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Abstract
Uniaxial compressive strength (UCS) of rock material is very important parameter for rock engineering applications such as rock
mass classification, numerical modelling bearing capacity, mechanical excavation, slope stability and supporting with respect to
the engineering behaviors’ of rock. UCS is obtained directly or can be predicted by different methods including using existing
tables and diagrams, regression, Bayesian approach and soft computing methods. The main purpose of this study is to examine
the applicability and capability of the Extreme LearningMachine (ELM),Minimax ProbabilityMachine Regression (MPMR) for
prediction of UCS of the volcanic rocks and to compare its performance with Least Square Support Vector Machine (LS-SVM).
The samples tested were taken from the volcanic rock masses exposed at the eastern Pontides (NE Turkey). In the soft computing
model to estimate UCS of the samples investigated, porosity and slake durability index were used as input parameters. In this
study, the root mean square error (RMSE), variance account factor (VAF), maximum determination coefficient value (R2),
adjusted determination coefficient (Adj. R2) and performance index (PI), regression error characteristic (REC) curve and
Taylor diagram were used to determine the accuracy of the ELM, MPMR and LS-SVM models developed.

Keywords Uniaxial compressive strength .Volcanic rock .Extreme learningmachine .Minimaxprobabilitymachine regression .

Least square support vectormachine . Porosity . Slake durability index

Introduction

Uniaxial compressive strength (UCS) of rock material is very
important parameter for the geotechnical engineering applica-
tions such as rock mass classification, numerical modelling
bearing capacity, mechanical excavation, slope stability and
supporting with respect to the engineering behaviors’ of rock
(Haramy and De Marco 1985; Ceryan 2014; Wang and
Aladejare 2015). UCS can be measured directly or can be
predicted by different methods including using existing tables

and diagrams, regression, Bayesian approach and soft com-
puting methods.

In addition to the instic properties of the rock materials, the
sample geometry and loading conditions also affect laboratory
test results directly on the rock sample. For this reason and
also to compare the result, this test is carried out according to
the international test standards set by the American Society for
Testing andMaterials (ASTM) or the International Society for
Rock Mechanics (ISRM). However, the direct measurement
of UCS is expensive and time-consuming, and the preparation
of a standard core specimen for weak and highly fractured and
thinly bedded rocks include a major challenge (Gokceoglu
2002; Gokceoglu and Zorlu 2004).

In order to assess the strength of rock materials easily and
quickly in the field work, the tables and diagrams based on
“simple means tests” were developed. As examples using the
tables and diagrams, first approach to estimate UCS of rock
materials can be given by the method recommended by the
British Standard (BS 5930 1981) and the International Society
for Rock Mechanics (ISRM 2007). On other hand, Pollak and
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co-workers (Pollak et al. 2017) suggested a method for esti-
mations of the UCS of carbonate rock materials without
conducting index test. The said method is based on observing
four basic elements: lithology, fabric, defects and porosity.
The LFDP determination method is simple, efficient, inexpen-
sive and versatile. The use of existing tables and diagrams and
LFDP determination method is useful in classification of rock
mass, but the use of the UCS value estimated from the tables
and diagram in engineering calculations is not appropriate.

Basic mechanical tests including the Shore Scleroscope
hardness (Deere and Miller 1966; Koncagul and Santi 1999;
Yasar and Erdogan 2004), Schmidt hammer (Shorey et al.
1984; Yagiz 2009; Fattahi 2017; Demirdag et al. 2018;
Ghasemi et al. 2018), block punch test (Ulusay and
Gokceoglu 1997; Mishra and Basu 2012; Sulukcu and
Ulusay 2001), Brazilian test (Nazir et al. 2013), core strangle
index (Yilmaz 2009), nail penetration test (Chaudhary 2004;
Yamaguchi et al. 2005; Maruto Corporation 2006; Ngan-
Tillard et al. 2009), Equotip hardness tests (Verwaal and
Mulder 1993; Alvarez-Grima and Babuska 1999; Yilmaz
2013), Hybrid Dynamic Hardness (Yilmaz 2013) and Edge
Load Strength (Palassi and Mojtaba Pirpanahi 2013) are used
with empirical equations to obtain UCS. Indentation test
(Cheshomi et al. 2017; Haftani et al. 2013; Mateus et al.
2007; Szwedzicki 1998; Yuen 2010), loading reconstructed
cores test (Mazidi et al. 2012), modified point load test
(Sheshde and Cheshomi 2015) and single particle loading test
(Cheshomi et al. 2012; Cheshom and Ahmadi-Sheshde 2013;
Cheshomi et al. 2015; Ashtaria et al. 2019) have been also
suggested for indirect determination of UCS that have been
also suggested for indirect determination of UCS. Although
these tests are serious shortcomings, limitations and problems
related to these testing methods (Yilmaz 2009; Kayabali and
Selcuk 2010; Nefeslioglu 2013), they are also used as a input
parameters in the predicted models such as statically and soft
computing models (Ceryan and Korkmaz Can 2018) .

Most investigations involve determining the individual cor-
relation between an index and the UCS (i.e., a simple regres-
sion analysis) (e.g. Rzhevsky and Novick 1971; Koncagul and
Santi 1999; Fener et al. 2005; Chang et al. 2006; Mishra and
Basu 2013; Fereidooni 2016; Aboutaleb et al. 2018; Heidari
et al. 2018; Jamshidi et al. 2018). Certain studies have used
more than one index to predict the UCS (i.e. multiple regres-
sion analysis) (e.g. Moos et al. 2003; Moradian and Behnia
2009; Ali et al. 2014; Torabi-Kaveh et al. 2014; Ceryan 2014;
Heidari et al. 2018; Aboutaleb et al. 2018; Cengiz et al. 2018).
There are some difficulties in the implementation and gener-
alization of these statistical models (Sridevi 2000; Fener et al.
2005; Sonmez et al. 2006; Maji and Sitharam 2008; Yuen
2010; Wang and Aladejare 2015; Ng et al. 2014). There is
no agreement of the equations obtained from regression anal-
ysis for the different rock types (Fener et al. 2005; Sonmez
et al. 2006). Feng (2015) indicated that most empirical

correlations are obtained using regression methods that do
not quantify the uncertainties of predictions and it is not al-
ways possible to modify them to incorporate project-specific
data. According to Maji and Sitharam (2008), in evolving
trend-fitting curves by statistical regression, the data is
constrained along a particular two-dimensional geometry of
the statistical model used. To overcome these difficulties of
these conventional methods, many researchers have employed
soft computing methods in estimating UCS of rock material
(Table 1).

ANNs have been used extensively for modeling in the pre-
diction UCS (Table 1). However, they may suffer from some
disadvantages such as converging at local minima instead of
global minima, overfitting if training goes on for too long and
non-reproducibility of results, partly as a result of random
initialization of the networks and variation of the stopping
criteria during optimization (Sattarib et al. 2014). In the past
decade, a new alternative kernel-based technique called a sup-
port vector machines (SVM) (Vapnik 1995) has been derived
from statistical learning theory. SVM model using sigmoid
kernel function is equivalent to a two-layer perceptron neural
network. Using a kernel function, SVMs are alternative train-
ing methods for polynomial, radial basis function and multi-
layer perceptron classifiers in which the weights of the net-
work are found by solving a quadratic programming problem
with linear constraints, rather than by solving a non-convex,
unconstrained minimization problem as in standard ANN
training (Huang et al. 2010). Despite this advantages of stan-
dard SVM, it has some shortcomings. Some of them are (i)
that SVM employs basis functions superfluously in that the
needed support vectors increase with the training data size and
(ii) there is a dubiousness to get the control parameters. Thus,
the calibration of the three parameters of SVM can be time-
consuming and wearing (Gedik 2018). For this, Suykens and
Vandewalle (1999) applied some modifications to the tradi-
tional SVM algorithm to simplify the process of finding a
model by solving a set of linear equations (linear program-
ming) instead of non-linear equations (quadratic program-
ming) and named it as least square support vector machine
(LS-SVM). It can be said that LS-SVM includes similar ad-
vantages of traditional SVM. But it performs faster computa-
tionally. The LS-SVMmethod has been used in the prediction
of UCS by some researchers (Table 1).

Recently, extreme learning machine (ELM) has been pro-
posed for training single hidden layer feedforward neural net-
works (SLFNs), which randomly choose hidden nodes and
analytically determine the output weights of SLFNs (Huang
et al. 2006; Zong et al. 2013). In the ELM method, the only
free parameters that need to be learned are the connections (or
weights) between the hidden layer and the output layer
(Huang et al. 2006; Zausa and Civolani 2001; Huang et al.
2015). This mechanism is different from the conventional
learning of SLFNs. ELM is formulated as a linear-in-the-
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Table 1 The some proposed model on soft computing methods to predictive UCS reported in the literature

References Technique Input R2 Rock type

Meulenkamp and Alvarez Grima
(1999)

ANN EH, ρ, n, GS, RT 0.94 granodiorite, granite, dolomite,
limestone, sandstone

Gokceoglu (2002) FIS PC 0.92 Agglomerates

Gokceoglu and Zorlu (2004) FIS Vp, BPI, PLI, TS 0.67 Greywacke

Sonmez et al. (2004) FIS PC 0.64 Agglomerate

Karakus and Tutmez (2006) FIS PLI, SHV, Vp 0.97 marble, limestone, dacite

Baykasoglu et al. (2008) GP Vp, WA, ρ 0.86 Limestone

Zorlu et al. (2008) ANN PD, C, Q 0.67 Sandstone

Yilmaz and Yuksek (2008) ANN n, Id, SHV, PLI 0.93 Gypsum

Gokceoglu et al. (2009) FIS CC, Id 0.88 clay-bearing sedimentary rocks

Canakci et al. (2009) GP Vp, WA, ρ 0.88 Basalt

Yilmaz and Yuksek (2009) ANFIS SHV, PLI, WC, Vp 0.94 gypsum

Dehghan et al. (2010) ANN n, SHV, PLI, Vp 0.86 travertine

Cevik et al. (2011) ANN Id, CC 0.97 laminated marl

Yagiz et al. (2012) ANN UW, SHV, n, Vp, Id 0.50 carbonate rocks

Monjezi et al. (2012) GA–ANN n, ρ, SHV 0.96 sedimentary, metamorphic and
granitic rocks

Rabbani et al. (2012) ANN n, BD, Sw 0.96 reservoir rock in oilfields

Ceryan et al. (2013) ANN n, Vm 0.81 carbonate rocks

Ozbek et al. (2013) GE ne, WA, UW 0.99 ignimbrite, basalt

Mishra and Basu (2013) FIS BPI, PLI, SHV, Vp 0.98 granite, schist and sandstone

Manouchehrian et al. (2013) GP Q, ρ, n, SHV, CI 0.63 Sandstone

Yesiloglu-Gultekin et al. (2013) ANFIS PC 0.83 granite, granodiorite

Beiki et al. (2013) GP ρ, n, Vp 0.83 carbonate rocks

Kumar et al. (2013) GPR, RVM, MPMR SHV, n, Vp, PLI 0.994, 0.992,
0.914

Travertine

Rasool et al. (2014) GP BPI, ρ, n, Vp 0.92 Hornfels, Travertine, Andesite,
and
Sandstone

Ceryan (2014) SVM, RVM n, Vid 0.75, 0.77 tuff, basalt, andesite and dacite

Rezaei et al. (2014) FIS SHV, ρ, n 0.94 Ultramafic rocks, granitic rocks,
metamorphic rocks and
sedimatary rock

Torabi-Kaveh et al. (2014) ANN Vp, ρ, n 0.95 porous limestone to marly
limestone

Ali et al. (2014) FIS Quartz, grain size, shape
factor

0.91 Amphibolites Schist

Jahed Armaghani et al. (2015) ANFIS ρ, Vp, Q, Pl 0.99 Granitic rocks

Tonnizam Mohamad et al. (2015) PSO–ANN PLI, TS, ρ, Vp 0.97 shale, old alluvium, iron pan

Liu et al. (2015) ELM, GRNN, SVM Mncp,ρ,Vp, Vm,n, ne, Id, Gs 0.792,
0.76690.798

carbonate rocks

Momeni et al. (2015) PSO–ANN ρ,Vp, PLI, SHV 0.97 limestone, granite

Jahed Armaghani et al. (2016a) ICA–ANN SHV, PLS, Vp 0.94 Sandstone

Jahed Armaghani et al. (2016b) ICA–ANN n, SHV, Vp, PLI 0.92 Granite

Madhubabu et al. (2016) ANN n, ρ, Vp, ν, PLI 0.97 carbonate rocks

Ceryan et al. (2016) ANN n, Vid 0.88 volcanic rocks

Heidarian et al. (2016) ANFIS dpt, ρ, Vp 0.89 reservoir rock in oilfields

Li and Tan (2017) LS-SVM ρ Id, Vp, PPLI 0.99 limestone, slate, quartzite and
quartz mica schist

Singh et al. (2017) ANFIS ANFIS 0.99 Basaltic rocks

Sharma et al. (2017) ANFIS ANN ρ, Id, Vp 0.978 0.949 Basalt, granite, quartzite, mica
schist, gnesis, limestone,
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parameter model which boils down to solving a linear system,
which can be applied as the estimator in regression problem or
the classifier for classification tasks (Huang et al. 2006; Liu
et al. 2015; Huang et al. 2015). Theoretically, this algorithm
tends to provide good generalization performance at extreme-
ly fast learning speed and has a highly accurate learning solu-
tion (Liu et al. 2015). And even with randomly generated
hidden nodes, ELM maintains the universal approximation
capability of SLFNs (Huang et al. 2015). According to the
results of the study performed by Liu et al. (2015), the ELM
approach can perform much better than the RBF-neural net-
work (RBF-NN) and the BP-neural network (BP-NN), in
modeling the rock parameter problems. Also, the ELM per-
forms equivalently to the generalized regression neural net-
work (GRNN) and the SVM in estimation of the UCS of rocks
and takes much less time than the GRNN. The authors indi-
cated that it can be easily used in the problems in rock me-
chanics and engineering where uncertainty substantially exists
and expert opinions play an important role.

The other method used in solving engineering problems in
recently is Minimax Probability Machine (MPM). MPM in-
troduced in the studies performed by Lanckriet and co-
workers (2002a-b) is a novel classification algorithm based
on the prior knowledge and has been successfully applied in
classification and regression problems (Yang et al. 2019). The
problem of constructing a regression model can be posed as
maximizing the minimum probability of future predictions
being within some bound of the true regression function
(Strohmann and Grudic 2002). This approach constitutes the
main framework ofMPM (Strohmann and Grudic 2002). This
method has advantages over other machine learning methods
(Yang et al. 2019): (i) MPM is a moment-based constrains
algorithm (or called a nonparametric algorithm). It utilizes
all the information from the samples, mean and variance, to
find a minimax probabilistic decision hyperplane for separat-
ing the two-class samples for binary classifications; (ii) mak-
ing no assumption on the data distribution, MPM can directly
estimate a probabilistic accuracy bound by minimizing the

Table 1 (continued)

References Technique Input R2 Rock type

dolomite,
sandstone coal, shale

Koolivand-Salooki et al. (2017) GP ρ,n, WS 0.88 Sedimantary rocls

Fattahi (2017) ANFIS-SCM,
SVR-ABC

SHV 0.925 0.958 data given in open-source
literatures, different rock type

Ceryan and Korkmaz Can (2018) LS-SVM FIS n, Vid2 0.841 0.745 Magmatic rocks

Mohamad et al. (2018) PSO-ANN ρ, Vp, Id, WC, 0.999 sandstone

Ghasemi et al. (2018) Mtr-M5P SHV, Vp n, Id, UW 0.89 carbonate rocks

Heidari et al. (2018) FIS SHV, Vp PLI, BPI 0.91 sedimantary rocks

Ojha and Mishra (2018) HFNTM PLI, BPI 0.99 granite, schist, and sandstone

Aboutaleb et al. (2018) ANN, SVM d, Ed 0.915 0.922 Limestone, porous limestone,
limestone marl, marl
limestone

Matin et al. (2018) RF N, PLI, SHV, Vp 0.93 Travertine

Umra et al. (2018) ANFIS Vp, n, ρ 0.963 sedimantary rocks

Saedi et al. (2019) FIS n, BPI, TS, Vp migmatite

Mokhtari and Behnia (2019) LLNF, ANN,
COA-ANN

d, ρ, n, Vp 0.981, 0.806,
0.969

limestone

Celik (2019) LSSVM SHV, Vp 0.781 Limestone, marble, dolomite

ρ density, n porosity, ne effective porosity,Gs specific gravity, BD bulk density,UWunit weight,Vp P-wave velocity,Vm P-wave velocity in the solid part
of the sample, Vid P-durability index, Vid2 P-durability second index, Swwater saturation,WAwater absorption,WCwater content,WSwater saturation,
C concave–convex, RT rock type, GS grain size, PD packing density, Q quartz content, CC clay content, PC petrographic composition, Pl plagioclase
content,Mncpmineral compositions, dpt depth, BPI block punch index, CI cone indenter hardness, EH Equotip hardness, Id slake durability index, PLI
point load index, SHV Schmidt hammer rebound number, TS tensile strength, d dynamic poisson ratio, Ed dynamic Young’s modulus, ANN artificial
neural network, ANFIS aadaptive neuro-fuzzy inference system, FIS fuzzy inference system, GA genetic algorithm, GE genetic expression program-
ming, GP genetic programming, GPR Gaussian Process Regression, GRNN the generalized regression neural network, ICA imperialist competitive
algorithm, MPMR minimax probability machine regression, PSO particle swarm optimization, RVM relevance vector machine, SVM support vector
machine, LS-SVM least squares support vector machine, HFNTM multiobjective heterogeneous flexible neural tree,Mtr-M5PModel trees and the M5P
algorithm, FR random forest, ANFIS-SCM adaptive neuro-fuzzy inference system-subtractive clustering method, SVR-ABC support vector regression
optimized by artificial bee colony algorithm, LLNF local linear neuro-fuzzy, COA-ANN the hybrid cuckoo optimization algorithm-artificial neural
network
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maximum probability of misclassification error; and (iii)
MPM formulation is reformulated as a second-order cone pro-
gramming (SOCP).

The main purpose of this study is to examine the applica-
bility and capability of the Extreme LearningMachine (ELM),
Minimax Probability Machine Regression (MPMR) ap-
proaches for prediction of UCS of the volcanic rocks and to
compare its performance with Least Square Support Vector
Machine (LS-SVM). The samples tested were taken from
the rock slopes on the Giresun-Gumushane highway and from
the İyidere-Rize quarry (NE Turkey). In this study, also, the
use of porosity and slake durability index together in estimat-
ing the UCS of the weathered volcanic rocks was investigated.
The degree of weathering of the said volcanic rock material
was defined by using Schmidt hammer rebound number
(SHV). In this study, RMSE, VAF, R2, Adj.R2, PI, REC curve,
and Taylor diagram were used to evaluate the performance of
the models suggested.

Materials and testing procedures

The study area is located in the Eastern Pontides of NE Turkey
(Fig. 1). The eastern Pontides comprise Late Cretaceous and
Middle Eocene to Miocene volcanic and volcanoclastic rocks
in the north, whereas in the south, pre-Late Cretaceous rocks
are widely exposed. The area is characterized by three mag-
matic cycles developed during Liassic, Late Cretaceous and
Eocene times (Fig. 1). The samples used in this study included
Late Cretaceous volcanic rocks and interbedded sedimentary
rocks. These volcanics are andesite, dacite and rhyolite in
composition.

In this study, 47 groups of block samples, each sample
measuring approximately 30 × 30 × 30 cm, were collected in
the field for petrographic analyses, index and mechanical test.
These analyses and test were performed at the Rock
Mechanics Laboratory in the Engineering Faculty of
Karadeniz Technical University, Trabzon NE Turkey.

The dasitic and andesitic rock samples investigated are
from the excavated slopes throughout the Gumushane-
Giresun roadway inNETurkey (Figs. 1, 2 and 3). Andesite is
grayish green and dark green in color, and macroscopically,
augite, hornblende, biotite and plagioclase minerals can be
identified. The groundmass of the said rocks is composed of
plagioclase, augite, hornblende, biotite, chlorite and opaque
minerals. Calcite, sericite and chlorite are found as alteration
products and sometimes as crack fills in these rocks.

Dacite has microgranular texture and contains a lot of
quartz minerals. In the dacite, quartz is found euhedral to
subhedral phenocrysts, and micro and cryptocrystalline in
the groundmass and plagioclase occur subhedral phenocrysts
and small anhedral crystals in the groundmass. In the plagio-
clases, mostly, sericitization, calcification and argillitization
are observed. The biotite is abundant in euhedral and
subhedral crystals and generally forms chloritized as small
flakes in the dacites.

The rock samples from the tuffs and basalt investigated
were obtained from the Iyidere-Ikizdere quarry, Rize NE
Turkey (Figs. 1, 2 and 3). Basalt has microlitic-porphyric
textures with plagioclase, clinopyroxene and hornblende
phenocrysts. Their groundmass has an intergranular tex-
ture and contains plagioclase, clinopyroxene, hornblende,
Fe-Ti oxide and volcanic glass. The tuffs are found as
lytic-crystal tuff. The crystal fragments are composed of
plagioclase, augite and hornblende as coarse and small

Fig. 1 The geological maps of the
study area (Acarlioglu et al. 2013)
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grains, opacified and chloritized biotite along the cleav-
ages, and opaque minerals in the tuff. The rock fragments
in the rocks are composed of andesite.

Schmidt hammer rebound hardness test on the block sam-
ples, determine the porosity, slake durability test and the uni-
axial compressive strength (UCS) was performed according to
International Society for Rock Mechanics (ISRM 2007)
(Table 2). Rebound hammer used in this study was Schmidt
hammer N-type. From the 60 readings collected undertaken at
different point on the block surface, the average of rebound
number value was calculated from 50% of the highest read-
ings. In this study, Schmidt hammer rebound number (SHV)
obtained on unweathered block samples was used to define
the weathering degree of the samples collected from the field
(Eq. 1. Table 2)

Wc ¼ Rf =Rw ð1Þ

where Wc is the decomposition index, Rf is the SHV value
obtained for unweathered rock samples, Rw is the SHV value
obtained for the investigated samples. The definition of the
weathering degree of the sample investigated was made ac-
cording to the classification given in Gokceoglu (1997) (Eq.
1). The Wc value is less than 1 in the unweathered rock sam-
ple, between 1.1 and 1.5 in slightly weathered samples, be-
tween 1.5 and 2 in moderately weathered samples and greater
than 2 in highly weathered samples.

The slake durability test was performed using the stan-
dard testing method recommended by the International
Society for Rock Mechanics (ISRM 1981). The test was
performed using 10 samples of each test for four cycles.
The slake durability index corresponded to each cycle and
was calculated as the percentage ratio of the final to the
initial dry weights of the rock in the drum after the drying
and wetting cycle. This experiment was performed three
times for each block sample.

The core samples were prepared from the rock blocks
using the core-drilling (Fig. 3). They were 50 mm in
diameter and the edges of the specimens were cut paral-
lel and smoot. And then, porosity and the uniaxial com-
pressive strength test were performed on these core
samples.

The porosity (n) of the rock was estimated using the fol-
lowing equations:

n ¼ 1−
ρd
ρs

ð2Þ

where ρd is the dry density and ρs is the grain density.
The UCS test experiments were performed using 10 sam-

ples under dry conditions for each group. During the test, the
samples were loaded to be broken in 10 and 15 min. The
sample’s stress was calculated as the ratio of the compressive
force and sample cross-section area at the beginning of the

Fig. 2 The dasitic and andesitic rock exposed throughout the Gumushane-Giresun road (a, b) basalt and tuffs in the Iyidere-Ikizdere quarry, Rize NE
Turkey (c, d, Usturbelli 2008)

andesite andesite basalt dacite dacite tuff
Fig. 3 Test core samples with different volcanic rock types investigated
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test, and the uniaxial compressive strength was the ratio of the
maximum applied force and cross-section area (Table 2).

Modeling techniques and their application

The input parameters and data normalization

The intrinsic properties affecting UCS of rock material can
be divided into two groups; one is pore characteristics, and
the second is microstructural variables consisting of min-
eralogical composition and rock texture (Ceryan 2014).
Pore characteristics is known to exert a first-order control
on the physical properties of rocks that aids in governing
physical attributes of rocks, such as strength, deformability
and hydraulic conductivity (Tugrul 2004; Bubeck et al.
2017; Griffiths et al. 2017). Porosity is one of the most
important and widely used parameters used in defining
the pore characteristics of rock materials. For this, porosity
is often used in the models developed to estimate UCS
(Baud et al. 2014; Bubeck et al. 2017; Ceryan and
Korkmaz Can 2018). These studies focused on the impact

of porosity on UCS demonstrated that a negative linear or
curvilinear relationship exists between UCS and porosity
of rock materials.

Mineralogical and petro-physical properties including den-
sity, cation packing index, content of specific mineral such as
quartz and clay are widely used for characterizing microstruc-
tural variables and weathering grades of rock materials (e.g.
Zorlu et al. 2008; Ceryan 2012; Ceryan 2008; Manouchehrian
et al. 2014; Ceryan 2014; Ceryan 2015). The slake durability
of a rock is an important property and is closely related to its
mineralogical composition. Hence, its resistance to degrada-
tion (weakening and disintegration) is measured using a stan-
dard drying and wetting cycle (Sharma and Singh 2008). The
slake durability test is a cheap and easy test to carry out and
requires very little sample preparation. For this, some re-
searchers have investigated the relation between UCS and
slake durability index (Id) to develop an estimation equation
for UCS (e.g. Cargill and Shakoor 1990; Koncagul and Santi
1999; Gokceoglu et al. 2000; Dincer et al. 2008; Yagiz 2011;
Kahraman et al. 2016).

In this study, porosity representing pore characteristics and
slake durability index representing mineralogical and petro-

Table 2 Index and strength
properties of the samples
examined

No Rock
type

Wc n
(%)

Id
(%)

UCS
(MPa)

No Rock
type

Wc n
(%)

Id
(%)

UCS
(MPa)

1 Basalt SW 5.2 72.1 78.6 25 Dacite SW 4.7 93.7 153.4

2 Tuff MW 6.9 81.6 87.5 26 Andesite SW 4.1 95.4 158.2

3 Dacite SW 4.7 93.8 123.8 27 Andesite SW 3.7 94.9 140.4

4 Andesite SW 5.4 89.1 114 28 Dacite MW 6.5 79.3 86.3

5 Dacite F 2.3 96.5 175.8 29 Dacite SW 5.8 94.5 102.9

6 Dacite MW 8.1 74.9 73.2 30 Dacite MW 8.2 88.3 118.5

7 Dacite MW 10.6 68.4 52.2 31 Dacite F 1.8 99.5 216.3

8 Dacite F 3.9 97.4 184.5 32 Andesite SW 3.1 96.2 179.8

9 Andesite F 2.7 98.8 206.3 33 Andesite F 3.0 96.3 180.4

10 Basalt F 0.7 98.6 212.2 34 Andesite SW 3.3 94.6 172.5

11 Basalt MW 3.8 78.5 94.6 35 Basalt F 1.1 98.1 175.7

12 Basalt SW 2.8 94.7 159.5 36 Basalt MW 2.9 88.7 125.1

13 Dacite SW 3.1 96.2 170.9 37 Dacite HW 10.2 66.3 72.5

14 Dacite SW 10.3 91.1 94.3 38 Dacite SW 4.1 90.4 147.8

15 Dacite SW 9.4 87.6 95.5 39 Dacite SW 8.3 93.4 121.2

16 Dacite F 2.1 99.2 202 40 Dacite SW 8.7 89.7 101

17 Tuff MW 8.2 77.8 76.5 41 Tuff SW 2.7 94.2 143.2

18 Tuff SW 6.9 81.9 89.4 42 Tuff MW 5.9 80.5 81.9

19 Tuff SW 5 79.2 98.9 43 Dacite MW 10.6 78.9 75.4

20 Basalt SW 1.5 93.8 162.6 44 Dacite SW 4.1 97.8 168.3

21 Basalt F 0.6 96.3 199.3 45 Dacite MW 11.9 89.7 87.7

22 Dacite MW 11.4 74.5 63.5 46 Dacite SW 2.5 98.8 173.9

23 Dacite SW 7.6 91.8 115 47 Dacite MW 12.5 85.6 79.9

24 Dacite SW 3.1 97.3 170.4

Wc weathering degree, n porosity, Id slake durability index, UCS uniaxial compressive strength, F unweathered,
SW slightly weathered, MW moderately weathered, HW highly weathered
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physical properties were used as an input parameter for the
LS-SVM, RPRM and ELM models.

In the models suggested in this study, the input and output
data are normalized to prevent the model from being dominat-
ed by the variables with large values, as is commonly used.
The normalization of all data was carried out using Eq. 24:

zi ¼ xi−xmin

xmax−xmin
ð3Þ

where zi is the scaled value, xi is the original data, xmin and
xmax are, respectively, the minimum and maximum values of
the original data.

Regression analysis

The regression analysis is a statistical tool that can be applied
to examine the relationships between variables. In this tech-
nique, the relationship between independent (predictor) vari-
able and dependent (output) variable is systematically deter-
mined in the form of a function (Jahed Armaghani et al.
2016a). Two main regression methods in statistics are simple
and multivariable analysis The simple regression analyses
provide a means of summarizing the relationship between
two variables (Yagiz et al. 2012). While a simple linear equa-
tion (SLR) has one basic form as y = b0 + b1x, non-linear equa-
tions obtained by simple none linear equation (SNLR) can
take many different forms including power (y = axb), logarith-
mic (y = a lnx + b) and exponential (y = aebx) functions that
covers many different forms, which is why non-linear regres-
sion provides the most flexible curve-fitting functionality
(Ceryan and Korkmaz Can 2018).

The general purpose of multiple regression is to learn more
about the relationship between several independent or predic-
tor variables and a dependent or criterion variable. The goal of
multiple linear regression (MLR) is to model the linear rela-
tionship between the explanatory (independent) variables and
response (dependent) variable. A linear equation is construct-
ed by adding the results for each term. This constrains the
equation to just one basic form such as “Response = con-
stant + parameter * predictor + ... + parameter * predictor”
(Ceryan and Korkmaz Can 2018).

In order to estimate UCS by regression analysis in this
study, two simple linear and many simple non-linear relation-
ships were found. The highest performance was obtained from
exponential (y = aebx) functions. In addition, MLR analysis
was performed in this study.

Least square support vector machine

The basic concept of SVM is to transform the signal to a
higher dimensional feature space and find the optimal
hyper-plane in the space that maximizes the margin

between the classes (Lee et al. 2008). Suykens and
Vandewalle (1999) applied some modifications to the tra-
ditional SVM algorithm to simplify the process of finding
a model by solving a set of linear equations instead of
non-linear equations and named it as least square support
vector machine (LSSVM). LS-SVM includes similar ad-
vantages of traditional SVM, but it performs faster com-
putationally (Sattarib et al. 2014). LS-SVM method can
be described as follows according to the studies proposed
by Suykens et al. (2002) and Van Gestel et al. (2004).

Considering a given training set of N data points xk ; ykf gNk¼1

with input data xk∈ℝN and output data yk ∈ r whereℝN is the N-
dimensional vector space and r is the one-dimensional vector

space. Given training set xk ; ykf gNk¼1, the minimization of the
cost function J of LS-SVM is defined as Eq. 4

J W; eð Þ ¼ 1

2
WTWþ γ

1

2
∑
N

k¼1
e2k ð4Þ

where e2k is the quadratic loss term and γ is the regularization
parameter.

The solution of the optimization problem of LS-SVM is
obtained by considering the Lagrangian as Eq. 5

L W ; b; e;αð Þ

¼ J W ; eð Þ− ∑
N

k¼1
αk WTϕ xkð Þ þ bþ ek−yk

� � ð5Þ

where αk are the Lagrange multipliers. The conditions for
optimality can be obtained by differentiating with respect to
W, b, ek and αk, i.e. (Eq. 6)

∂L
∂W

¼ 0→W ¼ ∑
N

k¼1
αkϕ xkð Þ; ∂L

∂b
¼ 0→ ∑

N

k¼1
αk ¼ 0;

∂L
∂ek

¼ 0→αk ¼ γek ; k ¼ 1; :::;N ;
∂L
∂αk

¼ 0→WTϕ xkð Þ þ bþ ek−yk ; k ¼ 1; :::;N ð6Þ

Solution of expressions can be written as Eq. 7

0 1
!T

1
!

Ω þ γ−1I

" #
b
α

� �
¼ 0

y

� �
ð7Þ

with y ¼ y1; ::::; yN½ �; 1!¼ 1; ::::; 1½ �;α ¼ α1; ::::;αN½ � and
by applying Mercer’s theorem (Mercer 1909).

The resulting LS-SVM for function estimation can be
expressed as Eq. 8

by ¼ f xð Þ ¼ ∑
N

k¼1
α*
kK xk ; xð Þ þ b*b ð8Þ
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where α*
k and b∗ values are the solutions to Eq. (7).

where K(xk, xm) = ∅ (xk)
T∅ (xk) for k, m = 1, …, N is the

kernel function and b is the bias term. Any kernel function can
be preferred in accordance with Mercer’s theorem (Gedik
2018).

The kernel functions treated by LSSVM modeling studies
are generally some specific functions including linear, spline,
polynomial, sigmoid and Gaussian radial basis (Samui 2008;
Gedik 2018). The Gaussian kernel is used in this analysis. The
Gaussian kernel is given as Eq. 9 (Burges 1998):

K xk ; x1ð Þ ¼ exp −
xk−x1j jj j
2σ2

� �
; k; l ¼ 1;…:;N ð9Þ

where σ is the width of the Gaussian kernel.

MPRM

A MPMR algorithm is an improved version of SVM
(Strohmann and Grudic 2002), where one data is analyzed
by shifting all of the regression data +ε along the depen-
dent variable axis, and the other is analyzed by shifting all
regression data −ε along the dependent variable axis (Deo
and Samui 2017). MPMR uses Mercer’s kernel for
obtaining non-linear regression models (Gopinath et al.
2018). Let us assume that the unknown regression func-
tion f: Rd➔R, which has the form

y ¼ f xð Þ þ ρ ð10Þ
where x ∈ RD = input vector according to a bounded dis-
tribution Ω; y ∈ R = output vector; ρ is the noise or fitting
error and has zero mean value, i.e. E(ρ) = 0, variance
Var(ρ) = σ2 and finite σ∈R (Strohmann and Grudic 2002;
Lanckriet et al. 2002a; Gopinath et al. 2018). Let us con-
sider the training set examples (Eq. 11)

Γ ¼ x1; y1ð Þ…: xN; yNð Þf g ð11Þ

where ∀i ∈ {1, 2 …N}, xi = {xi1, xi2 …xid}∈Rd and yi ∈ R.
We have two objectives; one is to find the approximation

functionby ¼ bf xð Þ and the second objective is to find the error
ε > 0 and fitting error (minimum probability) (Strohmann and
Grudic 2002; Lanckriet et al. 2002b; Gopinath et al. 2018)
(Eq. 12)

Ω ¼ inf Pr by–y��� ���≤εn o
ð12Þ

The MPMR formulation for the above approximation by is
given by Eq.13

by ¼ bƒ Xð Þ ¼ ∑
N

i¼1
βiK xi; xð Þ þ b ð13Þ

where k(xi, x) = φ(xi), φ(x) is the kernel which satisfies
Mercer’s conditions; xi ∀i ∈ {1, 2,…. N} are obtained from
learning data Γ. In the above formulation, βi and b ∈ R are
the outputs of MPMR learning algorithm.

One data set is obtained by shifting all of the regres-
sion data +ε along the output variable axis. The other data
is obtained by shifting all of the regression data −ε along
the output variable axis. The classification boundary be-
tween these two classes is defined as a regression surface.

ELM

The brief methodology of ELM will be given in this section.
The ELM proposed by Huang et al. (2006) is in essence a
least-square-based learning algorithm for “generalized”
SLFNs, which can be applied as an estimator in regression
problem. The weights of the hidden layer in the ELM can be
initialized randomly; thus, it is only necessary to optimize the
weights of the output layer (Liu et al. 2015). The optimization
can be carried out by means of the Moore–Penrose general-
ized inverse (Liu et al. 2015).

In SLFN, the relation between input (x) and output (y) is
given below (Eq. 14):

∑
K

i¼1
βigi wi:x j þ bj

	 
 ¼ y j j ¼ 1;…;N ð14Þ

where wi denotes the weight vector connecting the ith hid-
den neuron and the input neurons, βi represents the weight
vector connecting the ith hidden neuron and the output neu-
rons, bi denotes the threshold of the ith hidden neuron, gi
represents the activation function, m denotes the number of
hidden nodes and N is the number of datasets.

The Eq. 14 can be expressed in the following way (Eq. 15).

Hβ ¼ T ð15Þ
where H = {hij} (i = 1,…,N, j = 1,…,K and hij = g(wj. xi)) de-
notes the hidden-layer output matrix, β(β = [β1,..., βK]) repre-
sents the matrix of output weights and T(T = y1, y2, ..., yN)

T

denotes the matrix of targets.
The value of β is determined from the following expression

(Eq. 16).

β ¼ H−1T ð16Þ
where H−1 is the Moore–Penrose generalized inverse of H
(Serre 2002). The learning speed of ELM is increased by
using Moore–Penrose generalized inverse method.

Results and the prediction performances

Since the studied samples have different degrees of
weathering, the change of the porosity (n), slake durability
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index (Id) and the uniaxial compressive strength (UCS) with
weathering were determined (Fig. 4). These changes of the
said properties of the samples with weathering can be seen
at the box diagrams graphed using maximum, minimum, me-
dian, the first quartile and third quartiles of the data measured
for each weathered degree (Fig. 4).

The mean values of n and Id are 5.0% and 92% in slightly
weathered samples while these values are 2.2% and 97% in
fresh samples, respectively. On the other hand, the mean
values of n and Id are 8.2% and 81% in moderately weathered
samples, respectively. The mean of UCS values is 194.7 MPa
in fresh samples. These UCS values are 136.8 MPa and
84.8 MPa in slightly weathered samples and in moderately
weathered samples, respectively. According to these values
obtained for n, Id and UCS, n increases when the grade of
weathering of the samples increases while slake durability
index decreases with weathering. The condition resulted in
decreases of UCS with weathering degree increasing
(Table 2, Fig. 4).

To evaluate the performance, the models suggested in this
study accuracies, the root mean square error (RMSE), vari-
ance account factor (VAF), maximum determination coeffi-
cient value (R2), adjusted determination coefficient (Adj. R2)
and performance index (PI), given in Eqs. 17–21 (Gokceoglu

2002; Gokceoglu and Zorlu 2004; Yagiz et al. 2012; Ceryan
2014) were computed for each model (Tables 3 and 4).

RMSE evaluates the residual between desired and out-
put data, and VAF represents the ratio of the error variance
to the measured data variance. R2 and Adj. R2 evaluate the
linear relation between desired and output data. For a sta-
tistical model, in theory, the VAF, RMSE and R2 are 100%
for VAF, 0 for RMSE and 1 for R2 and approximately 2 for
PI (Ceryan 2014). In reality, VAF, RMSE and R2 can be
separately used to examine the model accuracy. Due to
none of these indices is superior, the performance index
(PI) can be used to examine the accuracy of the statistical
models (Yagiz et al. 2012; Ceryan 2014). PI was suggested
by Yagiz et al. (2012), and then, it was modified by Ceryan
(2014). In the PI modified, Adj. R2 was used instead of R2.
The RMSE was calculated from the normalized data.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
∑n

t¼1 dt−ytð Þ2
r

ð17Þ

VAF ¼ 1− var dt−ytð Þ=vardtð Þ ð18Þ

R2 ¼
∑
n

t¼1
dt−dmeanð Þ yt−ymeanð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑
n

t¼1
dt−dmeanð Þ2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
n

t¼1
yt−ymeanð Þ2

r
666664

777775
2

ð19Þ

AdjR2 ¼ 1−
n−1ð Þ

n−p−1ð Þ 1−R2
	 
 ð20Þ

PI ¼ AdjR2 þ 0:01VAF−RMSE ð21Þ

where n is the number of training or testing samples, p is the
model input quantity and dt and yt are the measured and pre-
dicted values, respectively.

The performance of the SNLR models with slake du-
rability index is higher than the other SNLR model. The
performance index and VAF values of the SNLR models
with n are 1.302 and 66.6. It can be said that the perfor-
mance of the SNLR models with n is not successful
(Table 3). Considering the values of the performance in-
dices except RMSE, it can be said that the peformence of
MLR models is higher than SNLR model with slake
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Fig. 4 The change of the porosity (n), slake durability index (Id) and the
uniaxial compressive strength (UCS) with weathering

Table 3 Prediction performance
measures of SNLR amd MNLR
models

Equation RMSE R2 Adj. R2 Min (MPa) Max.
(MPa)

VAF PI

UCS = 208.91 e-0.09766 n 0.1013 0.7491 0.7377 61.63 197.02 66.59 1.302

UCS = 4.1649 e0.03789 Id 0.0951 0.8300 0.8220 51.35 180.68 80.54 1.532

UCS = − 6.64n + 2.51Id-89.92 0.1601 0.8820 0.8771 8.76 152.91 84.30 1.560

Observed – – – – 52.2 216.3
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durability index. The performance index of the SNLR
models with Id is 1.532 wihle PI value of MLR model
is 1.560. The performance of these regression models in
predicting maximum and minimum values is not
successful.

Taking into considering RMSE, R2, maximum and mini-
mum value and VAF values, the LS-SVM model having the
worst performance among soft computing methods given in
this study performed slightly better than the MLR models
having the best performance among regression models
(Tables 3 and 4). The performance index of the MLR model
is 1.560 while PI value of LS-SVM model is 1.573 (Tables 3,
4 and Fig. 6).

In this study, the huffled complex evolution algorithm
(Wang et al. 2009) and grid-search method (Samui and
Dixon 2012) were used to determine the optimum range for

LS-SVM parameters, respectively. For the developed
LSSVM, the design parameters of γ and σ are 0.7 and 50,
respectively.

In the ELM applications, three-layered FFNN was con-
structed for modeling of runoff series. The optimal number
of neuron in the hidden layer was determined using a trial-
and-error approach by varying the number of neurons from 2
to 10. The developed ELM gives best performance for seven
neurons in the hidden layer.

In the MPRM modeling, this study uses trial and error
approach for determination of design parameters of error in-
sensitive zone (ε) and σ. The design values of ε and σ are
0.001 and 1.9, respectively.

The R2 values calculated for the MPRM, ELM and LS-
SVM models are 0.9597, 0.9587 and 0.9099 during train-
ing and 0.9114, 0.8997 and 0.9062 during the testing

Table 4 Prediction performance
measures of LS-SVM, ELM and
MPRMmodel for the training and
testing periods

Model Structure RMSE R2 Adj.
R2

Min
(MPa)

Max.
(MPa)

VAF PI

Training

Observed – – – – 52.2 216.2

MPRM ε = 0.001; σ = 1.9 0.0590 0.9597 0.9570 54.2 220.5 98.12 1.879

ELM No of hidden
neurons = 7

0.0597 0.9587 0.9560 56.3 217.6 98.51 1.881

LS-SVM γ = 0.7 σ = 50 0.0954 0.9099 0.9039 78.7 167.0 78.13 1.590

Testing

Observed – – – – 72.5 175.7

MPRM ε = 0.001; σ =1.9 0.0905 0.9114 0.8953 54.4 209.6 85.32 1.658

ELM No of hidden
neurons = 7

0.0934 0.8997 0.8814 53.1 207.2 84.80 1.636

LS-SVM γ = 0.7 σ = 50 0.1497 0.9062 0.8892 77.8 167.6 83.37 1.573

Fig. 5 The predictions of LS-SVM, ELM and MPRM models for training and testing periods
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periods, respectively (Table 4). The Adj. R2 values calcu-
lated for the MPRM and ELM models are 0.9570 and
0.9560 during training and 0.8953 and 0.8814 during the
testing periods, respectively. These values for LS-SVM
model during training and testing periods are 0.9039 and
0.8892, respectively. In the training and testing periods
(Table 4). The RMSE values calculated for the MPRM,
ELM and LS-SVM models are 0.0590, 0.0597 and 0.0954
during training and 0.0905, 0.0934 and 0.1497 during the
testing periods, respectively (Table 4). The best R2 and
RMSE values in during the training and testing periods
were obtained for MPRM model while the worse values
in both periods obtained for LS-SVM models (Table 4).
The VAF values calculated for the MPRM, ELM and LS-
SVM models are 0.981, 0.985 and 0.781 during training
and 0.853, 0.848 and 0.834 during the testing periods,
respectively (Table 4).

In MPRM and ELMmodels, the difference in VAF, R2 and
Adj. R2 values between training and testing period ranges 5–
13% while the difference in PI was obtained 13%. In the LS-
SVMmodels, the difference in VAF, R2, Adj. R2 and PI values
between training and testing period ranges 0.5–6%. This is
very low value.

In training period, the best convergence to the maximum
and minimum values measured was obtained for the ELM
model while the best convergence to these measured values
was obtained for LS-SVM in testing period (Table 4).

According to the results in this study, theMPRM, ELM and
LS-SVM methods are useful tools for modeling the sample
UCS and performed well. The PI values obtained for the
MPRM, ELM and LS-SVM models are 1.879, 1.881 and
1.590 during training and 1.658, 1.636 and 1.573 during the
testing periods, respectively (Table 4). Considering PI value,
The MPRM performed slightly better than the ELM model.
Further, the difference in training and testing performance
between the ELM and LS-SVM models is meaningful.

In order to check the validation of the prediction models
suggested in this study, the relations of predicted values versus
measured values are plotted in Fig. 5.

The error in the predicted value was represented by the
distance that each data point plots from the 1:1 diagonal line
(Fig. 6). It can be seen that the predicted values for ELM and
MPRM models are almost lying on the diagonal line unlike
LS-SVM model (Fig. 6).

Regression error characteristic (REC) curve (Bi and
Bennett 2003) gave the graph of error tolerance versus

Fig. 6 The scatter plots of LS-SVM, ELM and MPRM model developed in this study during the training and testing periods

Fig. 7 ROC curve of the
developed models
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percentage of points that are predicted within the tolerance.
The x-axis and the y-axis represent the error tolerance and the
accuracy of a regression function, respectively (Fig. 7). The
area over the REC curve (AOC) provides the approximation
of the expected error. The lesser the AOC, the better is the
performance of the models. Thus, ROC curves allow easy and
reliable visual estimate of the performance of the models (Fig.
7). Figures 7 and 8 show the ROC curves and bar chart of
AOC values of the different models. The value of AOC of
LSSVM model is higher than the developed MPMR and
ELM models. Hence, performance of MPMR and ELM is

better than the developed LSSVM model. The performance
of MPMR and ELM is almost the same.

Taylor diagrams (Taylor 2001) are simple graphical repre-
sentation of how the predicted values of are in correspondence
with the observed values and compare the performance of
various models used for prediction. It depicts statistical com-
parison of various models in a two-dimensional graph by plot-
ting standard deviations, correlation coefficient and centered
root mean square (RMS). Standard deviation is denoted by the
radial distance from the origin. The RMS error is relational to
the distance between observed and simulated fields assessed
in the identical units to standard deviation. Correlation coeffi-
cient is represented by the azimuthal angle (Fig. 9).

Figure 9 illustrates taylor diagram of the developed
MPMR, ELM and LSSVMmodels. It is clear from Fig. 3 that
the developed MPMR and ELM produce better performance
than the LSSVM model.

Discussion and conclusions

This study examines the applicability and capability of the
Extreme Learning Machine (ELM), Minimax Probability

Fig. 8 BAR chart of AOC values of the developed models

Fig. 9 Developed taylor diagram
of the constructed models
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Machine Regression (MPMR) approaches for prediction of
UCS of the volcanic rocks with different weathering degree.
The results of the developed models ELM and MPMR have
been compared with Least Square Support Vector Machine
(LS-SVM) models. In these models, porosity and slake dura-
bility index were used as input parameters.

According to results of this study, the LS-SVM model
having the worst performance among soft computing
methods given in this study performed slightly better than
the MLR models having the best performance among re-
gression models. Also, some difficulties in the implemen-
tation and generalization of these statistical models are
valid such as given in introduction section.

Considering the PI, REC and Taylor diagram, the perfor-
mance of MPMR and ELM is better than the developed LS-
SVM model. The prediction performance of MPRM, ELM
models is excellent while the performance of LS-SVM model
is good. Hence, the relation between inputs and output has
been captured successfully by the developed soft computing
models. The performance of MPMR and ELM is almost the
same.

The developed MPMR tries to keep the predicted out-
put within a bound and model controls future prediction
of UCS. However, ELM and LS-SVM have no control
over future prediction. MPMR uses two tuning parameters
(error insensitive zone and width of radial basis function).
LS-SVM also uses two tuning parameters (error insensi-
tive zone and regularization parameter). ELM uses four
tuning parameters(activation function, number of hidden
neurons, number of training dataset and size of block da-
ta). ELM is a modified version of ANN. So, it is con-
structed based on empirical risk minimization principle.
MPMR and ELM have been constructed based on struc-
tural risk minimization principle. The concept of proba-
bility is used for developing MPMR model. ELM and LS-
SVM are not probabilistic models.

In general, there is no discernible difference between the
Id values of the fresh rocks and the Id values in the slightly
weathered rocks (Ceryan et al. 2008; Wyering et al. 2014;
Ceryan 2015; Undul and Tugrul 2016; Udagedara et al.
2017). On the other hand, there is a significant difference
between the Id value of the moderately weathered rock and
the Id value of the fresh rock. This difference is much
higher in highly decomposed rocks. This condition is also
valid for n. Similarly, UCS decreases with increasing de-
gree of weathering, especially after moderately weathering
degree (Wyering et al. 2014; Ceryan 2015; Undul and
Tugrul 2016; Udagedara et al. 2017). These implications
apply also to this study. Therefore, these soft computing
models given in this study are suitable for samples from
magmatic and metamorphic rock with at least three differ-
ent degrees of weathering except completely weathering
degree. The soft computing models provided in this study

are not recommended for examples that do not have differ-
ent degrees of weathering. User can use the developed
models as quick tools for prediction of UCS of magmatic
and metamorphic rock with different weathering degree.
The developed models can be tried for solving different
problems in weathered rocks.
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