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Abstract

Urban growth, a dynamic and demographic phenomenon, refers to the increased spatial value of urban areas, such as cities and
towns, due to social and economic forces. Nowadays, urban lands are rapidly increasing, replacing non-urban lands such as
agricultural, forest, water, rural, and open lands. In this study, a CA-Markov model was utilized to predict the growth of urban
lands and their spatial trends in Seremban, Malaysia. The performance of the CA-Markov model was also assessed. The Markov
chain model was applied to produce the quantitative values of transition probabilities for urban and non-urban lands.
Subsequently, the CA model was used to predict the dynamic spatial trends of land changes. The change in urban and non-
urban land use from 1984 to 2010 was modeled using the CA-Markov model for calibration purposes and to compute optimal CA
transition rules, as well as to predict future urban growth. For accuracy assessment, the CA-Markov model was validated using a
kappa coefficient. An 83% overall accuracy was observed for the kappa index statistics, which indicates the excellent perfor-
mance of the proposed model. Finally, based on the CA transition rules and the transition area matrix produced from the Markov

chain model-based calibration process, the future urban growth in Seremban for 2020 and 2030 was simulated.

Keywords Urban growth - Markov chain - Cellular automata - prediction - Modeling

Introduction

Urban development has become a global issue, resulting in a
rising concern among planners and decision-makers over the
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future impacts of urban development on the ecosystem
(Bihamta et al. 2014). The simulation and prediction of urban
sprawl patterns have become essential to ecosystem protection
and sustainable development (Barredo et al. 2003). In addition,
the complex structure of the urban environment must be under-
stood to correctly simulate urban dynamics (Barredo et al. 2003).
In urban growth simulation, the sprawl chronology and signifi-
cant historical information must be considered to accurately de-
termine spatial and temporal relationships (Sudhira et al. 2004).
In this case, the process of obtaining actual growth factors that
affect future land uses can be improved using simulation tech-
niques (Pijanowski et al. 2002). Understanding spatial and tem-
poral changes, as well as all effective elements, can be facilitated
using remote sensing (RS) and geographic information system
(GIS) techniques (Punia and Singh 2012).

RS and GIS techniques are commonly used to monitor and
control urban growth patterns (Zhang et al. 2011). In recent
years, RS and GIS techniques have proven to be effective
tools for helping planners and decision-makers formulate sus-
tainable policies. These modern techniques have several ad-
vantages. First, these tools come at a low cost (Yeh and Li
2001) and offer effective visual interpretation (Epsteln et al.
2002). The tools also have updatable spatial and temporal
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databases (Punia and Singh 2012). Both are effective moni-
toring and controlling tools (Tran 2008; Doygun 2009) and
are accurate tools for evaluating, analyzing, and simulating
spatial phenomena (Ren et al. 2013). Therefore, environmen-
tal planners and urban designers have relied heavily on RS and
GIS techniques to model urban growth patterns and future
land-use changes.

Currently, various types of models and methods utilizing
the RS and GIS techniques are being employed to model
general urban growth patterns and simulate land-use changes
(Mohammad et al. 2013). Some studies have used traditional
models that depend on the dynamic growth assessment of
urban areas, such as CA models (Aburas et al. 2017). Others
have also relied on quantitative models, such as logistic re-
gression (LR), for simulation and prediction (Alsharif and
Pradhan 2014). Still, others have relied on the integration of
different types of models, such as the Markov chain (MC) and
the CA models, to achieve accurate and realistic results (Al-
sharif and Pradhan 2013). The modeling of urban growth pat-
terns based on RS and GIS techniques is done to understand
the spatial process of urban movement within a specific time
to facilitate the development of future policies for sustainable
development (Wang and Maduako 2018).

The GIS and RS-based modeling of urban growth patterns
and future land-use changes can greatly benefit land-use planning
and the ‘cause-and-effect’ analysis of land-use movement. Sites
facing environmental change and urban sprawl, as well as poten-
tial critical sites, can be identified using several models, such as
quantitative or spatio-temporal models (Verburg et al. 2002).
Spatial modeling is used to simulate land-use patterns that are
indispensable in supporting the development and implementa-
tion of urban planning policies (Inouye et al. 2015). In general,
planners and policymakers are looking at useful measurements
that depend on wide-reaching information, data integration, and
qualitative criteria (Celio et al. 2014).

The cellular automata (CA) model has an open structure
and can be integrated with other models to simulate and pre-
dict urban growth patterns (Clarke 1997). The CA model’s
flexibility, intuitiveness, and ability to integrate the spatial
and temporal dimensions of several processes, as well as its
capability to model complex dynamic systems, are major rea-
sons for its widespread application in urban growth pattern
simulation and future land-use changes in recent years
(Santé et al. 2010). Tobler (1979) first proposed the applica-
tion of cellular space models for geographic modeling.
Following this, theoretical approaches for simulating urban
growth using CA-based models started to emerge in the
1980s ( !!! INVALID CITATION !!! (Couclelis 1985; Batty
and Longley 1994; White and Engelen 1994)).

The conceptual growth of CA studies and the evolution of
computing capability contributed to the first operational urban
CA model, which first saw use in real-world urban systems in
the 1990s. The capability of the urban CA model to simulate and
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predict land-use changes is based on the assumption that previ-
ous urban growth affects future patterns through local and re-
gional interactions among different types of land uses (Santé
et al. 2010). Moreover, the urban CA model can be easily inte-
grated with the GIS environment (Wagner 1997); thus, the CA
model has a high spatial resolution and high computational ef-
ficiency (Santé et al. 2010). The other key fields of urban CA
models that are considered powerful spatial dynamic modeling
techniques representing the major development over previous
conventional models are (i) spatiality, (ii) the linking of macro to
micro approaches, (iii) the integration between GIS and RS
techniques, (iv) dynamic modeling, and (v) simplicity and visu-
alization ( !!! INVALID CITATION !!! (Batty and Longley
1994; White and Engelen 1994; Clarke 1997; Wu 1998;
White and Engelen 2000)).

The Markov chain is usually used to model and predict the
changes, dimensions, and trends in urban growth patterns
(Aburas et al. 2017). The Markov chain model can be used to
analyze and summarize the changes in urban and non-urban
lands based on the number of transition area probabilities from
one status to various other statuses over a certain period
(Coppedge et al. 2007). The Markov chain model cannot sim-
ulate changes in spatial trends. However, it is still a powerful
model, with the capability to predict the extent to which land
has changed (Yang et al. 2012). The integration between the
CA and Markov Chain models is effective for estimating quan-
tities and for modeling spatio-temporal dynamics because both
are GIS and RS models that can be proficiently incorporated
(Al-sharif and Pradhan 2013). The integration of dynamic sim-
ulation models (such as the CA model) with that of statistical
and empirical models (such as the Markov chain) has overcome
the shortcoming inherent in each, i.e., the difficulty in dynam-
ically or statistically simulating urban issues. In other words, the
one complements the other (Guan et al. 2011).

In this research, the city of Seremban, Malaysia, was chosen as
a case study. Seremban has faced rapid urban growth over the last
two decades. This growth has led to the continuous, rapid change
of non-urban lands into urban lands. This study used an integrated
Markov chain and cellular automata (CA-Markov) model to sim-
ulate the rapid urban growth in Seremban City from 1990 to
2010. Following that, the future land changes were quantitatively
and spatially predicted. To the best of the authors’ knowledge, this
is the first study to be done in this city. Additionally, this study
combined the cellular automata (CA) model with the Markov
chain model to improve the simulation process.

Methodology
Study area

Seremban River Basin is the largest district in the Negeri
Sembilan State (Fig. 1). Seremban is also the capital of
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Negeri Sembilan. It occupies a total land area of approximately

Data and methods

935.78 sq. km and includes the districts of Seremban Town,

Setul, Labu, Rasah, Ampangan, Rantau, Pantai, and Lenggeng.
Seremban is located approximately 20 km from Putrajaya, the
national capital of Malaysia, and 67 km from Kuala Lumpur,
the economic center of Malaysia. Seremban has a population of
more than 500,000 people, with the number expected to in-
crease to 1,000,000 people in 2020 (DOSM 2011). Seremban
city was selected as the study area because (i) it is the biggest
city in Negeri Sembilan; (ii) it is the economic center of Negeri
Sembilan; (iii) it is located near the main developed areas in
Malaysia, such as Kuala Lumpur, Putrajaya, and Selangor; (iv)
it is an extension of the urban mass of Kuala Lumpur; and (v) it

is a future center for urban development.

This study used land-use maps for the years 1984, 1990, 2000,
and 2010 obtained from the Department of Agriculture of
Malaysia (Fig. 2). These land-use maps were extracted from
SPOT 2, 4, and 5 images, with 10-m and 2.5-m spatial reso-
lution SPOT 2.4 and SPOT 5 images, respectively. All SPOT
images were registered and geo-corrected with ground control
points using a Global Positioning System (GPS) and were
classified using image enhancement techniques. A supervised
classification method was used to group and extract all clipped
images into land-use categories. Field data were collected
using GPS to assess the accuracy of classification by compar-
ing the classified images with GPS points from the field for
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Fig. 2 Land-use maps of Seremban River Basin: a 1984, b 1990, ¢ 2000, and d 2010
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each type of land use. The accuracy assessment showed ac-
ceptable kappa index values, indicating that the image classi-
fication is acceptable. Based on the Anderson scheme, an
acceptable, accurate kappa index value should be higher than
0.85 (Anderson 1976). The total accuracies of the land-use
maps were 92%, while the kappa coefficient values were
0.90. Thus, the classification of land-use maps by the
Malaysian Department of Agriculture meets the present
study’s requirements. The topographic map of 2012 was col-
lected and used to identify the administrative boundary of the
whole Seremban area and each district in Seremban (Table 1).

Land-use maps were reclassified into two types of land use,
urban areas and non-urban areas, to comply with the general
objective of the study. Urban areas were defined as residential,
commercial and services, industrial, transportation, communi-
cations, and utility areas, as well as mixed urban or built-up
lands and other urban or built-up lands. In contrast, non-urban
areas were defined as other types of land use, such as water
bodies, agricultural lands, forests, and open areas. Land-use
maps were classified into urban and non-urban area classes,
mainly because spatial simulation was applied in this study to
predict urban growth patterns. The models used to predict
urban growth in Seremban are discussed in more detail below:

Urban CA model

An urban CA model can be designed based on multiple
phases, namely, (i) the data collection phase, which requires
different types of data according to the type of model, data
availability, and whether or not the model is integrated with
other models (Aburas et al. 2016); (ii) the selected factors
influencing urban growth patterns (Aburas et al. 2017); (iii)
identification of the characteristics of CA that are used for
simulation, such as defining the lattice, determining the cell
state, identifying the neighborhood properties, and identifying
the transition rules that will be used ( !!! INVALID
CITATION !!! (Clarke 1997; White and Engelen 2000;
White et al. 2000)); and (iii) validation and calibration of the
model using an actual land-use model against the kappa index
(Al-sharif and Pradhan 2013; Mohammad et al. 2013).
Subsequently, the simulation and prediction of future land
use were undertaken (Fig. 3).

Data Collection

\

Selecting Influencing Factors of
Urban Growth

v

Identifying the Characteristics of
an Urban CA model

!

CA Transition Rules

v

Model Validation

l

YES

N

Calibration & Urban Prediction

NO

Fig. 3 Flow chart of the urban CA model

CA models use a simple mechanism to identify the future
conditions of cells, defined by identifying the actual condition
of each cell and by determining the real condition of neigh-
boring cells (Couclelis 1997). The CA model, considered the
simplest type of dynamic spatial model, essentially consists of
(1) the cell lattice (i.e., the urban CA model consists of a grid
containing square cells or other geometrical shapes, such as
hexagonal shapes), where all cells in the CA grid should be of
equal size; (ii) the state of each cell in the CA grid, which is
usually represented either by land use or land cover, but can
sometimes be used to show spatial distributions of variables to
model spatial movement ( !!! INVALID CITATION !!!
(White et al. 1997; White and Engelen 2000; Mohammad
et al. 2013)); (iii) the CA neighborhood space (i.e., the neigh-
borhood effect in urban CA is calculated for each state using
the positive and negative effects of each cell in terms of the
conversion or non-conversion of the cell to another state via
the surrounding cells) (White and Engelen 2000; Barredo
et al. 2003); and (iv) the CA transition rules, wherein the
behaviors that occur in the actual world can be understood
through the transition rules in the CA models (Mohammad
et al. 2013). The state of each cell can be converted to another
state using the CA transition rules that can result in a more

Table 1 Data used in the study

Material Source Type of Scale
data
Land-use maps of 1984, 1990, Department of Agriculture, Malaysia Grid 10 x 10
2000, 2010
Topographic map of 2012 Department of Surveying and Mapping, Map 1:25,000
Malaysia (JUPEM)
DEM USGS Grid 30 x 30
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dynamic CA simulation model (Wu 1998). The basic CA
model is expressed by Equation (1):

S(t,t+1)f(S(2),N) (1)

where S represents the states of discrete cells, ¢ is the time
instant, ¢ + 1 is the coming future time instant, N is the cellular
field, and f'is the transition rule of cellular states in the local
space.

Markov chain model

The Markov chain model is used to predict the status of a cell
that is converted to different statuses according to the progres-
sion of the formation of Markov stochastic process systems
(Muller and Middleton 1994). This model is commonly used
to simulate urban growth because it does not need rich data
(Sun et al. 2007). This model is also used to compute the
probabilities of transition areas from one land-use status to
another (Coppedge et al. 2007). In this study, the urban and
non-urban classes were used as input data for the model (Fig.
3). Then, the transition area probability matrix and the proba-
bility map for the specified period were generated using this
model. The prediction of urban growth can be computed ac-
cording to the conditional probability formula outlined in
Equations (2), (3), and (4):

S(t+1)=P;xS(t) (2)
Py P Pu
Py =Py Py Py 3)
Pnl PnZ Pnn
N
(OSPij < land ) Pj=1, (i,j=1,2,..... n)) (4)
i=1

where S(7) is the state of the system at time, ¢, S (¢ + 1) is the
state of the system at time (¢ + 1), and Pj; is the matrix of
transition probability in a state.

CA-Markov chain model

The reliability of urban growth modeling techniques can be
improved and developed by combining two or more predic-
tion techniques to integrate the advantages of these models
(Yang et al. 2012). It could be argued that the CA-Markov
model has been used recently to predict dynamic spatial is-
sues, such as urban growth and future land-use change (Wang
et al. 2012). In addition, the integration of CA and Markov
chain models is considered appropriate for the spatial model-
ing of urban growth because it capitalizes on the advantages of
the Markov chain in predicting urban quantitative change, as
well as the dynamic explicit spatial simulation strength of the
CA model (Yang et al. 2012). Thus, the integration of GIS
environment and urban growth maps derived from satellite
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images and RS techniques, together with the CA-Markov
model, will result in the efficient prediction of spatial and
temporal urban growth phenomena (Guan et al. 2011, Wang
etal. 2012).

This study applied the CA-Markov model to simulate and
predict future urban growth in Seremban, as shown in the
stepwise approach of the CA-Markov model presented in
Fig. 4. Four main steps were applied in the CA-Markov chain
modeling using ArcGIS 10.3 software and IDRISI Selva soft-
ware. These steps are outlined below:

1. The urban and non-urban maps were prepared and load-
ed into the ArcGIS 10.3 software. Land-use maps of 1984,
1990, 2000, and 2010 were reclassified to suit the objective of
predicting urban growth in Seremban. All land-use maps were
converted from vector to raster format. After that, the raster
maps were converted to ASCII file format using conversion
tools in the ArcGIS environment. Then, the ASCII files were
reclassified and converted to raster format in the IDRISI Selva
environment, so they can be used to predict future urban
growth.

2. Urban and non-urban land-use transition probability ma-
trix and transition rules utilizing the Markov chain model were
identified. Based on the previous land class state, the future
urban growth change was modeled, i.e., the transition proba-
bilities among urban and non-urban maps from 1990 to 2000
were applied to predict the changes in 2010 and to calibrate
and validate the model. Meanwhile, urban and non-urban
maps of 2000 and 2010 were used to predict future urban
growth in 2020. Additionally, land maps of 2010 and 2020
were used to predict future urban growth in 2030. The transi-
tion probability matrices provided the transformation rules
and the change probability of different land-use layers into
other layers. In contrast, the quantity of land change (i.e.,
urban or non-urban lands) into another land layer in the pre-
dicted future was reflected by the transition area matrices.

3. The AC filter was determined; standard 7 X 7, 5 x 5, and
3 x 3 contiguity kernels were designated as the neighborhoods
in this study to identify the appropriate contiguity filters for
predicting urban growth. In the end, the 5 x 5 contiguity filter
was selected, meaning that each cell center is surrounded by a
matrix space of 5 x 5 cellular kernels to significantly reflect
the cellular changes.

4. The number of iterations and the starting point for the
CA were determined. The CA-Markov model was applied,
utilizing various iteration numbers from 1 iteration to 200
iterations, to identify the appropriate iteration number. This
study found that the iteration numbers all produced different
performances, meaning that this study could use certain itera-
tion numbers to yield reliable future predictions.

In this study, the years 1990 and 2000 were taken as
starting points in the calibration and validation process, which
was done using the Kappa index. Meanwhile, the years 2000
and 2010 were used as starting points to predict future urban
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Fig. 4 The stepwise approach of
the CA-Markov model
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growth in 2020. Additionally, the years 2010 and 2020 were
used as starting points to predict future urban growth in 2030.

Results and discussion
The change in urban and non-urban areas

The findings on the change in urban and non-urban areas in
the study area are presented in Table 2 and Fig. 5. The results
show the changes in urban and non-urban areas between 1984
and 2010. From the analysis of the results, the behavior, pat-
terns, and speed of land-use changes can be better understood.
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The significance of these findings is as follows: (i) these re-
sults would be very useful as a scientific basis for planners and
decision-makers when creating future urban policies and (ii)
these results will also be effective for achieving urban growth
sustainability. The results confirm that a major increase in
urban growth has occurred in the period between 1990 and
2000, which equates to 58 km? of urban area, due to popula-
tion and economic growth. In contrast, the total amount of
non-urban areas decreased from 1984 to 2010 by 92 km?,
considered to be a significant change in such a short period.
Unfortunately, non-urban areas such as agricultural and forest
areas have decreased the most as a result of the urban growth
in Seremban. However, this remarkable change in both urban

________
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Table 2 Amount of urban growth changes observed in sq km

and non-urban areas has led to many questions regarding the
effectiveness of urban policies, environmental policies, and
sustainability policies implemented in the study area.

Transition probability matrices

The Markov chain model was used to calculate the transition
probability matrices, as presented in Table 3. In addition, the
future potential percentages of change in urban and non-urban
land use in the periods of 1990-2000, 2000-2010, and 2010—
2020 can be ascertained using transition probability matrices.
Moreover, the results in Table 3 showed a 25% future
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Table 3  Transition probability matrices for the periods 1990-2000,
2000-2010, and 2010-2020
Urban Non-
urban
1990-2000 Urban 0.6530 0.3470
Non-urban 0.2553 0.7447
20002010 Urban 0.7699 0.2301
Non-urban 0.2164 0.7836
20102020 Urban 0.6653 0.3347
Non-urban 0.2912 0.7088

transition probability of non-urban to urban areas from 1990
to 2000, while 2000 to 2010 saw a decrease in the same tran-
sition probability to 21%. One explanation for this decline is
that the urban process in Seremban, had decreased between
2000 and 2010 in comparison with 1990 and 2000, which saw
a lot of urban development operations, particularly in
Seremban and in Malaysia generally (Economic Planning
Unit 2013). However, the probability of the future transition
of non-urban to urban areas from 2010 to 2020 is expected to
increase to 29%. This high transition value from non-urban to
urban land uses can be seen from the alarming decrease in
non-urban areas such as agricultural lands in Seremban. By
pondering the findings of the analysis and the classified maps,
it can be concluded that Seremban city is facing rapid urban
growth. Therefore, more action is needed to analyze and sim-
ulate the urban growth patterns in this city.

Model validation and prediction of future urban
growth

To confirm the accuracy of future urban and non-urban land-
use predictions in 2010, the CA-Markov model was used. The
1990 and 2000 maps were used to predict land-use state in
2010. After that, the actual 2010 land-use map was compared
with the predicted 2010 land-use map to ensure model reli-
ability (Fig. 6). This study used different iteration numbers
(i.e., the appropriate iteration numbers) to achieve the best
performance for the CA-Markov model.

To assess the accuracy of the model, the projected urban
and non-urban maps of 2010 were compared with the actual
2010 map using the kappa index statistic, which measures
quantity and location validity (Al-sharif and Pradhan 2013;
Zhang et al. 2011). Figure 7 illustrates the variation in the
kappa coefficient with various iteration numbers from 1 to
200. From Fig. 7, it can be observed that, when predicting
the urban and non-urban areas 0f 2010, the CA-Markov model
performed best at 40 and 60 iterations. A high kappa coeffi-
cient value was also achieved with these iterations, namely, (i)

1000
900 825.87 816.87
800
700
600 1
500 1
400
300
200 - 126
100

Area sq.km

Non-urban Area
Land-use type

Urban Area

@ Observed M Simulated

Fig. 6 A comparison of urban growth between the observed and
simulated maps of 2010.

a kappa standard index of 0.83, (ii) a kappa location index of
0.86, and (iii) and a kappa index no. of 0.83.

From the model’s accuracy assessment, a strong agreement
between the actual and projected urban and non-urban land-
use maps can be observed. From the validation phase, the
optimal transition rules for the model were computed using
the appropriate iteration numbers (i.e., 40 and 60). After that,
these iteration numbers were used to predict land use in 2020
and 2030. According to the successful model validation, the
future urban and non-urban land-use maps of 2020 and 2030
were generated using the actual map of 2010 and the projected
map of 2020, respectively. By using the 2010 and 2020 urban
and non-urban land uses as base maps, potential transition
maps and transition area matrices of 2002-2010 and 2010-
2020, as well as the future of urban growth patterns, can be
predicted, as presented in Fig. 8.

From the accuracy results, it can be concluded that the CA-
Markov model used in this study obtained acceptable and
reliable values compared with other past models used in this
field. For example, ANN is one of the most used models to
predict urban growth. The main advantage of this model is
that it can be integrated with dynamic models, such as CA
models, which have achieved acceptable simulation accuracy
with a kappa index of 0.72 (Maithani 2009). Ballestores Jr and
Qiu (2012) concluded that the decision tree (DT) is one of the
most effective machine learning models, achieving a 0.84
simulation accuracy. Meanwhile, Pijanowski et al. (2002)
used the LTM model and recorded a more than 0.65
simulation accuracy. Alsharif and Pradhan (2014) obtained
0.86 simulation accuracy by using the logistic regression
(LR) model. Al-sharif and Pradhan (2015) used evidential
belief functions (EBF) and frequency ratio (FR) models. The
validation results indicated 83% simulation accuracy for the
EBF model and 84% for the FR model. Abdullahi et al. (2015)
confirmed that the weights-of-evidence (WoE) model was
successfully used to predict future urban growth. The valida-
tion results indicated 75% simulation accuracy for the WoE
model using the ROC technique for validation. Abdullahi and
Pradhan (2016) clearly concluded that the AUC validation
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Fig. 7 Kappa index value vs. the 15
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technique that was used to confirm the simulation process,
which was conducted using WoE model, indicated 77.4, 78,
and 67%, for residential, commercial, and industrial land-use,
respectively. The present results confirm that the CA-Markov
has a high simulation ability, so it has a high potential to
predict future urban growth trends.
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The CA-Markov chain model predicted that the urban areas
in Seremban would increase to 177 km?® and 195.5 km? in 2020
and 2030, respectively (Fig. 9). On the other hand, non-urban
areas such as agricultural, forest, open, and rural lands, as well
as surface water, will decrease by 774.87 km?” and 756.37 km?
in 2020 and 2030, respectively. Unfortunately, this change will
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Fig. 8 Predicted maps of urban growth in Seremban River Basin: a 2020 and b 2030
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affect the ecosystem and land-use sustainability in Seremban
and cause uncontrolled urban growth.

It is important to note that the CA-Markov model applied in
this study can predict future urban growth trends using only land-
use maps (i.e., it can be used with limited data and still give
impactful findings). However, several driving forces also affect
urban growth. These forces include physical forces (i.e., slope,
elevation, etc.), environmental forces (i.e., land use and cover),
socio-economic forces (i.e., population growth, household in-
come, etc.), and infrastructural issues (i.e., road and railway net-
works, etc.). Accordingly, both the driving forces and their fac-
tors can be used to predict future urban growth rather than relying
on land-use maps only. Therefore, incorporating these driving
forces within the CA-Markov environment will enhance the sim-
ulation and prediction capability of the model.

Conclusion

By using multiple classified and unclassified land-use maps,
together with the integrated CA-Markov chain model (a com-
bination of the CA and Markov chain models), the urban
growth patterns in Seremban, Malaysia, were simulated and
predicted excellently. The model achieved 83% accuracy in
simulating projected urban and non-urban land-use maps, in-
dicating the model’s success in predicting urban growth pat-
terns. One of the significant advantages of using the CA-
Markov chain model is that the prediction of urban growth
patterns can be done using limited data (i.e., it requires at least
two land-use maps in different periods). However, the inte-
grated model also has some limitations, such as its inability to
apply urban growth driving forces, for example, physical and
socio-economic forces in the prediction process. These forces
are highly significant for monitoring and controlling current
urban growth processes and to prepare robust policies and
plans for future sustainability.

The urban and non-urban land-use change analysis has
shown that there is a high, continuous decline in non-urban
lands in Seremban. This continuous reduction has affected
the city’s agricultural, forest, rural, and open lands. On the
other hand, the prediction analysis of 2020 and 2030 using
the CA-Markov chain model demonstrated that urban areas
will continue to increase and will threaten the arable lands in
Seremban in the long term. Moreover, according to the sim-
ulation findings, the urban sprawl in Seremban will follow a
disaggregation mode. That is, the urban growth scenario
will become worse in the future. Therefore, it is important
to save and protect the non-urban areas in Seremban to
achieve urban sustainability.

Finally, this study shows the significance of using the inte-
grated CA-Markov chain model for modeling urban growth,
especially in developing countries, which have different urban
features. However, it is important to assert that the driving
forces of urban growth should also be applied when using
the CA-Markov chain model in the prediction process to ob-
tain a better understanding of the change in urban growth
patterns. Hence, the CA-Markov chain model should be inte-
grated with other models, such as the analytic hierarchy pro-
cess (AHP), frequency ratio (FR), and logistic regression (LR)
models to further improve its prediction capability.

Funding The study presented here is the part of research project funded
by Universiti Putra Malaysia (UPM) under grant No. 9448100.
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