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Abstract
Spectral acceleration is representative of seismic hazard in modern building codes as well as an important parameter used in
seismic design these days. Karachi, an economic artery of Pakistan, is located in the vicinity of an active tectonic setting, i.e.,
triple junction, with uncertain seismicity. Keeping in view the modern seismic design practices, efforts are required to evaluate
the seismic hazard of Karachi city in terms of spectral acceleration. This study is focused on the estimation of seismic hazard for
the metropolitan city of Karachi in the context of modern building codes. The seismic potential of around 800–900-km circle was
considered a threat for the city, and 13 seismic zones (A-1 to A-13) were identified as seismic sources. A seismicity model based
on Gutenberg-Richter law was developed, identifying A-1 and A-11 as zones of high seismicity. The ground attenuation model
recommended for the Middle East region proposed by Akkar and Bommer was utilized for the computation of different ground
motion scenarios. Short-period, SS, and 1-s, S1, spectral acceleration values for considered region were calculated as 1.37 m/s2

and 0.41m/s2, respectively. In addition, peak ground acceleration (PGA) values for Karachi city were observed to be in a range of
0.7–0.77 m/s2. The results of this study provide bases for the preparation of seismic risk maps, the estimation of earthquake
insurance premiums, seismic zonation for region lying onArabian and Indian plates, and the preliminary site evaluation of critical
facilities.
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Introduction

Pakistan has experienced several large earthquakes within the
past 100 years. Karachi, the financial capital of the country, is
considered to be vulnerable to earthquake hazard. The argu-
ment that existing seismic potential in a circle of 800–900 km
around Karachi city can produce a disaster in no time is
alarming, because of the strategic location of the city and its
economic importance for the country. Literature suggests that
the seismicity of the Metropolitan City of Karachi is marred
with uncertainty (Bilham et al. 2007).

Seismic hazard analysis, often termed seismic hazard as-
sessment (SHA), is a vital tool to predict the ground motion
during the earthquake and to develop seismic hazard maps.
Different techniques are adopted by different researchers for
SHA. The probabilistic method for SHA is one of the most
credible practices today. The probabilistic seismic hazard
analysis, occasionally named as probabilistic seismic hazard
assessment (PSHA), is mainly based on Cornell’s work
(Cornell 1968). Based on the methods proposed by Cornell
latterly, different programs for estimating seismic hazard were
published by (Bender and Perkins 1987; McGuire 1976).
Literature suggests that the “PSHA” term started in the
1970s’ decade. A comprehensive tutorial to conduct PSHA
was given by Hanks and Cornell (Hanks and Cornell 1994).
The PSHA approach is modified by different researchers over
time, such as by Atkinson and Goda (2011) and Petersen et al.
(2008). The modern PSHA approach can consider the imple-
mentation of data of active sources and has improved relative
to the traditional approach in prediction (Hassan et al. 2017).
Currently, PSHA is extensively used as a standard part of the
“due diligence” for designing and constructing the critical
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structure and prediction of earthquakes for different regions
(Hanks and Cornell 1994; Mulargia et al. 2017; Solomos et al.
2008).

Many researchers have carried out studies to account for
the seismic hazard of different regions. In the context of the
Indian plate, using the groundmotion prediction (GMP) equa-
tions, Algermissen and Perkins (1976) and Khattri et al.
(1984) established a map showing peak horizontal accelera-
tion distribution of India for a probability of exceedance
around 10% in a period of 50 years. Furthermore, Bhatia
et al. (1999) conducted the PSHA to develop the seismic haz-
ard map (SHM) for India and some regions of Pakistan. Under
the Global SHA Program, an SHM of India was generated
using the GMP equation given by Joyner and Boore (1979).
Khattri et al. (1984) and Bhatia et al. (1999) also used a similar
GMP equation to generate SHM for different specific regions
of India. Parvez et al. (2003) developed the SHM for India
using the deterministic hazard assessment (DSHA) technique.
Das et al. (2006) developed an SHM for the northeast region
of India by conducting PSHA. Jaiswal and Sinha (2007) con-
ducted a PSHA of peninsular India using nine areal source
zones. Similarly, Mahajan et al. (2010) conducted PSHA to
develop a modified SHM for the sub-continent. Nath and
Thingbaijam (2012) used a modified approach of logic tree
framework for the SHA of India. Several recent efforts have
also been made by various other researchers to estimate the
seismic hazard for different isolated geological regions on the
Indian plate and established SHM, which endorse the need of
carrying out special and individual studies to assess the seis-
micity of a specific region (Chingtham et al. 2019; Choudhury
et al. 2018; Cortés-Aranda et al. 2017; Lindholm et al. 2016;
Maiti et al. 2017; Puri and Jain 2019; Putti et al. 2019;
Ramkrishnan et al. 2019; Shreyasvi et al. 2019). In the context
of Arabian and African plates, SHA was conducted by differ-
ent researchers considering the geological settings of the dif-
ferent regions, such as by Aldama-Bustos et al. (2009);
Almadani et al. (2015); Deif et al. (2013); Hamlaoui et al.
(2017); Mohamed et al. (2012); Mouloud and Badreddine
(2017); Rehman et al. (2017); and Zahran et al. (2019). SHA
was also conducted by different researchers for various loca-
tions on the Eurasian plate and other regions using either
PSHA or DSHA technique and established SHM, e.g., by
Erdik et al. (1985); Ince and Kurnaz (2018); Kartal et al.
(2014); Meletti et al. (2008); Meletti et al. (2016); and
Vilanova and Fonseca (2007). Besides, various researchers
have estimated spectral acceleration for various locations in
Pakistan utilizing different SHA techniques and have also
established SHM for different parts of Pakistan (Bilham
et al. 2001; Bilham et al. 2007; Cortés-Aranda et al. 2017;
Mahmood et al. 2016; Monalisa et al. 2007; Parvez et al.
2003; Sarwar et al. 2016; Shah et al. 2019). Such a rich liter-
ature highlights the importance of carrying out area-specific
SHA studies. However, there is still literature scarcity on SHA

of many regions on the Indian and Arabian plate, for example,
the coastal region of Pakistan.

In addition, seismic provisions were included in the
Building Code of Pakistan (BCP 2007) after the 2005
Muzaffarabad Earthquake. Presently, BCP defines seismic
loading in terms of peak ground acceleration (PGA), which
makes this value significant for structural analysis (BCP
2007). Most modern codes like International Building Code
(IBC-06/09) and the building code by the American Society
for Civil Engineers (ASCE 7-05) define seismic loading in
terms of short period, SS, and 1-s, S1, spectral acceleration
values (ASCE 7-05 A 2006; IBC 2006). Despite the impor-
tance of these values defined by different modern building
codes to establish the safe building design against seismic
loadings and seismic uncertainty of densely populated
Karachi city, these values have not been well-assessed for
the Karachi city, as per authors’ best knowledge based on
the literature review. Karachi is located close to active tectonic
boundaries and surrounded by active faults, literally analo-
gous to Los Angeles city; however, luckily, in around two
centuries, no catastrophic earthquake has occurred in
Karachi. Though Karachi has not experienced damaging seis-
mic events in recent times, it has experienced the Allah Bund
earthquake in 1819. Moreover, it has also been jolted by re-
cent distant earthquakes of Awaran (MW = 7.7) in 2013,
Khash (MW = 7.7) in 2013, and Bhuj (MW = 7.7) in 2001
(Bilham et al. 2007; Rehman and Paul 2020). In the present
study, the PSHA ofKarachi city is performed to achieve PGA,
SS, and S1 values for the administrative boundaries of the city,
taking modern building codes into account. The results of this
study could provide a foundation for the preparation of seismic
risk maps, the estimation of earthquake insurance premiums,
seismic zonation for region lying on Arabian and Indian plates,
and the preliminary site evaluation of critical facilities.

Tectonic setting

Karachi, a densely populated region and one of the world’s
largest cities, is breathing in the vicinity of a major triple
junction lying 150 km in its south (Fig. 1a); here, Indian,
Eurasian, and Arabian plates join each other. The triple junc-
tion then extends further into the Arabian Sea in the form of
Murray Ridge. Makran subduction zone lies in the west of
Karachi. Its eastern flank has remained silent in the past, but
its western flank has reported a tsunami in 1945, which has
reported some serious damages (Musson 2009). Tsunami
waves were also observed on the coasts of Karachi. The north-
ward movement of the Arabian plate into the Eurasian has
generated many thrust faults in Baluchistan Province, some
of which are the Hoshab Fault, Panjgur Fault, and Siahan
Fault. A new fault, namely Sonne Fault, has been identified
by Kukowski et al. and has been recognized as a plate
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boundary separating the Arabian plate from the newly recog-
nized Ormara plate (Kukowski et al. 2000). The great
Chaman-Ornach-Nal Fault runs north-south from Quetta to-
wards Awaran and then turns westwards from here into Iran.
This fault is responsible for the 1935 earthquake in Quetta

which destroyed the city. The north of Karachi is accompa-
nied by the active plate boundaries of Indian and Eurasian
plates. The great Rann of Kutch lies in the east of Karachi,
which consists of three main faults, namely Allah Band Fault,
Nagar Parkar Fault, and Kutch Main Fault. This region has

Fig. 1 Geological setting of study area (a) tectonic setting of the region (b) fault map of the study area
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produced the devastating Bhuj earthquake of 2001 which re-
ported cracks in some buildings existing in Karachi. The dis-
tribution of faults around Karachi is displayed in Fig. 1b.

Seismic hazard analysis

Seismic hazard analysis (SHA) is a package of uncer-
tainties whose “cookbook” does not exist as it is an
ongoing research. There are two types of SHAs in prac-
tice: deterministic seismic hazard analysis (DSHA) and
probabilistic seismic hazard analysis (PSHA). PSHA has
the advantage that a range of earthquake magnitude and
source to site distance can be incorporated into the anal-
ysis and also the probability of occurrence of desired
ground motions can be estimated. PSHA is based on
the wisdom that the past is the key to the future
(Yeats et al. 1997). PSHA allows the use of a combi-
nation of different attenuation models with their uncer-
tainties and that is why it is considered a rational solu-
tion to the dilemmas posed by different types of uncer-
tainties (GENÇ 2004).

PSHA was selected for this study as the seismic loading in
BCP 2007, and IBC 06/09 is defined in terms of PGA having
a certain probability of exceedance over a given return period
(BCP 2007; IBC 2006). The general steps involved in the
analysis are the identification of seismic sources, characteri-
zation of recurrence law, ground motion attenuation, and es-
timation of probabilities of exceedance of desired ground mo-
tions. The procedure adopted in this study is discussed below.

Identification of seismic sources

The study area considered ranges between latitude 22°–30° N
and longitude 62°–72.5° E. To identify seismic sources, seis-
mic history was studied. For this purpose, the instrumental
earthquake catalog was acquired from three different agencies,
i.e., the Pakistan Meteorological Department (PMD),
International Seismological Centre (ISC), and the United
States Geological Survey (USGS). The catalogs were filtered
for any duplicate events, events with missing data, and after-
shocks. A comprehensive catalog was then prepared by merg-
ing these catalogs. The three sets of instrumental catalogs
were first converted into a single format which is the standard
catalog format followed by United States Geological Survey;
then a comprehensive catalog was prepared manually which
included only those seismic events that were present in at least
two of the available catalogs. Correspondingly, unconfirmed
and incomplete events were disregarded. The earthquake
magnitudes were reported in different formats including local
magnitudeML, body wave magnitudeMB, surface wave mag-
nitude MS, and moment magnitude MW. Differently reported
magnitudes were converted into the most authentic and stable

one, i.e., moment magnitude (MW) using the following a set of
equations suggested by Scordilis as follows (Scordilis 2006):

MW ¼ 0:67MS þ 2:07 For 3:0 < MS < 6:1 ð1Þ
MW ¼ 0:99MS þ 0:08 For 6:2 < MS < 8:2 ð2Þ
MW ¼ 0:85MB þ 1:03 For 3:5 < MB < 6:2 ð3Þ

In addition, the equation suggested by Idriss (1985) is also
utilized in this regard as follows (Idriss 1985):

MW ¼ ML For ML≤8:2 ð4Þ

The catalog was then prepared in the Nordic format as
required by the SEISAN software. To identify seismic source
zones, the catalog was mapped using the ArcGIS software. As
fault data of the region is not available, area source zones were
utilized in this study. A total of 13 zones were identified as
shown in Fig. 2 owing to the distributed seismicity and tec-
tonic setting of the region, which are represented from A-1 to
A-13. These zones were numbered from 1 to 13 arbitrarily.
The vertices of these zones are shown in Table 1, which are
numbered in a counter-clockwise direction. Zones only show-
ing high seismicity are discussed below.

A-1

This zone mainly includes the Bhuj and Run of Kutch regions
of India and touches the southern coasts of Sindh, Pakistan.
This is one of the most active regions in the near past and has
witnessed large events. The most disastrous event in this zone
occurred on 26 January 2001 at Bhuj (India) of magnitudeMW

7.6. The event was followed by at least 40 aftershocks the
same day most of which were above MW 5.0.

A-7

This region lies on the coasts of Pakistan, while its southern
end connects to the Arabian Sea. Gawadar is present at its
center, which is an important seaport of Pakistan from a trade
point of view. This zone suffered a disastrous earthquake cum
tsunamiMW 8.1 back in 1945 on 27 November. These tsuna-
mi waves were also seen on the seashores of Karachi, and a
considerable amount of damages were reported. Another
mega-event was reported in 1947 (MW = 7.7). It is the
Makran subduction zone that is responsible for the seismic
activity in this zone.

A-8

This zone lies at the border of Iran and Pakistan. The thrust
faults originating from the Chaman fault bend towards the
west and pass through this zone into Iran. The southern part
of Iran is active seismically and has experienced an MW 7.7

65    Page 4 of 12 Arab J Geosci (2021) 14: 65



earthquake recently on 16 April 2013. The tremors also jolted
many areas of Karachi which made this zone concerning for
hazard computation of Karachi.

A-11

On 24 September 2013, anMW 7.7 earthquake jolted this zone
and Karachi. After this event, almost 24 aftershocks were
recorded the same day of which 13 were above MW 5.0.
Such kind of seismic activity has not been observed before
within the radius of 200 km around the epicenter.

Characterization of seismicity

This step involves the characterization of seismicity. For areas
where geologic evidence of earthquakes on faults is not avail-
able, the historical frequency assessment technique is used for
characterizing seismicity. It involves statistical analysis of the
catalog of earthquakes that have occurred in a particular re-
gion. Beno Gutenberg and Charles Francis Richter were the
two pioneers in developing the relationship between earth-
quake magnitude and frequency. The classical Gutenberg-
Richter Law developed in 1954 is still being utilized in re-
searches.

logλM ¼ a−bM ð5Þ

anorm ¼ a−logN ð6Þ
λM ¼ anorm−bM thresh ð7Þ
where λM is the number of earthquake events that exceeds
magnitude,M, per year, andN is the duration of catalog, while
a and b are seismic constants or also known as Gutenberg-
Richter constants. Constant a is a measure of the frequency of
the seismicity of a particular region, and hence, it varies from
region to region. If a region exhibits large a value, it means
that seismic activity in this region is very frequent, while a
lower a value describes the low seismicity of a region. The
frequency magnitude coefficient b is a tectonic parameter that
represents the properties of the seismic medium (Al-Heety
2011). Equation 5 is based on Poisson’s principle, i.e., earth-
quakes are spatially and temporally independent. The pres-
ence of aftershocks in the catalog is a violation of Poisson’s
model because that makes earthquake occurrence dependent
on spatial and temporal parameters (Nasir et al. 2013). Owing
to this reason, all aftershocks were removed from the catalog,
as mentioned in the previous section. The SEISAN software
was used to calculate a and b values for each source zone. The
values of a and b along with the regression analyses graphs for
A-1, A-7, A-8, and A-11 are shown in Figs. 3, 4, 5, and 6. The
seismicity model generated by performing regression analysis
of source zones is presented in Table 2. In Table 2, constants a
and b are Gutenberg-Richter constants, α is a[ln(10)], while β

Fig. 2 Seismicity map of the study area
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is b[ln(10)]; Equation 6 is used to calculate anorm; M1 is the
maximum magnitude reported by each zone in the past. The
assessment of maximum magnitude,Mmax, for seismic source
zones is a fundamental task in PSHA.We utilized the standard
deviation of the magnitude within a source zone to estimate
maximum earthquake potential Mmax by adding this standard
deviation to the maximum magnitude reported in the zone,
i.e., M1. Mthresh is the limiting minimum magnitude that was
used in the analysis, which was set to be 5.0. Table 2 clearly
shows that A-3, A-4, A-5, A-6, and A-9 possess very low
seismicity. A-10, A-11, A-12, and A-13 are the most active
zones possessing high a values, while A-7 and A-8 show
moderate seismicity. A-1 and A-7 possess low b values, mak-
ing them a real threat for producing large earthquakes in the
future. A-8 possesses a b value of 0.395, which is unreliable
due to the absence of small magnitude events in this zone.

Ground motion attenuation

Ground motion is a term related to earthquake magnitude,
source to site distance, and soil properties. Similarly,

earthquake duration is dependent on magnitude, source to site
distance, and soil classification. For instance, earthquake du-
ration is more at soil sites than on rock sites (Solomos et al.
2008). Ground motion attenuation can be defined as the re-
duction in the intensity of ground motions as they propagate.
The earthquake ground motions are established using empir-
ical ground motion relationships (GMPEs) worldwide. For
civil engineering purposes, related ground motion parameters
are PGA, pseudo-spectral acceleration, pseudo-spectral veloc-
ity, and spectral displacement. The most basic form of a
ground motion prediction equation is:

lnY ¼ c1 þ c2M−c3lnR−c4Rþ c5 þ c6S þ ε ð8aÞ
where Y defines the ground motion,M is the magnitude of the
earthquake, R refers to the source to site distance, F is the
faulting mechanism of the region, S is the site soil condition,
and ε is the random error term. Unfortunately a GMPE has not
been yet formulated specifically for Pakistan, owing to which,
we have to rely on GMPEs formulated for other regions. The
Ambraseys and Simpson model was the first GMPE with
spectral ordinates for the European, Mediterranean, and
Middle East region (Ambraseys and Simpson 1996). These
equations were then modified by Bommer et al. (2003) utiliz-
ing the same dataset. The influence of the style of faulting on
the ground motion was integrated into the Ambraseys and
Simpson model as a result of this modification. Ambraseys
et al. then defined a brand new set of GMPEs for spectral
ordinates using an extended dataset which was later on mod-
ified by Akkar and Bommer (Akkar and Bommer 2007;
Ambraseys et al. 2005). After objections to the variability term
in this model, it was again modified by Akkar and Bommer,
which was used in this study as it is an updated model (Akkar
and Bommer 2010). The dataset utilized in the development of
this model comprises records from the Middle East and
Europe. It is capable of calculating spectral acceleration values
for different structural periods. This model has also been rec-
ommended for hazard computations in active crustal regions
by Stewart et al. (2013). The GMPE model used in this study
is defined by using Eq. 8b.

log PSAð Þ ¼ b1 þ b2M þ b3M2

þ b4 þ b5Mð Þlog
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
jb þ b26

q
þ b7Ss

þ b8SA þ b9FN þ b10FR þ εσ ð8bÞ

The values of seismic constants b1–b10 are computed by fol-
lowing Akkar and Bommer (2010), M represents the moment
magnitude (from catalog), Rjb is the distance from source in km,
SS and SA are binary variants (taken as unity in this study), FN
andFR are based on the faulting mechanism existing in a seismic
event, ε represents the number of standard deviations above or
below the mean value of log(PSA), and σ is the variability.

Table 1 Coordinates of seismic zones

A (source zone) Vertices 1 2 3 4 5

1 Longitude 67.82 68.52 73.97 72.88 -

Latitude 23.79 20.79 22.43 25.11 -

2 Longitude 71.30 73.24 69.27 - -

Latitude 24.70 28.86 28.04 - -

3 Longitude 67.82 71.30 69.27 - -

Latitude 23.79 24.70 28.04 - -

4 Longitude 67.82 68.83 66.00 - -

Latitude 23.79 26.75 25.53 - -

5 Longitude 67.82 66.00 63.64 64.58 -

Latitude 23.79 25.53 23.99 21.14 -

6 Longitude 64.58 63.64 61.66 62.46 -

Latitude 21.14 23.99 23.98 20.84 -

7 Longitude 61.66 63.64 63.53 61.59 -

Latitude 23.98 23.99 25.97 26.00 -

8 Longitude 63.33 61.46 61.59 63.53 -

Latitude 29.78 29.89 26.00 25.97 -

9 Longitude 63.64 66.00 64.48 63.47 -

Latitude 23.99 25.53 26.77 27.09 -

10 Longitude 64.48 66.44 65.30 63.33 63.47

Latitude 26.77 29.26 31.02 29.78 27.09

11 Longitude 64.48 66.00 68.83 66.44 -

Latitude 26.77 25.53 26.75 29.26 -

12 Longitude 68.83 69.27 68.41 65.30 66.44

Latitude 26.75 28.04 31.33 31.02 29.26

13 Longitude 69.27 72.57 71.89 68.41 -

Latitude 28.04 28.72 31.14 31.33 -
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Spectral ordinates and return period

The Building Code of Pakistan defines seismic loading
for structures in terms of PGA. But it is not suitable to
consider PGA as a parameter to gauge the damage po-
tential of an earthquake as it does not represent the
dynamic nature of loading. Modern building codes de-
fine seismic loading in terms of spectral ordinates; e.g.,
IBC 2006/09 defines seismic loading in terms of spec-
tral acceleration values for a structural period of 0.2 s
and 1.0 s. In this study, spectral acceleration values
(including PGA) were calculated for 0.1, 0.2, 0.5, 0.8,
1.0, and 1.5 s. Intermediate values of the structural pe-
riod were selected to obtain a uniform hazard curve.

In modern building codes, the risk level is often defined in
terms of the percentage of exceedance rate in the lifetime of a
structure. BCP 2007 restricts design seismic loading to have a
10% probability of exceedance in 50 years. IBC 2006 restricts
it to a 2% probability of exceedance in 50 years. Return period
is another term used in defining seismic loading. It is the gap

(in years) after which an earthquake can re-occur. It can be
defined as follows:

TR ¼ −T
ln 1−Pð Þ ð9Þ

where T is the life span of a building, P is the probability of
exceedance, and TR is the return period. This equation means
that IBC requires to estimate hazard for a return period of
2500 years, while BCP requires the same for a return period
of 500 years (BCP 2007). The return periods considered for
this study were 100, 250, 500, 1000, and 2500 years. R-
CRISIS was used to compute the hazard in this study. It is a
state of the art system to obtain ground motion exceedance
rates for the desired site. It also allows us to calculate the
contribution of each source zone into the hazard.

Probability of exceedance

The last step of the analysis is to generate the exceedance
probabilities for different levels of ground motions. These
exceedance probabilities depend on the time frame and the
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return period. R-CRISIS uses the following expression to cal-
culate the exceedance probabilities.

Pr A≥ajMi; T j; k
� �

¼ 1− ∑
Ns

s¼0
Pk s;Mi; T j

� �
1−Pr A≥ajMi;Rj

� �� �s ð10Þ

where Pr(A ≥ a|Mi, Tj, k) is the probability that intensity
a exceeded given that a seismic event of magnitude Mi

occurred at source k, that is at a distance of Rk from the
earthquake source. This probability depends on the mag-
nitude and source-to-site distance which is calculated
through the probabilistic interpretation of intensities
using the GMPE. As IBC 06/09 defines seismic loading
for ground motions having 2% exceedance probability
in 50 years, therefore, consistent assumptions are made
in this study as per IBC (2006); consequently, a return
period of 2500 years is adopted.

Response spectra

Earthquake design engineers are well aware of the importance
of response spectra in the seismic design of structures. ASCE
7-05 describes the procedure to obtain response spectra from
the spectral acceleration values computed as a result of hazard
analysis for a particular site (7-052006). A response spectra
(Fig. 7) have been developed for Karachi city based on these
set of equations available in ASCE 7-05 (2006).

Sa ¼ SDS 0:4þ 0:6
T
T 0

� �
T < T 0 where T0 ¼ 0:2

SD1
SDS

ð11Þ

Sa ¼ SDS T0≤T ≤TS where TS ¼ SD1
SDS

ð12Þ

Sa ¼ SD1
T

TS ≤T ≤TL where TL ¼ 8 sec ð13Þ

Sa ¼ SD1TL

T2 T > TL ð14Þ

Table 2 Seismicity model of the study area

S. no. Zones Gutenberg-Richter constants M1 Std. D of M1 Mmax Mthresh λ No. of years

a α b a(norm) β

1 A-1 3.792 8.731 0.528 2.036 1.216 7.6 0.8 8.4 5 0.249 57

2 A-2 2.878 6.627 0.429 1.249 0.988 6.8 0.8 7.6 5 0.127 43

3 A-3 2.624 6.042 0.336 0.727 0.774 5.8 0.7 6.5 5 0.111 79

4 A-4 3.682 8.478 0.502 1.996 1.156 5.1 0.4 5.5 5 0.306 49

5 A-5 5.643 12.99 0.890 3.739 2.049 6 0.4 6.4 5 0.194 80

6 A-6 2.716 6.254 0.425 1.269 0.979 5.4 0.5 5.9 5 0.139 28

7 A-7 3.720 8.566 0.480 1.872 1.105 8.1 0.7 8.8 5 0.296 71

8 A-8 3.149 7.251 0.395 1.215 0.910 7.7 0.9 8.6 5 0.174 86

9 A-9 4.911 11.31 0.815 3.000 1.877 6 0.5 6.5 5 0.084 82

10 A-10 4.904 11.29 0.724 2.907 1.667 7 0.6 7.6 5 0.194 99

11 A-11 5.448 12.54 0.736 3.668 1.695 7.7 0.5 8.2 5 0.973 60

12 A-12 4.833 11.13 0.600 2.818 1.382 7.5 0.6 8.1 5 0.657 104

13 A-13 4.981 11.47 0.682 3.198 1.570 6.5 0.5 7 5 0.614 61
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Fig. 8 Contour map 5% damped Ss (m/s
2); return period = 2500 years

Fig. 9 Contour map 5% damped S1 (m/s
2); return period = 2500 years
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Discussion

The computational grid was reduced to administrative bound-
aries of Karachi city which ranges from 24.5° to 25.70° N
latitude and 66.50° to 67.60° E longitude. This makes approx-
imately 14,848 km2. The size of the grid was limited because
this reduces the calculations and processing time required by
the software to calculate the results.

The SHMs for different levels of spectral acceleration con-
tours, which were estimated by the attenuation relationship of
Akkar and Bommer with an approximate return period of
2500 years and a 2% probability of exceedance in 50 years,
are shown in Figs. 8 and 9 (Akkar and Bommer 2010). The
5% damped pseudo-spectral acceleration values calculated for
rock sites for districts of Karachi are presented in Table 3,
which depict that despite being located near many active
faults, Karachi city holds low seismicity. The highest hazard
levels were observed in the northwest part of the study area
located in Lasbella district, while the lowest hazard level was
observed in the southeast of the study area that is in the vicin-
ity of Karachi city. As suggested by previous studies, the

selected area possesses very low levels of seismic hazard.
The hazard, especially in Karachi city, is distributed smoothly
around 1.37 m/2(Ss). The Karachi Arc: a series of parallel and
non-parallel dome-shaped anticlinal hills which are a contin-
uation of the Kirthar Mountains located in the north of
Karachi City are the reasons behind the low seismicity of the
city as they absorb most of the ground motions originating
from A-11.

Disaggregation of PSHA was carried out to identify the
most contributing source zone in the seismic hazard of the
city. It is evident from Fig. 10 that A-11 is the largest source
contributing to the seismic hazard of Karachi city over the
computed range of Ss spectral acceleration values. The recent
seismic activity (2014) in this zone has redefined its seismic
potential, and it is quite capable of generating large earth-
quakes in the future. A-7 is the second major contributor,
but its seismicity is less frequent as compared with A-11.
Moreover, its source to site distance from Karachi city is also
large as compared to of A-11.

Conclusions

The statistical properties of earthquakes in Karachi city
were analyzed and correlated with the present tectonics
and rheology of the region. Based on facts and figures,
seismic hazard in terms of spectral acceleration has been
calculated for the Karachi city. The calculated values
are based on the latest set of GMPEs, and thus, more
accurate values of PGAs are estimated. The following
conclusions are drawn:

Table 3 Ground motion scenarios in m/s2

S. no. Area PGA500 PGA2500 SS
2500 S1

2500

Return period (years) 500 2500 2500 2500

1 Karachi Central 0.580 0.770 1.370 0.406

2 Karachi East 0.579 0.768 1.370 0.405

3 Karachi South 0.580 0.770 1.370 0.405

4 Karachi West 0.579 0.770 1.370 0.407

5 Malir 0.580 0.768 1.370 0.410
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1. PMD has reported PGAs for a return period of 2500 years
for different cities of Pakistan. The value reported for
Karachi is 0.54 m/s2, which is less than that calculated
in the current study and could be unsafe for the design
of civil structures. The PGA calculated in this study is
0.70–0.77 m/s2.

2. It was found that there is no considerable variation in
PGAs for the Karachi city and calculated values of
PGAs are found to be uniform in most parts of the city.

3. Seismic zonation was more specific to the city and based
on the latest seismic records. SS (spectral acceleration at
0.2 s having a return period of 2500 years) and S1 (spectral
acceleration at 1 s having a return period of 2500 years)
were calculated as 1.37 m/s2 and 0.41 m/s2, respectively.
The results could enable practitioners to define seismic
loading based on IBC 06/09 and ASCE 7-05 criteria to
produce safe and economical design of the structures.

4. This study can be incorporated with the current building
authorities of Pakistan to develop improved guidelines for
the Karachi city.
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