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Abstract
Pressure transient response (PTR) of horizontal well in naturally fractured reservoirs (NFR) has a particular characteristic shape.
This PTR is often used to estimate parameters of NFRs and detect their wellbore and boundary regimes. Interporosity flow
coefficient (λ) and storativity ratio (ω) are two important parameters of the NFR that often estimated by matching process on the
PTR. Since the matching techniques’ results are not often unique, in this study, the multi-output least squares support vector
regression (MLS-SVR) is employed for simultaneous estimation of λ and ω. A databank of 500 PTRs for horizontal wells in
naturally fractured reservoirs is generated by the finite element method, converted to the pressure derivative (PD) curves, and then
used to develop and evaluate this auto-characterization paradigm. The predictive accuracy of the model is checked and validated
by both smooth and noisy PTRs. The proposed model predicts ω and λwith overall absolute average relative deviations (AARD)
of 0.186% and 3.754%, respectively. The correlation coefficients (R2) of 1 and 0.99992 are obtained for the prediction ofω and λ,
respectively. The Leverage outlier detection technique justified that only less than 6% of the predictions are within the suspect
region. This MLS-SVRmodel can be simply integrated with commercial pressure transient analysis (PTA) packages for accurate
prediction of ω and λ even from the noisy PTRs.
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Introduction

Pressure transient signals of underground porous media, in-
cluding oil, gas, gas condensate, and water reservoirs, are
valuable information sources. Despite the high importance
of pressure transient response (PTRs), the characterization of
fluid flow in porous media from the PTR is challenging. Like
all other actual signals, the PTR is often poisoned by noisy

data that are difficult to either be distinguished or removed
(Moosavi et al. 2018a; Su et al. 2019; Chen et al. 2021). The
primary objectives of reservoir fluid flow characterization are
to improve the reservoir modeling and simulation accuracy,
enhance oil recovery, provide production-performance predic-
tions of different reservoir scenarios, and help determine re-
maining recoverable oil reserves (Cheng et al. 2016). Generic
reservoir characterization utilizes multiple data sources, in-
cluding well logging, PTR, geology, core analysis, and seis-
mic. Such information helps to elucidate the drive mecha-
nisms, reservoir and wellbore geometry, fluid types, rock
properties, saturations, and dominant flow directions (Landa
et al. 2000; Abdel-Fattah et al. 2015; Khan et al. 2016; Ciftci
2018; Yang et al. 2020). Some researchers focused on differ-
ent aspects of facilities used to transport oil and gas from the
reservoir to consumers (He et al. 2018; Liu et al. 2019b). A
multi-dimensional mixed-integer nonlinear optimizationmod-
el based on modified particle swarm optimization (MPSO)
algorithm is proposed for a large-scale oil and gas gathering
system (Liu et al. 2019b).
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Pressure transient signals make a key contribution to over-
all reservoir characterization.

This signal typically represents the reservoir pressure drop
during changes the flow rates over specified periods. The PTR
is long established as one of the best techniques for predicting
well and reservoir properties by matching observed pressure
responses with some ideal reservoir flowmodels (Huang et al.
2018; Nategh et al. 2019).

Naturally and hydraulic fracture reservoirs pose some ad-
ditional challenges of the uneven distribution and orientation
of their fractures and typically more significant heterogeneity
than homogeneous reservoirs (Li et al. 2020). Consequently,
although such reservoirs are known to contain significant in-
place oil resources worldwide (Saidi 1983), their oil recovery
factors tend to be small. This circumstance highlights the need
for better reservoir characterization to improve fluid flow sim-
ulation models leading to more efficient drainage of these
complex reservoirs. Variation of fracture propagation by the
in situ stress, natural fissure development, temporary plug-
ging, and treatment parameters was studied (Guo et al.
2020b). Fluid flow theory was first applied to naturally frac-
tured reservoirs (NFR) by two research groups (Barenblatt and
Zheltov 1960; Warren and Root 1963). Their studies develop
a dual-porosity model for fractured reservoirs with two differ-
ent key parts, i.e., a fracture with high fluid transmissibility
and low storage capacity, and the matrix with low fluid trans-
missibility and high storage capacity. These specific charac-
teristics of dual-porosity reservoirs can be quantified by de-
riving two useful metrics: interporosity flow coefficient (λ)
and storativity ratio (ω). It is an earlier measure interaction
between matrix and fractured sections, while the latter repre-
sents an amount of fluid stored in the fractured section relative
to the total fluid held in the whole reservoir (Egya et al. 2017).

Although the different values of λ andω produce no unique
characteristic shapes in the PTR, they produce entirely differ-
ent patterns in the pressure derivative (PD) graphs. This fea-
ture of pressure derivative plots makes it possible to apply
various machine learning algorithms to estimate λ and ω using
the characteristic shapes of such plots. Similar to wide appli-
cations of machine learning techniques in different fields of
science and engineering (Zhang et al. 2018; Yang et al. 2019;
Shi et al. 2020), they are also employed to predict reservoir
underlying models (Vaferi et al. 2011, 2016; Ghaffarian et al.
2014), while some researches focused on predicting specific
values for key reservoir parameters (Eslamloueyan et al. 2010;
Şahin and Çiftçi 2016).

Most models proposed to predict reservoir fluid flow met-
rics using machine learning algorithms have applied artificial
neural networks (ANN). Alajmi and Ertekin developed an
ANN model applied to NFR (Alajmi and Ertekin 2007).
Their model involved a 4th-degree polynomial fit to the
semi-log relationship between well-test pressure and time data
derived via a simulation model (Sierra 1986). Well-test data

combined with rock properties and fluid compositions are
considered the input variables for their ANN model. Well-
test pressure derivative graphs show much greater sensitivity
to λ and ω variability for dual-porosity NFR. Eslamloueyan
et al. developed their ANN model so that the digitized pres-
sure derivative graph roles as input for characterization of
NFR system through prediction both λ and ω (Eslamloueyan
et al. 2010). Deep convolutional neural network (Xu et al.
2018; Li et al. 2019; Chen et al. 2020a; Lv and Qiao 2020;
Qian et al. 2020a, b) as a new generation of artificial intelli-
gence techniques is recently applied for reservoir characteri-
zation from well-testing data (Daolun et al. 2020; Liu et al.
2020).

This study’s main objective is to develop a powerful smart
strategy, named multi-output least squares support vector re-
gression (MLS-SVR), for simultaneous prediction of λ and ω
from digitized PD graphs. For this purpose, a dataset including
500 simulated pressure-time patterns is generated for a NFR
system drilled by a horizontal well with the infinite acting
condition. This dataset is converted to PD graphs and then
used to train a multi-output least squares support vector re-
gression model to predict λ and ω. The proposed method does
not rely upon any graphical or correlation between variables
and requires no prior information about the NFR system and
its associated flow regimes. Both simplicity and accuracy of
the designed MLS-SVR model are among key advantages of
this technique. It saves time in analyzing of pressure response
of NFR systems drilled by the horizontal well.

Methods

Pressure transient responses of NFR

In a drawdown test, the flow rate is held approximately con-
stant while the bottom-hole pressure is continuously measured
during the production period. Figure 1 depicts a typical pres-
sure transient curve for a NFR system drilled with a horizontal
well for a drawdown test. This pressure transient data is gen-
erated through a solution of the governing equation for the
NFR drilled with a horizontal well by the finite element meth-
od. The NFR governing equations have been developed using
the Warren-Root approach with some basic assumptions ap-
plied, including the uniform thickness of the reservoir with
impermeable lower and upper boundaries, radial flow, isother-
mal, single-phase, and slightly compressible fluid with con-
stant viscosity and rock properties. In this model, only
fracture-fed wells are considered, and it is further assumed
that each continuum (fracture and matrix) is homogenous
and separate. Moreover, as mentioned, constant rock and fluid
properties are also assumed.

Radial change in the reservoir pressure results in a fluid
movement towards the production well. During the early
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production period, the bottom-hole pressure changes rapidly
due to wellbore storage effects and the limited radius of inves-
tigation. Subsequently, as time progresses and the larger vol-
ume of the reservoir contributes to production, the bottom-
hole pressure changes more slowly. Finally, the bottom-hole
pressure represents the behavior of the outer boundaries.

Naturally fractured reservoirs

Naturally fractured reservoirs have two key parameters more
than homogeneous ones. Therefore, it is useful to detail how
these two parameters, i.e., interporosity flow coefficient and
storativity ratio, influence on characteristic shapes of the
NFRs. It is evident that they have an essential role in
distinguishing pressure transient responses of the NRF from
homogeneous reservoirs.

Storativity ratio

The storativity ratio is defined as the fraction of the total pore
volume associated with one of the two porosities in a dual-
porosity reservoir. Specifically, in NRF, ω refers to the vol-
ume fraction of total reserves contained within the fractures. It
is defined as follows (Moosavi et al. 2018b):

ω ¼ φV ctð Þ f
φV ctð Þ f þ φV ctð Þm

ð1Þ

where φ and c represent porosity and compressibility factor,
respectively. Subscript f and m stand for fracture and matrix,
respectively.

The storativity ratio has a significant effect on the short-
term fluid production deliverability of a reservoir. The ratio is
typically between 0.01 and 0.1, and dual-porosity reservoir

analysis is used in conjunction with the interporosity flow
coefficient.

Interporosity flow coefficient

Interporosity flow coefficient is directly correlated with the
permeability of the matrix segment of the reservoir, but in-
versely correlated with the permeability of the fractured seg-
ment of the reservoir. For dual-porosity reservoirs, λ typically
exists in the value range 10−4 to 10−8. This parameter can be
mathematically expressed by Eq. (2).

λ ¼ α
km
k f

L2 ð2Þ

where k is the permeability, α shows the interporosity shape
factor related to the block’s matrix of the NFR, and L stands
for half-length of the horizontal well.

Semi-log graph for NFR

As Fig. 2 shows, the dual-porosity components of a NFR
generate two parallel straight lines on a semi-log graph. The
semi-log is made up in the detail of three distinct components:
(1) transient radial flow period, an early straight line compo-
nent representing the homogeneous flow of the fractured seg-
ment of the reservoir before the matrix segment of the reser-
voir makes a noticeable contribution, (2) interporosity flow
onset period—a transition component joining the two straight
line components reflecting the first noticeable contribution
from the matrix segment of the reservoir, and (3) composite
homogeneous flow period—a later stage straight line compo-
nent reflecting the combined contributions from the fractured
segment and the matrix segment, beginning when fluids in the
fracture segment are consistently replenished by fluids
flowing from the matrix segment of the reservoir.
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Fig. 1 Schematic of variation of pressure a horizontal well drilled in a
naturally fractured reservoir during production period
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Fig. 2 Drawdown semi-log plot for a horizontal well drilled in a NFR
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Effects of variation of interporosity flow coefficient and
storativity ratio on a semi-log plot of a NFR drilled by a
horizontal well are shown in Figs. 3 and 4, respectively. In
Fig. 3, it is noticeable that as the interporosity flow coefficient
increases, the first straight line component becomes shorter,
and the transition component occurs sooner. Since the second
zone on a semi-log plot (i.e., the transition component) in-
volves some fluid flow from the matrix segment to the frac-
tured segment of the NFR, any decrease in the permeability of
the fractured segment or any increase in the permeability of
the matrix segment will cause the fracture storage contribution
to flow to be depleted more rapidly and the interporosity flow
onset period to commence earlier.

As the storativity ratio increases, the first straight line com-
ponent becomes shorter, the transition component commences
earlier, and the transition to the composite homogeneous flow
period also commences earlier.

Traditional methods for estimation of ω and λ

Mathematical models are widely used to interpret PTR to
establish reservoir characterization purposes. A traditional ap-
proach employs semi-log and log-log plots to provide a de-
tailed analysis of pressure transient information. To establish
meaningfully accurate reservoir interpretations, these tradi-
tional methods need to be constrained in certain ways. For
example, distinct flow regimes applicable to specific time in-
tervals must be clearly delineated on both pressure and pres-
sure derivative plots. If the flow regimes applicable to the
specific time elapsed intervals are unknown, type curve
matching methods fail to provide unique solutions. In such
situations, a trial-and-error approach is required to apply var-
ious flow regimes to find the best fits to the semi-log curves.
The direct synthesis technique avoids type curve matching to
derive reservoir metrics from pressure transient data (Tiab

1989). It simultaneously uses pressure and PD curves to ana-
lyze vertically (Tiab 1994) and naturally fractured reservoirs
(Engler and Tiab 1996) by exploiting analytical and empirical
correlations.

Pressure derivative for NFR system

Remarkably, the pressure derivative technique is a powerful
and well-established interpretation tool in providing meaning-
ful analysis of pressure transient signals (Bourdet et al. 1989;
Escobar et al. 2018). As expressed by Eq. (3), this technique
uses three points (i.e., pressure drop versus superposition
time) for calculation of pressure derivative at a given point.

PDð Þk

¼
Δpð Þk− Δpð Þk−1

ln Δtð Þk−ln Δtð Þk−1
ln Δtð Þkþ1−ln Δtð Þk
� �þ Δpð Þkþ1− Δpð Þk

ln Δtð Þkþ1−ln Δtð Þk
ln Δtð Þk−ln Δtð Þk−1
� �

ln Δtð Þkþ1−ln Δtð Þk−1
ð3Þ

These PD plots are more useful for parameter estimation
and model detection than traditional ones (Eslamloueyan et al.
2010; Vaferi et al. 2011; Wang 2016). The PD technique
specifies the real interpretation model of fluid using pattern
matching of observed signal with some standardized type
curves. After that, it is possible to quantify reservoir proper-
ties’ values (Bourdet et al. 1989; Bourdet 2002; Tiab and
Donaldson 2015).

Theoretically, the dual-porosity behavior of NFR usually
appears as three distinct flow regimes in pressure derivative
graphs: (1) transient radial flow period, an early straight line
component associated with production from the fractured seg-
ment of the reservoir, (2) interporosity flow onset period, com-
mencing in the middle period of the test representing the first
noticeable production contribution from thematrix segment of
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Fig. 3 Effect of interporosity flow coefficient on semi-log response of a
horizontal well in a NFR (ω=0.055)

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

4650

4700

4750

4800

4850

4900

4950

5000

Production time (hr)

)is
p(

er
usser

p
elo

h-
motto

B

=0.0138

=0.025

=0.0362

=0.0475

=0.0587

=0.1

Increasing of 

Fig. 4 Effect of storativity ratio on semi-log response of a horizontal well
in a NFR (λ=1 × 10−8)
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the reservoir into the fractured segment, and (3) composite
homogeneous flow period, the final test period during which
simultaneous production from matrix segment and the frac-
tured segment of the reservoir both contribute. The transition
phase from the first flow regime to the second one appears as a
distinct hump on the pressure derivative curve.

Figure 5 highlights the effect of changing the storativity
ratio on the pressure derivative curves of NFR having hori-
zontal well. As Fig. 5 clearly shows, by decreasing the
storativity ratio, the first flow region finishes earlier. The tran-
sitional hump between first and second flow regimes moves to
the left on the log-log plot. Also, the trough representing part
of flow regime 2 progressively appears earlier asω decreases.
This results in the third flow regime commencing earlier asω
decreases.

Figure 6 presents the effect of variations in λ on the char-
acteristic shape of the pressure derivative curve of NFR sys-
tem. The earliest hump to appear in the pressure derivative
curve is related to production from the fractured segment of
the NFR. A decrease in λ can be induced by either decreasing
the permeability of the matrix segment of the reservoir or
increasing the permeability of the fractured segment of the
reservoir. Such a decrease in λ will cause decreases in the
pressure decline and the pressure derivative, which will lead
to the earliest hump in the pressure derivative curve being
more pronounced by extending over a more extended period.
The second hump in the pressure derivative curve in Fig. 6
reflects fluid flow from the matrix segment to the fractured
(i.e., third flow regime). An increase in λ can be induced by
either decreasing the fracture permeability or increasing the
matrix permeability. Such an increase in λ results in storage in
the fractured segment of the reservoir being depleted earlier,
leading to the third flow regime commencing earlier.

Results and discussion

Interpretation model for NFR systems

In this study, the datasets, including 500 pressure transient
signals for NFR system drilled by horizontal wells, are gener-
ated using an analytical solution of the governing equation of
fluid flow using the finite element method. For generation
these PTR, all reservoir properties except storativity ratio
and interporosity flow coefficient are considered constant.
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Fig. 5 Effects of variations of ω on the pressure derivative curve of a
horizontal well in a naturally fractured reservoir
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Fig. 6 Effects of variation of λ on pressure derivative plot of a horizontal
well pressure-drawdown test in a NFR

Table 1 Fluid and rock properties and wellbore geometry assumptions
applied to the reservoir flow models evaluated in this study

Parameter Value/
range

Unit

Well radius 0.3 ft

Formation thickness 40 ft

Porosity 0.17 –

Permeability 40 md

Vertical permeability 4 md

Skin factor 1 –

Viscosity 1.2 cp

Well length 800 ft

Total compressibility 5 × 10−6 psi−1

Oil formation volume factor 1.1 Rb/STB

Initial pressure 5000 psi

Simulation time 1500 hr

Top boundary Sealing –

Bottom boundary Sealing –

Interporosity flow coefficient 10−4 − 10−8 –

Storativity ratio 0.01 − 0.1 –
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The typical properties of NFR system for fluid, rock, and
wellbore geometry are listed in Table 1.

Only the two-final metrics in Table 1, λ and ω, were
allowed to vary while generating the PTR dataset. Although
the general shape of all of the generated PTR (i.e., each with
unique λ and ω values) are similar, their pressure derivative
curves are quite distinct. Indeed, the MLS-SVR approach dis-
criminates among these reservoir flow systems based on the
difference in the characteristic shapes of their pressure deriv-
ative curves caused by interporosity flow coefficient and
storativity ratio.

Accuracy of the MLS-SVR model

Three commonly used statistical measures of accuracy,
i.e., correlation coefficients (R2), absolute average rela-
tive deviations (AARD%), and mean square error
(MSE), were used to the numerical evaluation of the
performance of the developed MLS-SVR model. These
statistical indices are mathematically expressed by Eqs.
(4) through (6), respectively.

R2 ¼
∑
N

i¼1
PVact:

i −ΔPV
� �2

− ∑
N

i¼1
PVact:

i −ΔPVcal:
i

� �2

∑
N

i¼1
PVact:

i −ΔPVact:
� �2

ð4Þ

AARD% ¼ 100

N
∑
N

i¼1

PVact:
i −PVcal:

i

PVact:
i

����
����

	 

ð5Þ

MSE ¼ 1

N
∑
N

i¼1
PVact:

i −PVcal:
i

� �2 ð6Þ

where N is the number of data records, PVact. and PVcal. indi-
cate actual values of ω or λ and their associated predicted
values by MLS-SVR model, and ΔPV shows the average
value of real data for ω and λ.

Table 2 displays the results of sensitivity analysis for the
accuracy measures relating to ω and λ predictions for four
different distributions of the training and testing subsets. All
the divisions between training and testing subsets display high
degrees of accuracy, but using the 90% of databank as training
provided the best statistical indices for ω and λ in terms of
AARD%,MSE, and R2. The relatively large percentage errors
for the AARD% relating to λ are due to the very low values
(10−4 to 10−8) of that metric. Indeed, even a very small differ-
ence between actual and calculated values for λ tends to pro-
duce a high level of error.

For a better presentation of these results and providing
visual observation, the variation of the accuracy of the MLS-
SVR models with training percent for both storativity ratio
and interporosity flow coefficient is illustrated in Figs. 7 and
8, respectively.

Based on the results of sensitivity analysis presented in
Table 2, Figs. 7 and 8, 90% (450 PD graphs) of the available
databank is selected for the training of the MLS-SVR model.

Figures 9 and 10 depict actual values of ω and λ as a
function of their associated predicted values by MLS-SVR
model for the training and testing data subsets, respectively.
The negligible difference between actual and predicted values
confirms the highest degree of accuracy achieved by theMLS-
SVR model for both storativity ratio and interporosity flow
coefficient.

3.2. Performance of the developed MLS-SVR model
for noisy signal

Unlike the generated PTR from a solution of governing equa-
tion which is typically smooth, signals associate with real
systems typically has a level of noise and defects (Moosavi
et al. 2020; Yue et al. 2020). Therefore, it is crucial to assess
the performance of the MLS-SVR model when confronted
with noisy data records. For this purpose, normal artificial
noise was added to the ten different PD graphs of the NFR
system drilled by a horizontal well. Figure 11 illustrates typ-
ical smooth as well as noisy pressure derivative records for a
NFR flow regime with unique ω and λ values.

This figure clearly shows that a relatively high level of
noise is added to the original curve. The developed MLS-
SVR is provided with ten noisy PD graphs, and the obtained
results are reported in Table 3. This table provides a compar-
ison between actual values of ω and λ and their associated
predicted values by the MLS-SVR model for noisy PD sig-
nals. This comparison reveals that noise in the data records
does not significantly degrade the prediction performance of
the MLS-SVRmodel, and it tolerates a relatively high level of
uncertainty in independent variables.

Outlier detection

The presence of outlier and defect in the data records (Chen
et al. 2020b; Guo et al. 2020a) making up the dataset influ-
ences the achievable accuracy by a model. As a large dataset
has been generated and analyzed to develop the MLS-SVR
model, some data record error is expected, resulting in some
outliers in the predicted versus actual values. A useful statis-
tical algorithm to detect outliers in datasets is the Leverage
method enabling outlier points to be detected (Rousseeuw and
Leroy 2005). This method determines standardized residuals
between predicted and real values for each record in the
dataset.

The distribution of standard residual has a mean of 0 and a
standard deviation of 1. The leverage method then creates a
Hat matrix for those standardized residuals defining a leverage
index determined by Eq. (7):
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H ¼ X XTX
� �−1

XT ð7Þ

where X is a matrix of standardized residuals with p × q ele-
ments and Xt is its transpose. p and q represent the number of
data records (500 in the NFR dataset generated) and the num-
ber of model parameters (30 data points used to define each
pressure derivative curve), respectively.

The diagonal elements of the H matrix establish the lever-
age index. A William’s diagram cross plotting the standard-
ized residual and the leverage index calculated by Eq. (7) for
each data record then reveals suspected outlying data records
(Gramatica 2007).

Figures 12 and 13 display William’s plots for ω and λ
values obtained by the MLS-SVR model, respectively.

In these plots, the warning leverage value (H*) is displayed
as a vertical dashed line calculated using Eq. (8):

H* ¼ 3 nþ 1ð Þ=m ð8Þ

Here, n is the number of model parameters, m shows the
number of data records. The cutoff value of 3 is typically
applied in Eq. (8), representing a range of plus or minus three
standard deviations from the mean value of the dataset metric
evaluated.

If a model is robust in its predictions, and the dataset does
not involve excessive error measurements, most of the data
records should be located on a William’s diagram within the
following limits:

0≤H≤0:1725
−3≤SR≤3

It is obvious in Figs. 12 and 13 that most of the data points
(~94%–95%) for both ω and λ fall within the feasible regions.

Table 2 Sensitivity analysis results for proposed MLS-SVR model to training and testing subset divisions of the data records

Numbers of signals assigned to training/testing subsets Dataset Sensitivity analyses

Storativity ratio Interporosity flow coefficient

AARD% MSE R2 AARD% MSE R2

375/125 Training 0.225 1.38 × 10−8 0.99996 4.246 1.32 × 10−14 0.99996

Testing 0.399 2.71 × 10−8 1 41.188 2.28 × 10−14 0.99978

400/100 Training 0.243 1.50 × 10−8 0.99996 5.318 1.38 × 10−14 0.99996

Testing 0.226 1.82 × 10−8 0.99958 34.951 1.96 × 10−14 0.99983

425/75 Training 0.182 9.11 × 10−9 0.99998 2.191 6.71 × 10−15 0.99998

Testing 0.209 1.28 × 10−8 1 32.034 8.06 × 10−15 0.99984

450/50* Training 0.177 8.81 × 10−9 0.99998 2.755 6.37 × 10−15 0.99998

Testing 0.265 1.47 × 10−8 1 12.743 1.10 × 10−14 0.99945

* The most accurate MLS-SVR model. Note: multiple cases were executed with different signals assigned to the training and testing subsets
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Fig. 7 Sensitivity of the MLS-SVR model in prediction of ω to the dis-
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There are only 28 data records identified as possible outliers
for ω, and 32 data records identified as possible outliers for λ.
This observation indicates high levels of statistical confidence
in the predictions generated by the MLS-SVR model.

Performance of the developed MLS-SVR model ap-
plied to a published signal

Figure 14 presents a pressure derivative graph for a drawdown
test performed on a horizontal well in a dual-porosity reservoir
(Cheng 2004). The values of storativity ratio and interporosity
flow coefficient for this signal are reported in that work as 0.1
and 1 × 10−6, respectively.

The developed MLS-SVR approach is applied to this sig-
nal. and predicts storativity ratio and interporosity flow

coefficient as 0.08419 and 1.16 × 10−6. The MLS-SVRmodel
is clearly able to identify and predict that signal accurately.

Conclusion

In this study, a multi-output least squares support vector re-
gression model developed and successfully applied to predict
two key parameters of naturally fractured reservoirs, i.e.,
interporosity flow coefficient and storativity ratio. A huge
databank having 500 PTRs is generated using an analytical
solution of partial differential equations defining fluid flow in
a fractured reservoir. These PRT then converted to the pres-
sure derivative curves to facilitate the MLS-SVR for discrim-
ination among different values of ω and λ. AARD of 0.177%
and 2.755% were obtained for trained ω and λ predictions by
the MLS-SVR, respectively. The leverage method identified
that up to about 6% of the predictions made by the method
were potential outliers. These results suggest that the MLS-
SVR method developed and applied in this study to a dataset
of pressure derivative curves provides a useful alternative to
conventional PTA methods, mainly when applied to more
complex reservoirs dual-porosity natural fractured reservoir
flow system evaluated.

Appendix 1. Multi-output least squares
support vector regression

Support vector regression maps nonlinear patterns into higher
dimensional feature space that can approach infinite dimen-
sions (Khandelwal and Kankar 2011; Tikhamarine et al. 2019;
Quan et al. 2020). It then applies linear regression to the
mapped feature space (Chao et al. 2018; Xu and Chen
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2019). Considering a dataset of N records existing in multi-
dimensional feature space, its ith data record or element can be
expressed as:

xi; yið Þ; i ¼ 1; 2;…;N½ �

Here, xi and yi represent an actual and predicted value of the
ith data record. For such a data set, the support vector regres-
sion can be expressed as follows (Xu et al. 2013):

F xð Þ ¼< w; x > þb ð9Þ
where <,> denotes the dot product of the matrix elements
involving all the x data records, w is the weight vector of the
SVR regression function, and b is an intercept of the SVR
regression function.

Accepting a certain level of error (ε), the objective of SVR
is to establish a function F(x) that estimates the values of y
from x data for a training dataset that maintains deviations at
or less than the value specified for ε. The risk function (R) can
then be solved using appropriate optimization techniques

(Chen et al. 2017; Deng et al. 2019; Liu et al. 2019a; Cao
et al. 2020a, b, c; Qu et al. 2020).

R fð Þ ¼ 1

N
∑
N

i¼1
L f xið Þ−yið Þ þ 1

2
wk k2 ð10Þ

where:

L f xð Þ−yð Þ ¼ L f xð Þ−yð Þk k−ε if j f xð Þ−yji0
0 otherwise

�
ð11Þ

Equation (4) expresses an error insensitive loss function. ε
determines the regression’s precision by essentially defining
the radius of a cylinder surrounding the regression function,
f(x), within which acceptable valuesmay exist. By substitution
of Eq. (3) into Eq. (2), it is possible to determine functions that
fit the records of the SVR training subset with deviations of no
more than ε.

The acceptable error components associated with SVR
minimization can be further defined as follows (Smola and
Schölkopf 2004; Chen et al. 2019):

Table 3 The prediction
performance of the MLS-SVR
model applied to example noisy
data records of well-test pressure
derivative curves for a dual-
porosity NFR

Real value of ω Predicted by MLS-SVR Real value of λ Predicted by MLS-SVR

0.0100 0.0101 1 × 10−8 1.09 × 10−8

0.0138 0.013 5.273 × 10−6 5.32 × 10−6

0.0175 0.018 1.053 × 10−5 1.13 × 10−5

0.0213 0.021 1.580 × 10−5 1.6 × 10−5

0.0250 0.024 2.106 × 10−5 2 × 10V5

0.0288 0.028 2.632 × 10−5 2.32 × 10−5

0.0325 0.033 3.159 × 10−5 3.01 × 10−5

0.0363 0.036 3.685 × 10−5 3.89 × 10−5

0.0400 0.038 4.211 × 10−5 4.01 × 10−5

0.0438 0.042 4.737 × 10−5 4.35 × 10−5
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Fig. 12 William’s plot for detection of suspected outlier predictions ofω
by theMLS-SVRmodel. The dashed vertical line represents theH* value
calculated using Eq. (8)
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Fig. 13 William’s plot for detection of suspected outlier predictions of λ
by the MLS-SVRmodel for the dual-porosity NFR dataset analyzed. The
dashed vertical line represents the H* value calculated using Eq. (8)
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ð12Þ

This minimization involves the constraints listed in Eq. (5):

ð13Þ

where C is a positive regularization constant, and are
positive slack variables.

C is a metric that establishes a trade-off between a solu-
tion’s ability to be generalized across all the elements of a data
subset (e.g., the SVR training subset) versus achieving accept-
able levels of accuracy (expressed in terms of error tolerance
by ε). and quantify the distance from the values to
theboundaries values of the error cylinder defined by ε.

SVR can then be expressed as a dual problem in the form of
Eq. (6) to be maximized (Burges 1998; Bian et al. 2016):

maxmize
1

2

� ∑
N

i; j¼1
αi−α*

i

� �
α j−α*

j

� �
xix j

� �
−ε ∑

N

i¼1
αi þ α*

i

� �

þ ∑
N

i¼1
yi αi þ α*

i

� � ð14Þ

s:t:
∑
N

i¼1
αi−α*

i

� � ¼ 0

αi;α
*
i > 0

i ¼ 1; 2;…:;N

8>><
>>:

ð15Þ

Here, αi and α*
i are Lagrange multipliers derived from

quadratic equation solutions.

The SVR single space function can then be mathematically
expressed by Eq. (8):

f xð Þ ¼ αi−αi
*� �

xi; xh i þ b ð16Þ

The SVR dual space regression function is expressed by
Eq. (9):

f xð Þ ¼ αi−αi
*� �
k xi; xð Þ þ b ð17Þ

where k (xi, x) indicates the kernel function that satisfies
Mercer’s conditions.

Those data records in the dataset determined by Eq. (9) to
have non-zero coefficients are the support vectors. A kernel
function commonly applied in Eq. (9) is the radial basis func-
tion (RBF) expressed as Eq. (10):

k xi; x j

� � ¼ exp −γ xi; x j

�� ��� �
; γ > 0ð Þ ð18Þ

where γ shows the width of the RBF.
The critical variables in establishing acceptable SVR opti-

mization solutions (regression functions) and the complexity
of those solutions are ε (Eq. 3),C (Eq. 4), and γ (Eq. 10). SVR
optimization, therefore, focuses upon optimizing the variables
ε, C, and γ.

In MLS-SVR, each data record in the dataset has multiple
independent-dependent variables (Yan et al. 2020). For the
case of our study, the digitized pressure derivative curve with
28 points is the independent variable, while ω and λ constitute
the target vector.

Nomenclature V, bulk volume; c, compressibility; k, permeability; L,
half-length of the horizontal well; p, pressure; t, time; R, risk function; w,
weight vector; b, intercept of the SVR regression function; k (xi, x), kernel
function;N, number of data records;H,Hat matrix; X,matrix of standard-
ized residuals; H⁎, warning leverage value; n, number of model parame-
ters; m, number of data records

Greek symbols λ, interporosity flow coefficient; ω, storativity ratio; ϕ,
porosity; α, shape factor; Δ, difference; ε, error; , slack variable; αi,
Lagrange multiplier; γ, width of the RBF

Abbreviations NFR, naturally fractured reservoirs; PTR, pressure tran-
sient response; MLS-SVR, multi-output least squares support vector re-
gression; PD, pressure derivative; AARD%, absolute average relative de-
viations; R2, regression coefficients; PTA, pressure transient analyses;
ANN, artificial neural networks; RBF, radial basis function; MSE, mean
square error; PV, parameter value; SR, cutoff value for standardized re-
siduals; hr, hour

Superscripts/subscripts f, fracture; m, matrix; t, total; act., actual value;
cal., calculated value; T, transpose; −1, Inverse; D, dimensionless
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