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Abstract
In this paper, the horizontal slice method (HSM) is employed to examine the stability of reinforced soil slopes. In this method, the
soil mass is divided into a series of horizontal slices, and then the stability of each slice is examined. Unlike the previous studies,
the formulation presented in this paper is able to analyse any type of the sliding surface. In addition to the log-spiral slip surface,
the general slip surface is also examined. The genetic algorithm (GA) optimization method is employed to find the critical slip
surface. Furthermore, the distribution of reinforcements along the depth is assumed to be uniform or non-uniform. Seismic effect
is considered through the pseudo-static method. The HSM is implemented through a computer program written in MATLAB.
After solving the problem, the critical slip surface, the amount of force and the length of reinforcements for the purpose of slope
stabilization are obtained. Finally, the results are compared with other studies. These comparisons indicate that the method
presented in this paper provides accurate results. The results also demonstrate that the general sliding surface is more critical
than log-spiral sliding surface, thus leading to a larger amount of required reinforcement.
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Introduction

One of the most important issues in geotechnical engineering
is the stability of reinforced soil slopes. Nowadays, reinforced
soil slopes are widely popular because of some reasons like
reasonable price, relatively easy construction and ideal resis-
tance against earthquakes. Due to inadequate and inaccurate
information about soil properties, and earthquake behaviour, it
is difficult to precisely investigate the performance of rein-
forced soil structures against seismic forces.

In recent years, various methods have been proposed to
examine the stability of reinforced soil slopes and walls.
One of the conventional methods involves method of vertical
slices using the limit equilibrium approach. The horizontal
slice method (HSM) has several benefits against the vertical
slice method. Unlike vertical slice method, the variations of
soil properties in depth can be easily included in the HSM (Lo
and Xu 1992; Shahgholi et al. 2001). Moreover, in the vertical
slice method, the mobilized forces of reinforcements appear
on the border between slices. In addition to the limit equilib-
rium, there are other numerical methods such as finite differ-
ences and finite element methods (Chen et al. 2003; Zheng
et al. 2006; Li 2007), stress characteristics (Jahanandish and
Keshavarz 2005), limit analysis method (Michalowski 1998a;
Lin et al. 2010) and other methods (Bathurst et al. 2002) for
the analysis of reinforced soil slopes.

One of the main problems in the limit equilibrium
method (LEM) is how to determine the critical slip sur-
face. The critical slip surface has been determined through
various methods, including genetic algorithm (Zhu 2001;
Zheng et al. 2009; Sengupta and Upadhyay 2009), Monte
Carlo (Malkawi et al. 2001), particle swarm (Cheng et al.
2007; Kalatehjari et al. 2014) and fish swarm (Cheng
et al. 2008).
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There are some research works which were carried out on
the stability of reinforced soil slopes. Ling et al. (1997) used
the LEM in conjunction with the pseudo-static method to in-
vestigate the behaviour of reinforced soil slopes. Michalowski
(1998b) analysed the stability of reinforced soil slopes through
the kinematic theorem of limit analysis. He assumed that the
slip surface was log-spiral, while using the pseudo-static
method. Using the kinematic theorem of limit analysis and
pseudo-static method, Ausilio et al. (2000) analysed the sta-
bility of reinforced soil slopes. Nouri et al. (2006) applied the
HSM and proposed several formulations for reinforced soil
slopes assuming the log-spiral slip surface. Azad et al.
(2008) evaluated the effect of earthquake on the lateral earth
pressure of unreinforced soil retaining walls using HSM
through pseudo-dynamic method. Narasimha Reddy (2008)
applied the HSM and pseudo-static methods to investigate
the reinforced soil walls considering oblique load or displace-
ment. Furthermore, Shekarian et al. (2008) applied HSM and
pseudo-static method to analyse reinforced soil retaining
walls. Li et al. (2015) assessed seismic stability of gravity
retaining walls using pseudo-static method. Ghosh and
Debnath (2016) analysed reinforced retaining walls assuming
nonlinear failure surface. Seismic effects were considered
through the pseudo-static method. Song et al. (2016) present-
ed a new method using the LEM to evaluate the stability of
geosynthetic-reinforced slopes. Using LEM and finite element
method, Rawat and Gupta (2016) analysed the stability of
nailed soil slop. Factor of safety and length of reinforcements
of geocell-reinforced slope were calculated by Mehdipour
et al. (2017) using the HSM under the static condition. Dey
et al. (2017) evaluated seismic active earth pressure on
retaining walls by considering conventional HSM. They used
pseudo-static method to investigate seismic effects. Assuming
log-spiral slip surface, Dong-ping et al. (2017) studied the
stability of reinforced soil slope through LEM. Required
micropiles to stabilize slopes under seismic condition were
determined in their research. Pain et al. (2017) evaluated seis-
mic passive earth pressure of inclined rigid retaining walls
considering pseudo-static method. A planar slip surface was
assumed as critical slip surface. Keshavarz et al. (2017) ap-
plied HSM in conjunction with the modified pseudo-dynamic
method to compute the yield acceleration of reinforced soil
slopes.

In this study, the seismic forces are applied as pseudo-static
loads. Pseudo-static approach is one of the old methods used
for the seismic stability of soil structures. In this method, the
seismic loads are replaced by static forces and the dynamic
nature of the seismic loads, time and phase difference and the
damping ratio of soils are neglected. In the pseudo-static
method, the earthquake force is equal to the soil weight mul-
tiplied by a seismic coefficient, which is a fraction of peak
ground acceleration (PGA). Despite the disadvantages and
simplicity of the pseudo-static method, numerous researches

have been done using this method and the results of different
investigations demonstrate that the pseudo-static method has
appropriate accuracy (Duncan et al. 2014; Conte et al. 2017).

In this paper, the HSM is employed to examine the seismic
stability of reinforced soil slopes. To this end, the 5N-1 for-
mulation of Nouri et al. (2006) has been modified. Unlike the
previous formulations, the proposed formulation in this study
(i) can consider any type of the failure surface such as planar,
log-spiral, circular and general slip surface; (ii) can take into
consideration the effect of surcharge pressure; and (iii) is ar-
ranged such that the obtained system of nonlinear equations
can be solved by the Newton-Raphson method or MATLAB
optimization functions. The distribution of reinforcements in
depth is assumed to be uniform and non-uniform. Moreover,
in this study, the genetic algorithm is employed to optimize the
critical slip surface and the calculations are performed for both
general and log-spiral failure surfaces.

Proposed formulation

Figure 1 displays the geometry of the problem and all forces
exerted on a horizontal slice. Table 1 presents all the number
of unknowns and equations. As seen, the number of un-
knowns and equations are 5N-1, where N is the total number
of horizontal slices. For each slice, the equilibrium of vertical
and horizontal forces as well as moment around a hypothetical
point is examined. Eqs. (1), (2) and (3) represent the equilib-
rium of forces in the vertical and horizontal directions and
moment around point O, respectively.

Viþ1−Vi− 1−Kvð ÞWi þ Sisinαi þ Nicosαi ¼ 0 ð1Þ
T j þ Sicosαi−Nisinαi−KhWi þ Hiþ1−Hi ¼ 0 ð2Þ
Viþ1 xiþ1−x0−Liþ1−xv;iþ1

� �
−Vi xi−x0−Li−xv;i
� �þ T j y0−H þ Y r; j

� �
þ Hiþ1 y0−yiþ1

� �
−Hi y0−yið Þ þ Sisinαi þ Nicosαi½ � xm;i−x0

� �
þ Sicosαi−Nisinαi½ � y0−ym;i

� �
− 1−Kvð ÞWi xG;i−x0

� �
−KhWi y0−yG;i

� � ¼ 0

ð3Þ

where Kh and Kv represent the horizontal and vertical pseudo-
static coefficients, respectively. and Tj is the reinforcement
force. Other parameters are shown in Fig. 1. Hi and Vi repre-
sent the interslice horizontal and vertical forces. The relation-
ship between these two forces is assumed as follows
(Morgenstern and Price 1965):

Hi ¼ λ f iV i ð4Þ
where λ is a scalar unknown parameter and fi is a function
whose value is assumed to be 1, in this study. Si and Ni are
tangential and normal forces exerted on the failure surface,
respectively. Applying the Mohr-Coulomb failure criterion,
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the relation between these forces can be written as:

Si ¼ Nitanϕþ cbi
Fs

ð5Þ

where c and ϕ represent the soil cohesion and friction angle,
respectively; Fs is the factor of safety and bi is the width of the
slice base (bi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi−xiþ1ð Þ2 þ yi−yiþ1

� �2q
).

In this study, the distribution of reinforcements along depth
is assumed to be uniform or non-uniform (Fig. 2). In the uni-
form distribution, the vertical spacing between each reinforce-
ment layer is constant (Fig. 2a):

Y rj ¼ j−0:5ð Þ H
n
; j ¼ 1; 2;…; n ð6Þ

However, in the non-uniform distribution of reinforcement,
the spacing between reinforcement layers decreases with
depth (Fig. 2b) (Michalowski 1998b):

Y rj ¼ 2

3
nH

ffiffiffiffiffiffiffiffiffiffiffiffi
j
n

� �3
s

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j−1
n

� �3
s2

4
3
5; j ¼ 1; 2;…; n ð7Þ

In Eqs. (6) and (7), Yrj is the depth of reinforcements (Fig.
1a) and n represents the total number of reinforcements. The
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Fig. 1 a Geometry of the
problem; b forces acting on each
slice

Arab J Geosci (2020) 13: 283 Page 3 of 14 283



normalized required reinforcement forces are computed as
follows (Ling et al. 1997):

K ¼ ∑n
j¼1T j

0:5γH2 ð8aÞ

T j ¼ KγY r; jDr; j ð8bÞ

where Dr,j is the space between two reinforcement layers
(Fig. 1a).

By substituting Eqs. (4) and (5) into Eqs. (1)–(3) and after
some algebraic manipulations, two sets of equations for each
slice can be obtained as:

A1K þ λ f i−A2ð Þ Viþ1−Við Þ þ A3 ¼ 0
A4 þ xv;iþ1 þ λ f iþ1 y0−yiþ1

� �� �
Viþ1− A5 þ xv;i þ λ f i y0−yið Þ� �

Vi þ A1K y0−H þ Hr; j
� �þ A6 ¼ 0

	
ð9Þ

where:

A1 ¼ γY r; jDr; j

A2 ¼ mi
tanϕ
Fs

cosαi−sinαi

� �

A3 ¼ miAi
tanϕ
Fs

cosαi−sinαi

� �
þ cbi

Fs
cosαi−KhWi

A4 ¼ xiþ1−x0−Liþ1−miBi

A5 ¼ xi−x0−Li−miBi

A6 ¼ miAiBi þ cbi
Fs

sinαi xm;i−x0
� �þ cbi

Fs
cosαi y0−ym;i

� �
− 1−Kvð ÞWi xG;i−x0

� �
−KhWi y0−yG;i

� �
mi ¼ 1

cosαi þ tanϕ
Fs

sinαi

Ai ¼ 1−Kvð ÞWi−
cbi
Fs

sinαi

Bi ¼ 1

mi

� �
xm;i−x0
� �þ tanϕ

Fs
cosαi−sinαi

� �
y0−ym;i
� �

ð10Þ

Unknown parameters in Eq. (9) include V2, V3,…, VN, xv,2,
xv,3,…, xv,N, λ, K. Therefore, the total number of unknowns is
2N. Two sets of Eq. (9) can be written for each slice and thus
the total number of equations is equal to the total number of
unknowns. In this way, the nonlinear system of 5N-1 equa-
tions in 5N-1 unknowns (Table 1) is reduced to 2N equations
in 2N unknowns. Note that the values of VN + 1 and xv,N + 1 are
0. The values ofH1, V1 and xv,1 for the first slice depend on the
surcharge condition, which can be written as (see Fig. 1a):

if x1 < Hcotβ þ L0ð Þ then V1 ¼ 0; xv1 ¼ 0
if x1 > Hcotβ þ L0 þ Lq

� �
then V1 ¼ qLq 1−KVð Þ; xv1 ¼ L0 þ 0:5Lq;H1 ¼ qLqKh

if Hcotβ þ L0ð Þ < x1 < Hcotβ þ L0 þ Lq
� �

then
V1 ¼ q x1−Hcotβ−L0ð Þ 1−KVð Þ;
xv1 ¼ 0:5 x1−Hcotβ þ L0ð Þ;H1 ¼ q x1−Hcotβ−L0ð ÞKh

8>>>><
>>>>:

ð11Þ

Table 1 Number of unknowns and equations in the proposed
formulation

Unknowns Number

Normal force of each slice, Ni N

Shear force of each slice, Si N

Horizontal interslice force, Hi N-1

Vertical interslice force, Vi N-1

Location of vertical interslice force, xv,i N-1

Morgenstern and Price factor, λ 1

Normalized required reinforcement forces
(dimensionless), K

1

Sum 5N-1

Equations Number

∑Fx = 0, each slice N

∑Fy = 0, each slice N

∑Mo = 0, each slice N

Si = (Ni tan ϕ + cbi)/Fs, each slice N

Morgenstern and Price assumption, Hi = λfiVi N-1

Sum 5N-1

H

a 

b 

1
2

3

1

2

3

Fig. 2 Distribution of reinforcement in depth: a uniform spacing, and b
variable spacing
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where q indicates the surcharge pressure, and other parameters
are shown in Fig. 1a.

The system of nonlinear equations can be written in the
following form:

F½ � Xf g ¼ 0 ð12Þ

where {X} is the unknown vector which is equal to:

Xf g ¼ V2;V3;…:;VN ; xv;2; xv;3;…:; xv;3;λ;K
� �T ð13Þ

In this study, the Newton-Raphson method is used to solve
this nonlinear system of equations. In this method, the number
of required trial and errors and convergence condition depend
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Fig. 3 Types of failure surfaces: a
log-spiral slip surface, and b
general slip surface
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on the initial value of unknowns. To this end, the initial values
of normal interslice forces (Vi) were assumed to be equal to the
overburden pressure and xv,i = 0.5Li. The initial value of 0.5
was assumed for λ and K.

Critical slip surface

As mentioned before, the main challenge in examining the sta-
bility of soil slopes through the LEM is obtaining the critical slip
surface. Several researchers have proposed different slip surfaces
to investigate the stability of slopes. Nowadays, in themajority of
studies, log-spiral is considered the critical slip surface particu-
larly in the analysis of reinforced soil slopes.

Log-spiral slip surface

Figure 3a displays a log-spiral sliding surface divided into a
number of parallel horizontal slices. The following equation
demonstrates the log-spiral failure surface:

ri ¼ r1exp θi−θ1ð Þtanϕ½ � ð14aÞ

θi ¼ θ1 þ
 
θNþ1−θ1

N

!
i−1ð Þ ð14bÞ

The parameters of this equation are shown in Fig. 3a. The
value of r1 can be obtained as:

r1 ¼ H
sinθNþ1exp θNþ1−θ1ð Þtanϕ½ �−sinθ1 ; θ1≤θNþ1≤

π

2
þ ϕ ð15Þ

The inclination angle of the base of the slice i can be cal-
culated as:

αi ¼ tan−1
riþ1sinθiþ1−risinθi
ricosθi−riþ1cosθiþ1

� �
ð16Þ

Having the values ofH and ϕ, only the values of θ1 and θN+

1 are necessary to determine the log-spiral slip surface. To ob-
tain the critical log-spiral slip surface which leads to the maxi-
mum value ofK, the optimized values of θ1 and θN+1 should be
determined. In this study, genetic algorithm (GA) method is
used to compute the optimized values of θ1 and θN+ 1.

Fig. 4 Comparison between the
results of this study with those of
Nouri et al. (2006) for n = 9: a
β = 45°, b β = 60°, c β = 75° and
d β = 90°
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General slip surface

As mentioned earlier, the formulation presented in this study
can be applicable to any type of failure surface. It is essential
to generate numerous random sliding surfaces to obtain the
most critical slip surface. In this paper, general sliding surfaces
are generated through a method similar to that proposed by
Chang et al. (Cheng et al. 2007, 2008). Figure 3b illustrates
how a general sliding surface is generated. In this regard, PN +

1 is a known fixed point at the foot of the slope. To generate a
general sliding surface, it is essential to first assume random
initial values for α1 and αN and position of the point P1. In this
study, the maximum value of L1 is assumed to be 2H. If the
soil beneath the point PN + 1 is stiff enough, the slip surface
will not extend below this point. Hence, the angle αN will be
greater than 0. The value of angle α1 is chosen randomly
between αN and π/2. Having the values of α1, αN and x1,
the point P′1 can be obtained (see Fig. 3b). Then, a random
value of δ1 in the interval [− 0.5, 0.5] is selected to determine
the location of point PN (δ1 is equal to the ratio of difference
between PN and midpoint of PN + 1P′1 to the difference

between PN + 1 and P′1). Similarly, P′2 is specified on line
P1P′1 by selecting a random value for δ2. This process con-
tinues until all points are specified on the slip surface. This
method provides a kinematically admissible random slip sur-
face. Therefore, to determine each random slip surface, the
following random vector should be selected:

U ¼ x1;α1;αN ; δ1; δ2;…:; δ2N−4½ � ð17Þ

To obtain the critical general slip surface which leads to the
maximum value of K, the optimized value of vector U needs
to be computed. Unlike the log-spiral slip surface which needs
only two parameters to be optimized, 2N-1 parameters (vector
U) should be optimized to obtain the critical general slip sur-
face. Several optimization methods can be used to solve the
problem. Genetic algorithm optimization method in
MATLAB environment is adopted in this study.

Genetic algorithm (GA) is a search technique in computer
science to find approximate solutions for optimization prob-
lems. It is a stochastic optimization method introduced by
Holland (1975). The implementation process of genetic algo-
rithm is as follows (Mathworks 2018):

Fig. 5 Comparison between the
results of the present study with
those of Michalowski (1998b) for
uniform distribution of reinforce-
ments and n = 12: a Kh = 0, b
Kh = 0.1, c Kh = 0.2 and d
Kh = 0.3
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1. Generating a random population
2. Scoring population members according to the fitness

function
3. Identifying the best members and using them as parents
4. Generating the children and a new population using two

mechanisms:

a. Randomly changing a single parent (mutation)
b. For a pair of parents, merging the vector entries

(crossover)
5. Replacing the pervious population with the new

population
6. Continuing the process until completion criterion is met

Results

In the following, the stability of reinforced granular soil slopes
having the height H of 5 m is examined. The soil internal
friction angle varies from 20 to 45°. The slope angle is

assumed to be 40 to 90°. The horizontal pseudo-static seismic
coefficient is assumed to vary from 0 to 0.3 and the vertical
pseudo-static seismic coefficient is considered 0. Although the
formulation presented in the previous section can be used for
any c-ϕ soil, however, the following results are obtained for
granular soils (c = 0). Furthermore, the safety factor Fs is as-
sumed to be 1.

The slope stability is examined by developing a MATLAB
code. Using GA optimization, the code determines the most
critical log-spiral or general slip surface. After determining the
optimum slip surface, the required amount of reinforcement
and the length of reinforcements are calculated. Due to un-
availability of previous experimental results, the results are
compared with those obtained by other researchers.

Figure 4 compares the results of this paper assuming the
log-spiral slip surface against those obtained from Nouri et al.
(2006). The required reinforcement forces (K) versus ϕ are
displayed for different slope angles corresponding to three
pseudo-static horizontal coefficients namely 0, 0.15 and 0.3.
As seen, the results obtained in this study are to a great extent
consistent with those of Nouri et al. (2006) due to the

Fig. 6 Comparison between the
results of the present study with
those of Michalowski (1998b) for
nonuniform distribution of
reinforcements and n = 12:
a Kh = 0, b Kh = 0.1, c Kh = 0.2
and d Kh = 0.3
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similarity of the theory of these methods. The K values ob-
tained in this study for the log-spiral slip surface is slightly
higher than those obtained by Nouri et al. (2006).

Assuming the log-spiral slip surface, Michalowski (1998b)
evaluated the stability of reinforced soil slopes using the limit

analysis method. The results of this study and those obtained
by Michalowski (1998b) for uniform and non-uniform distri-
bution of reinforcements are compared in Fig. 5 and Fig. 6,
respectively. The values of K are compared with different
values of slope angle, internal friction angle and horizontal
pseudo-static coefficient. It can be observed that the results
obtained from the present study are to a large extent consistent
with those of Michalowski (1998b). In some cases, the results
of two analyses are almost the same.

The values ofK obtained from the present study against the
results of Ling et al. (1997), Michalowski (1998b), Ausilio
et al. (2000) and Nouri et al. (2006) are shown in Fig. 7.
Comparisons are made for β = 45, 60 and 75 degrees
assuming Kh = 0.2. Accordingly, the results of these methods
are close to each other. Furthermore, the values ofK of Ausilio
et al. (2000) are smaller than those of others. The results of the
current study are more close to the results of Michalowski
(1998b).

In addition to the required amount of reinforcements, it is
essential to specify the minimum required length of

Fig. 7 For the log-spiral slip surface, Kh = 0.2, and n = 9, comparison
between the results of this study and those obtained by other research
works: a β = 45°, b β = 60° and c β = 75°

Fig. 8 For Kh = 0.1 and n = 12, Comparison between the reinforcements
length obtained by Michalowski (1998b) and this study for a uniform
distribution of reinforcements and b variable distribution on
reinforcements
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reinforcements. Figure 8 shows the required length of rein-
forcements in dimensionless form (L/H) for the uniform and
variable spacing between reinforcements. In both cases, the
value of Kh is assumed to be 0.1. As seen, the values of L/H
obtained from the present study are very close to those of
Michalowski (1998b).

As discussed, the slip surface was assumed to be log-
spiral in most previous studies. In the following, a few
examples are analysed based on the general slip surface.
Figures 9 and 10 display some results obtained in this
paper for the uniform and non-uniform distribution of
reinforcements, respectively. In these figures, the results
are provided for both types of log-spiral and general slip
surfaces. Evidently, the values of K for the general slip
surface in all cases are higher than those for the log-spiral
failure surface. It can be argued that the analysis carried
out through the general slip surface is more conservative.
Generally, the values of K obtained from the general slip
surface are about 10 to 15% higher than those of the log-
spiral slip surface.

Figure 11 shows four examples of the log-spiral and gen-
eral slip surfaces for different values of the slope angle, name-
ly, 40 and 65° and Kh = 0, 0.2. This figure compares the opti-
mized log-spiral and general failure surfaces assuming uni-
form distribution of reinforcements. The soil friction angle is
assumed to be 30°. As can be seen, the general failure surfaces
expand beyond the log-spiral slip surface. Therefore, for the
general slip surface, the larger lengths of the reinforcements
are required.

This study has, for the first time, examined the effects of
surcharge pressure on the stability of reinforced soil slopes.
Figure 12 shows the impacts of the surcharge pressure on the
values of K. The calculations are conducted for a soil slope to
a height of 5 m having the horizontal pseudo-static seismic
coefficient of 0.15 and internal friction angle of 30°. The sur-
charge pressure is in the form of a uniform rectangular initiat-
ed at a distance of H/5 from the slope crest (L0 =H/5, Fig. 1).
The slope stability is evaluated for loads extended to lengths
Lq of 0.2H, 0.4H, 0.8H and infinite. The slip surface is log-
spiral and spacing between reinforcements are constant. The

Fig. 9 Assuming the uniform
distribution of reinforcements and
n = 12, comparing the values of K
for the log-spiral and general slip
surface for a Kh = 0, b Kh = 0.1, c
Kh = 0.2 and d Kh = 0.3
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values of the load intensities q are assumed to be 25, 50, 75
and 100 kPa. As shown in Fig. 12, increasing q or Lq leads to
increase the value of K. Furthermore, the values of K increase
more frequently in gentler slopes.

The calculations become extremely time-consuming when
the general failure surface is adopted instead of the log-spiral
slip surface. That is because a greater number of variables
should be optimized for general slip surface. It is worth men-
tioned that the number of the optimization variables of the log-
spiral and general slip surfaces are 2 and 2N-1, respectively.
The analysis will be more precise as the number of slices (N)
increases. However, the calculations become more time-
consuming as the number of slices grows. Such slowdown is
particularly significant for optimization of general slip surface.
Figure 13 displays the effect of the number of slices on the
value of K in two cases. This figure is prepared assuming the
both general and log-spiral slip surfaces and uniform distribu-
tion of reinforcements. As seen, the solutions become more
accurate as the number of slices increases. However, after a
value of N, the results are almost constant. This specific value
can be considered the best value for the number of slices. In

both cases, the accurate solution can be achieved based on 6
and 14 slices for log-spiral and general slip surfaces,
respectively.

Conclusions

In recent years, various methods have been proposed to ex-
amine the stability of reinforced soil slopes and walls. The
horizontal slice method was adopted in this paper to assess
the stability of reinforced granular soil slopes. One of the
problems in analysis of soil slopes through limit equilibrium
method is how to determine the critical slip surface. The for-
mulation proposed in this study may be used for any type of
the slip surface. The seismic forces were modelled through a
pseudo-static method.

The results in this study were verified by comparing the
results (assuming a log-spiral slip surface) against those of
other researchers. Comparisons indicate that the results of this
study are desirably accurate. The comparison of results for the
general and log-spiral slip surfaces demonstrated that

Fig. 10 Assuming the non-
uniform distribution of reinforce-
ments and n = 12, comparing the
values of K for the log-spiral and
general slip surface for aKh = 0, b
Kh = 0.1, c Kh = 0.2 and d Kh =
0.3
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Fig. 11 Examples of the log-
spiral and general slip surfaces for
n = 12: a β = 40° Kh = 0;
b β = 40°, Kh = 0.2; c β = 65°,
Kh = 0; and d β = 65°, Kh = 0.2

Fig. 12 For H = 5 m, ϕ = 30°,
Kh = 0.15, n = 12, the effect of the
surcharge on the stability of
reinforced soil slopes for
a Lq = 0.2H, b Lq = 0.4H,
c Lq = 0.8H and d Lq =∞
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considering the former will provide more conservative results.
The normalized amount of reinforcement force (K) obtained
from general slip surface is about 10 to 15% higher than that
of log-spiral failure surface. This reflects that the log-spiral
slip surface may lead to unconservative results.

Moreover, the shapes of the general and log-spiral slip sur-
faces were compared. The results demonstrated that the gen-
eral slip surface covered larger areas of the soil mass. Thus,
the general slip surface requires a larger length of reinforce-
ments for achieving the stability of reinforced soil slopes.

Notation Basic SI units are shown in parentheses bi, length of the base
of the slice i (m); c, soil cohesion (N/m2); Dr,j, vertical space between
reinforcement layer j and j + 1 (m); fi, a function inMorgenstern and Price
method (dimensionless); Fs, factor of safety (dimensionless);H, height of
soil slope (m); Hi, horizontal interslice force (N); K, normalized required
reinforcement forces (dimensionless); Kh, horizontal pseudo-static coef-
ficient (dimensionless); Kv, vertical pseudo-static coefficient (dimension-
less); L, length of reinforcement (m); L0, distance between the slope face
and the surcharge load (m); Li, length of the upper surface of slice i (m);
Lq, width of the surcharge load (m); N, total number of horizontal slices
(dimensionless); Ni, normal force acting on the base of the slice i (N); n,
total number of reinforcements (dimensionless); q, surcharge pressure
(N/m2); Si, tangential force acting on the base of the slice i (N); Tj,
mobilised tensile force of jth reinforcement layer (N); Vi, vertical
interslice force i (N); Wi, weight of the slice i (N); x0, y0, coordinates of

the hypothetical point O (m); xm,i,ym,i, coordinates of the midpoint of the
slice base (m); xG,i, yG,i, coordinates of the centre of mass of the slice (m);
xv,i, distance between the slope face and the point of the application of Vi
(m); Yr,j, depth of reinforcement layer j from the slope crest (m); αi,
inclination angle of the base of the slice (degree); β, slope angle (degree);
ϕ, internal soil friction angle (degree); γ, soil unit weight (N/m3); λ,
unknown scalar constant in Morgenstern and Price method (dimension-
less); θi, polar coordinate for log-spiral slip surface (degree)
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