.80um, date: 03/31/2012,
path number: 1248) as benchmarks to correct the drone
data geometrical ly by using ENVI software. We
interpreted the images of the Landsat 5 satellite (after the
earthquake) based on the image interpretation techniques
(Ali and Pirasteh 2004; Lillesand et al. 2015) and compare
them with the ZY-3 satellite remote sensing image (before
the earthquake) and field observations as well (Fig. 2). We
prepared the datasets as different layers to compute them in
ArcGIS and also to prepare the landslide susceptibility zo-
nation map. The authors constructed a landslide inventory
map with 270 landslides that are triggered by the earth-
quake (Fig. 3). We divided the landslide locations random-
ly into two parts, 70% were employed for the training
model, and 30% applied to verify models.

Method

The method contains four major sections. We created a
geodatabase from the required data for landslide
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susceptibility mapping. The previously required maps,
such as geology maps, were scanned and digitized on-
screen by using ENVI and ArcGIS. The coordinate conver-
sion process was applied to generate the same map coordi-
nates. We used digital image processing techniques for
atmospheric and geometric corrections of satellite and
drone images (Lillesand et al. 2015). The image element
techniques were applied to interpret the images and to ex-
tract the required features such as lineaments (Ali and
Pirasteh 2004; Lillesand et al. 2015). In the next section,
we constructed three models to develop a susceptibility
map and compared the three models. Furthermore, in the
last stage, we evaluated each model’s performance quality
(Fig. 4).

Landslide predisposing factors

The occurrence of landslides depends on many factors, and
the relationship between these factors is complex
(Reichenbach et al. 2018). According to Dai et al. (2002)
and Wan (2009) landslide, predisposing factors are two cate-
gories: (1) the static predisposing factors include the environ-
ment of mountains that decides the potential sensitivity of
landslides. (2) The dynamic predisposing factors include rain-
fall and earthquake. These dynamic predisposing factors may
trigger landslides to some degree. Built on the above, we
selected the following static predisposing factors. (a) The
slope degree, (b) relief degree of the land surface, (c) normal-
ized difference vegetation index (NDVI), and (d) land use

Fig. 1 Study area

Fig. 2 Field photos from the study area (a) woodland area, (b) along the road
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types, (e) peak ground acceleration (PGA), and (f) the distance
to the seismic faults.

(a) The slope degree (SLOPE) is a dominant impact fac-
tor for landslides susceptibility (Wu et al. 2004; Kaya
et al. 2015). According to the mechanical analysis of
landslides, the mountain is the decline in the power
of G × sin , where G is the gravitational potential
energy, is the terrain slope. In the same situation,
the greater value of the slope degree triggers more
landslides. We extracted the slope degree from the
ASTER GDEM (V2.0, 30 m, UTM/WGS84) by
ArcGIS based on the subset size of 3° × 3°and, the
average maximum technique. The steep slope is
mainly distr ibuted in the northwest area of
Lingguan town, and 73% of landslides have occurred
on slopes over 20° (Fig. 5a).

(b) A relief degree of the land surface (RDL) can be an
excellent performance characteristic as a whole. The re-
lief degree of land surface values is expressed by the
formula of Hmax−Hmin, where Hmax is the highest alti-
tude, andHmin is the lowest altitude (Feng et al. 2008). A
landslide can be abstracted as inhomogeneous slope
block material. Previous studies (Pirasteh et al. 2020)
have shown that the landslide susceptibility tends to

increase with the relief degree of land surface values
(Fig. 5b).

(c) Normalized difference vegetation index (NDVI) repre-
sents the fraction of the area’s vegetation coverage (Lee
and Talib 2005; Ahmed 2015). This study selects the
Landsat-5 data to extract vegetation information in the
study area before the earthquake (Fig. 5c). We applied
atmospheric correction, geometric correction, and band
operation digital image processing techniques (Lillesand
et al. 2015). The NDVI computation formula is as
follows:

NDVI ¼ NIR−R
NIRþ R

ð1Þ

where NIR is near-infrared band, and R is the visible red
band.

(d) The land use types (LT) are one of the most sensitive
factors (Bourenane et al. 2014). We divided the land
use types into construction land, cultivated land, forest
land, and meadows (Fig. 5d).

Fig. 3 Landsat image of study
area
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(e) Peak ground acceleration (PGA) is the acceleration of the
ground movement. The greater value of the PGA causes
greater stress to the mountain and decreases the stability
of the mountains (Lee et al. 2008; Zhou and Fang 2015).
We determined that 91% of the landslides have occurred
in the PGA range larger than 0.28 g. Moreover, 56% of
landslides took place in the range of PGA greater than
0.44 g (1 g = 10 m/s2) (Fig. 5e).

(f) Distance from fault (DF) has a decisive role in the release
of seismic energy. As we close to the fault, we will see
more concentrated seismic energy (Farrokhnia et al.
2011; Xu et al. 2013). Generally, a lot of landslides di-
saster appears near the seismic fault (Elayaraja and
Ganapathy 2015). We used the spatial analysis function

to calculate the distance to the seismic faults by using
ArcGIS (Fig. 5f).

Predisposing factor classification

We employed the factor classification method to reduce the
spatial autocorrelation of landslide predisposing factors. We
divided the SLOPE, RDL, PGA, and NDVI into five classes
(Table 1) based on the natural discontinuities classification
method. DF and LT have been divided into four categories
(Table 1).

Fig. 4 Methodology flowchart
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Table 1: Overview of classes limits for different factors

Model construction

We extracted 270 earthquake-induced landslides and
270 non-landslides (i.e., the susceptibility of landslides
is about zero). We also extracted the predisposing fac-
tors. The FR method divided the total data into the
training data (70%, 378 sample points) and test data
(30%, 162 sample points). The training data were used

to build the model, and the experimental data have used
to verify the model’s performance.

Logistic regression

The LR has been widely used in many areas such as biomedical,
economic management, and geography (Yang et al. 2015). The
logistic regression model is derived from the generalized linear
model. Thismodel combines response variables and independent
variables by the connecting function.

Fig. 5 Landslide predisposing factors. a Slope degree. b Relief degree of the land surface. c Peak ground acceleration (PGA). d Normalized difference
vegetation index (NDVI). e Land use types. f The distance from the seismic fault

Table 1 Overview of classes limits for different factors

Factor Number of classes Classes

SLOPE/(°) 5 1: (0–12), 2: (12–21), 3: (21–30), 4: (30–41), 5: > 41

RDL/(m) 5 1: (0–23), 2: (23–39), 3: (39–58), 4: (58–87), 5: > 87

PGA/(g) 5 1: (0–0.32), 2 : (0.32–0.40), 3: (0.40–0.48), 4: (0.48–0.52), 5: > 0.52

NDVI 5 1: < 0, 2 : > 0.6, 3 : (0.47–0.60), 4: (0.34–0.47), 5: (0–0.34)

LT 4 1: Building land, 2: arable land, 3: forest, 4: grass

DF/(m) 4 1: > 1200, 2 : (800–1200), 3: (400–800), 4: (0–400)
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We estimated the probability of a landslide by using the
model output (it is between 0 and 1) for each grid cell.
Therefore, we express the LR model as follows:

p Y ¼ 1ð Þ ¼ 1

1þ e−z
¼ eαþβ1x1þ…þβnxn

1þ eαþβ1x1þ…þβnxn
ð2Þ

The ratio between the probability p (i.e., dependent vari-
able Y is 1) and the probability (1 − p) (i.e., the dependent

variable Y is 0) indicates the odds or likelihood ratio. The
natural logarithm of odds (Logit) defines a linear expression
of the explanatory variables x1… xn, and it is expressed by:

logit pð Þ ¼ ln
p

1−p
¼ α þ ∑

n

j¼1
β jx j

¼ αþ β1x1 þ β2x2 þ…þ βnxn ð3Þ

Table 2 Usage specification of the LibSVM and the operation process

Usage specification

- s svm_type Set type of SVM (default 0):
0 – C-SVC
1 – nu-SVC
2 – one-class SVM
3 – epsilon-SVR
4 – nu-SVR

- t kernel_type Set type of kernel function (default 2)
0 -- linear: u′*v
1 -- polynomial: (gamma*u′*v + coef0)^degree
2 -- radial basis function: exp(-gamma*|u-v|^2)
3 -- sigmoid: tanh(gamma*u′*v + coef0)

- d degree Set degree in kernel function (default 3)

- g gamma Set gamma in kernel function (default 1/num features)

- r coef 0 Set coef 0 in kernel function (default 0)

- c cost Set the parameter C of C-SVC, epsilon-SVR, and nu-SVR (default 1)

- n nu Set the parameter nu of nu-SVC, one-class SVM, and nu-SVR (default 0.5)

- p epsilon Set the epsilon in loss function of epsilon-SVR (default 0.1)

- m cachesize Set cache memory size in MB

- e epsilon Set tolerance of termination criterion

- h shrinking Whether to use the shrinking heuristics, 0 or 1

- b probability estimates Whether to train a SVC or SVR model for probability estimates, 0 or 1

- wi weight Set the parameter C of class i to weight*C, for C-SVC

Fig. 6 Example of the algorithm for the operation process
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The intercept of the regression function is represented byα.
The coefficient that measures the contribution of the indepen-
dent variables (Xi, i = 1 − n) is β i(i = 1 − n). We also used the
maximum likelihood function to estimate the coefficient β.
We consider that if the β is positive, the factor increases the
probability of change. The factor has the opposite effect if β is
negative. We utilized the statistical package for R to calculate
all the coefficients.

Support vector machine

Vapnik (Vapnik and Cortes 1995) proposed SVM for regres-
sion in 1996. The SVM constructs a hyperplane or set of
hyperplanes in a high or infinite-dimensional space. It can

be used for classification and regression. A kernel function K

xi!; x j!
� � ¼ ∅ xi!

� �T∅ x j!
� �

was used to account for the non-
linear decision boundary (Vapnik and Cortes 1995). Here,
training vectors xi

! ’s are mapped into a higher (maybe infi-
nite) dimensional space by function ∅. To solve a nonlinear
problem, three kernel functions have been introduced
commonly.

The following four types of kernel function are implement-
ed in this study:

Linear kernel function (linear):

K xi!; x j!
� �

¼ xi!
T
*x j! ð4Þ

Radial basis kernel function (RBF):

K xi!; x j!
� �

¼ exp −=δ2 xi!−x j!
���

���
2

� �
ð5Þ

where δ2 is the bandwidth of the radial basis function.
Polynomial kernel function (polynomial):

K xi
!; x j!

� �
¼ γXT

i þ r
� �d ð6Þ

where the degree of the polynomial kernel and γ > 0 is d.
We derived and rasterized the environmental parameters by

GIS techniques. This study employed the SVM analyses by
using the LibSVM software. It provides a simple interface
where analysts can easily link it with their own programs.
The SVMmodel only outputs 0 and 1. The usage specification
of the LibSVM and the algorithm operation process of calling
the function are shown in Table 2 and Fig. 6.

Random forest

The RF has a series of decision trees. Each decision tree is
independent, and it can get a result. The RF is the combination
of these decision trees. In this way, the RF can achieve a better
result than the decision tree model.

RF:

H Xð Þ ¼ avkmax ∑
k

i¼1
I hi Xð Þ ¼ Yð Þ ð7Þ

where, avk indicates averaging and I is the indicator function.

Table 3 Confuse matrix

Confuse matrix Actual value: P Actual value: N

Prediction outcomes: P TP FP

Prediction outcomes: N FN TN

Fig. 7 The importance of
landslide predisposing factors

Table 4 Multicollinearity diagnostics

Factor VIF Tolerance

SLOPE 2.079183 0.4809582

RDL 2.047919 0.4883006

PGA 1.030851 0.9700727

NDVI 1.070813 0.9338698

LT 1.020979 0.9794522

DF 1.054336 0.9484646
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Margin function:

mg X ; Yð Þ ¼ avkI hk xð Þ ¼ Yð Þ−max j≠iavkI hk xð Þ ¼ jð Þ� � ð8Þ

The margin function is used to express the reliability of the
model. The generalization error is given:

PE ¼ PX ;Y mg x; yð Þ < 0ð Þ ð9Þ

When increasing the decision tree, RF almost converges to:

PE ¼ PXY avkI hk Xð Þ ¼ Yð Þ−max j≠iavk I hk Xð Þ ¼ jð Þ < 0
� �

ð10Þ

This result explains that the random forest with only one
tree will over-fit to data as well because it is the same as a
single decision tree. As the number of trees increases, we can
see that the generalization error always converges. The equa-
tion indicates that the RF may overcome the over-fitting
weakness (Trigila et al. 2015; Pourghasemi and Kerle 2016).
It also shows excellent performance quality and stability.
Therefore, when we add trees to the random forest, the ten-
dency to over-fitting should decrease (thanks to bagging and
random feature selection). The statistical package R was used
for RF modeling. In landslide susceptibility maps, the model
output (between 0 and 1) represents for each grid cell the
probability p that is to belong to a landslide.

Model evaluation and validation

The prediction models mentioned above is a two-class predic-
tion problem (i.e., binary classification). The results have la-
beled either as a landslide or as a no-landslide. This study
gives a name to landslides as a positive (P) and no-
landslides as a negative (N). If the predicted outcomes are P,
and the actual value is also P, then it is true positive (TP).
However, if the actual value is N, then it is false positive
(FP). Conversely, a true negative (TN) occurs both the predic-
tion outcome and the actual value are N, and false-negative
(FN) is a situation that the prediction outcome is N, while the
actual value is P. The four outcomes can formulate a 2 × 2
confusion matrix (Table 3).

The sensitivity TPR is defined as the proportion of positive
cases that have correctly identified according to the equation:

TPR ¼ TP

P
¼ PP

TPþ FN
ð11Þ

The specificity FPR is defined as the proportion of nega-
tives cases that have incorrectly classified as positive, accord-
ing to the equation:

FPR ¼ TP

N
¼ FP

FPþ TN
ð12Þ

Researchers consider the receiver operating characteristic
(ROC) curve to measure the accuracy of landslide susceptibil-
ity mapping (Hong et al. 2016; Pourghasemi and Kerle 2016;
Chen et al. 2019). ROC curve is a graph of TPR versus FPR. It
depicts the relative trade-offs between the false positive and
true positive. Since the TPR is equivalent to sensitivity and
FPR is equal to 1-specificity, the ROC graph is sometimes
called the sensitivity vs. 1-specificity plot. This curve is re-
ferred to as the receiver operating characteristic curve (ROC)
for the diagnostic test. The accuracy performance quality of
models can be calculated by the area under the ROC (AUC).
The higher the AUC value, the higher the accuracy of the
model is.

Results

The Jiuzhaigou earthquake landslide is mainly affected by
earthquakes with peak acceleration (PGA), and it follows by
the distance to the seismic faults (DF), slope degree (SLOPE),
normalized difference vegetation index (NDVI), land use
types (LT), and relief degree of the land surface (RDL) as
shown in Fig. 7.

This study used the VIF to quantify the severity of
multicollinearity about the six predisposing factors. This study
reveals that when the value of VIF is greater than 5, it indicates
that this factor (PGA, DF, SLOPE, NDVI, LT, or RDL) exists

Fig. 8 Parameter training of SVM (linear)

Fig. 9 Parameter training of SVM (radial)
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in multicollinearity with other factors. When the value of VIF
is greater than 10, it indicates a high degree multicollinearity
between those factors in Table 4.

The SVM model (linear and RBF) was mainly controlled
by the parameter of the cost (i.e., cost of constraints violation.
It is the “C”-constant of the regularization term in the
Lagrange formulation). We used 10-fold cross-validation to

ten times for training the optimal time consumption. We also
used the RMSE to evaluate the accuracy of cost. Training
results show that the optimal value of linear is 0.25 and RBF
is 0.25 (Fig. 8 and Fig. 9). In the SVM model (polynomial),
the parameter of degree (D), scale (S), and cost will control the
model. According to the RMSE test, the optimal value ofD is
2, S is 0.001, cost is 0.5 (Fig. 10).

Fig. 10 Parameter training of
SVM (polynomial)

Fig. 11 Boxplot of RMSE values
by ten times 10-fold cross-
validation

Fig. 12 Landslide susceptibility maps. a LR. b RF. c SVM
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The RF model has a series of decision trees, and it was
mainly dominated by the parameter named mtry (a parameter
of RF: the number of variables tries to split at each node). In
the model construction of RF, we also used the ten times 10-
fold cross-validation to train the optimal value of mtry. The
training result shows that the optimal value of mtry is 6 (Fig.
11).

Utilizing the three models, we generated three landslide
susceptibility maps (Fig. 12).

Discussion

In this study, the ROC of logistic regression is shown in Fig.
13a. The average value of AUC is 0.951. The SVM result’s
three different kernel functions show that the RBF can per-
form better than the linear and polynomial. Therefore, in this
study, the radial kernel function is most suitable for the land-
slide susceptibility assessment. The ROC is illustrated in Fig.
13b, and the average value of AUC is 0.956. The random
forest model shows that the average value of AUC is 0.961
(Fig. 13c). By comparing with logistic regression (the average
is 0.951) and SVM (RBF) (the average is 0.956), we found
that the accuracy of random forest is the highest. In other
words, the performance quality of RF is better than the other
two mentioned models.

And through landslide susceptibility maps, we could know
that the areal proportion of the high and very high susceptibil-
ity classes is 39.8% for the LR, 11.4% for the RF, and 17.9%
for SVM. Obviously, the convergence of RF is higher. The

details of the regional statistics are shown in Table 5 and
Table 6.

According to Can et al. (2005), we can consider one factor
and then evaluate the accuracy of the landslide susceptibility
map. Most of the known landslides appear in the high suscep-
tibility and a very high susceptibility area. The predicted high
susceptibility and very high susceptibility areas are as small as
possible. Thus, the ratio can be used to evaluate the accuracy:

ratio ¼ A
B

ð13Þ

where A is the proportion of landslide points that have oc-
curred in the high and very high susceptibility classes. B is
the areal proportion of the classes with a high and very high
susceptibility.

The LR indicates that 86.9% of the landslides have per-
formed in 48.8% of the high susceptibility zones. The SVM
shows that 83.8% of the landslides have appeared in 43.9% of
the high susceptibility area. The RF indicates that 79.6% of
the landslides have emerged in 38.4% of the high susceptibil-
ity area. The ratio of LR is 1.78, SVM with the ratio of 1.9,
and RF with a ratio of 2.07 (Fig. 14). It reveals that RF has the
best effect in the landslides susceptibility quality assessment.

The model accuracy evaluation and landslide susceptibility
mapping show that the RF model is better than the other two
models. The RF model can quantify the importance of factors
based on the control variable method. The RF turns the single
factor into a random number, and the mean decrease accuracy
indicates the importance of the factor.

Fig. 13 a ROC of logistic regression. b ROC of SVM (RBF). c ROC of random forest

Table 5 The landslide susceptibility area statistics for the three models

Area LR RF SVM

Very low/low 0.1834 0.3640 0.3995

Moderate 0.3276 0.2517 0.1613

High 0.4615 0.3372 0.1776

Very high 0.0274 0.0470 0.2616

Table 6 The fractional distribution of landslide points over the four
susceptibility classes

Landslide LR RF SVM

Very low/low 0.0169 0.0477 0.0858

Moderate 0.1144 0.1568 0.0763

High 0.7595 0.5826 0.2182

Very high 0.1091 0.2129 0.6197
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Conclusion

This study selected six impact factors (slope degree, relief de-
gree of the land surface, peak ground acceleration, normalized
difference vegetation index, land use types, and distance from
faults). We compared three models of landslide susceptibility
mapping (i.e., LR, SVM, and RF) for the Jiuzhaigou area. This
study has employed the performance of the AUC and the ratio
to evaluate the model’s accuracy. The result concludes that the
average value of AUC is 0.951 in the LR, 0.956 in the SVM,
and 0.961 in the RF. It concludes that RF has the best prediction
performance. According to the RFmodel, we can also conclude
that the earthquake landslide is affected by the PGA, DF, and
SLOPE in the Jiuzhaigou area, which is closely related to the
terrain and geological environment.

Many impact factors influence the occurrence of land-
slides, and each impact factor has a different influence. This
study concluded that without considering the lithologic factor,
the models still have a high accuracy performance to generate
susceptibility maps. It needs further studies to prove that the
statistical method could get a great result under the condition
of the lack of landslide impact factors. It is far from adequate
in aid of preservation efforts for the giant panda habitat, and
there is much more to do. Therefore, we suggest taking more
geographical locations and areas like Jiuzhaigou in future
studies where both landslide-prone areas are and wild giant
panda habitats are dominant.
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