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Abstract
Soil fertility in arid areas is poor due to the climatic conditions, weak natural biomass and inappropriate agricultural practices.
Soil fertility can be determined by asses the chemical composition of soil organic carbon (SOC) and soil organic matter (SOM)
quantity in different systems of soil management. To identify efficient field management practices for enhanced soil fertility in
arid regions, the impact of combination tillage with olive mill wastewater as compared to native vegetation were studied for more
than 20 years of field experiment. Soil samples were collected from three field management treatments and three replicates for
each treatment localized in Chaâl area in southern Tunisia. Field experiment includes uncultivated soil (NC) for more than
80 years (since 1936), with native vegetation, cultivated and tilled soil (CT1) and tilled soil with addition of 5 l.m−2 of olive mill
wastewater (CT2). Soil properties were assessed and principal component analysis (PCA) was executed. In addition, structural
functional carbon groups were investigated using MIR spectroscopy. The results showed that NC had the highest significant
values of moisture content, soil organic matter, and exchangeable cations. This is likely to be due to the role of humified organic
matter with colloidal properties. Significant reduction in pH and cation exchange capacity values were found in CT2 conversely
to CT1. Olive mill wastewater mineralization provided soluble ions increasing electrical conductivity. MIR analyzes determined
higher absorbance of aromatic/aliphatic C in NC and CT2 more than in CT1. Long-term using olive mill wastewater application
improved soil carbon groups, which lead to the SOC stabilization for long-term sequestration in arid climates.

Keywords Soil quality . Tillage . Olive mill wastewater . MIR spectroscopy . Arid regions

Introduction

Soil fertility is an important aspect of soil productivity and
combines biological, chemical, and physical soil properties
that affect nutrient availability (Moral et al. 2017). It is related
to soil organic matter (SOM) and to chemical composition of
soil organic carbon (SOC). In fact, SOC amounts are the result
of the balance between carbon input from plant residues and

organic waste added to soil and loss of carbon through SOM
decomposition. In arid regions soils have a very low nutrient
availability and low SOM less than 1% (Yaakoubi et al. 2010).
This low SOM is considered as a serious problem for agricul-
ture in those regions where high temperatures and droughts
can accelerate its decomposition (Conant et al. 2011). In ad-
dition, to the weather conditions, the decline of SOM in cul-
tivated soil is exacerbated due to the tillage intensification
(Giongo et al. 2011). Indeed, tillage accelerates oxidation of
SOM by soil microorganisms through changes of soil water,
aeration and temperature regimes, aggregation, and nutritional
environment (Doran and Smith 1987). Therefore, tilled soils
contain less SOC than untilled ones especially on the soil
surface (Tomas et al. 2007). Tillage intensification decreases
also chemical composition of SOC (aliphatic, aromatic, and
other functional organic groups). Several researchers such as
Tivet et al. (2013) investigated the effect of tillage on soil
organic carbon groups in arid climates. They demonstrated a
significant increase of aliphatic C1 and aromatic C1 groups in
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the top soil (0–20 cm) under native vegetation and no-tillage
system that is more than soil with conventional tillage.
Therefore, native vegetation residues accumulated on soil sur-
face can improve SOM and chemical compositions of SOC.
Indeed, the application of fertilizer and plant residue input on
soil increases SOC (Limin et al. 2015; Mori and Hojito 2015;
Poeplau and Don 2015). Moreover, while adding manure, the
organic fertilizer increases the amount of nutrients and SOM
(Moussadek et al. 2014). No tillage also had positive effects
on SOC (Jarecki and Lal 2003; Christopher and Lal 2007). In
Spain, Alvaro Fuentes et al. (2008) showed that no tillage
increases SOC stock in the soil compared to cultivated land.
However, no tillage is hard to be applied in arid climates with
high water scarcity for enhancing soil fertility. Indeed, in these
areas, water scarcity is the major limiting factor and long
drought is faced every year during 4 to 6 months. During this
period any competition to water with cultivated crop is
avoided by tillage and, due to lack of water, it is hard to
maintain cover crops. Thus, among the possible solutions
were reduced tillage, and using the combination tillage with
organic waste to enhance soil quality for crop production in
agricultural land. Indeed, the impacts of a combination of
tillage with fertilizer type as compared to plant residue input
on SOC rates were studied in northern Japan (Koga 2017).
This study reported that the combination tillage with organic
waste (green manure and compost of cattle manure) and plant
residues enhances SOC amounts conversely to the reducing
tillage which does not enhance SOC rates. However, Koga
(2017) limited their work to quantitative evolution of SOC
with no information on qualitative aspects.

In arid regions, the low soil fertility and the need for water
scarcity lead farmers to use olive mill wastewater (OMW) as
an adopted management strategy that enhances soil quality.
Indeed, more than 30 million m3 of OMW are produced an-
nually in Mediterranean basin (D’Annibale et al. 2004) by
three phases olive oil extraction plant. Some countries, like
Italy and Tunisia, adopted OMW spreading in agricultural
land as a solution. Spain shifted to two-phase system without
generation of OMW. When OMW was produced, it caused a
serious environmental problem because it is characterized by
large volumes, low pH, salinity, and high amount of organic
matter, and phenolic compounds (Federici et al. 2009;
Piotrowska et al. 2011). However, OMW is considered as an
organic amendment as it is rich with organic matter and nutri-
ents. Therefore, arid soils could benefit from OMW applica-
tion (Paraskeva and Diamadopoulos 2006). In fact, many re-
searchers (Chaari et al. 2013; Gargouri et al. 2014) showed
that applying OMWon arid soil for short-term and long-term
decreases soil pH and increases electrical conductivity (EC),
SOM, and mineral status. OMWapplication can also promote
plant growth in the short-term (Mekki et al. 2013; Rusan et al.
2016). Spreading OMW under long-term increases soil bulk
density (Mohawesh et al. 2014) and aggregates stability (Levy

et al. 2018). Nevertheless, Mollaei et al. (2010) reported the
inhibition of the multiplication of soil microorganisms after
OMW application by the toxicity of phenolic compounds.
Most of these studies were performed, at small scales, to as-
sess the impact of the direct application of OMW on the fer-
tility of bare soils and on the chemical and physical properties
and plant performance (Mekki et al. 2006). OMW spreading
on soil improves SOM content and soil fertility (Chen et al.
2010; Gotosa et al. 2011). It also may constitute a valuable
approach for SOC rates (García et al.2011). Therefore, more
emphasis needs to be placed on the qualitative changes on
SOC in arid environment. SOC quality can be determined
by the functional organic carbon groups on soil .
Nevertheless, to the best of our knowledge, the impact of the
combination tillage with OMW for the long-term on SOC
quality in arid soils has never been studied. The impact on soil
organic carbon groups is highly important since the aromatic,
aliphatic groups, and other functional groups have been re-
sponsible for SOM preservation (Gomez et al. 2017). These
functional organic groups increase during organic matter de-
composition indicating the increase of humification degree as
demonstrated during composting process (AitBaddi et al.
2004). Spectroscopic techniques MIR are reliable to assess
the SOC changes with regard to chemical and structural char-
acteristics due to the different types of management
(Laudicina et al. 2015; Blanco-Moure et al. 2016). In fact,
MIR is efficient for the detection of aliphatic, carboxyl-
functional groups, and for different levels of complexity’s
compound such as polysaccharides, aromatic, and phenolic
compounds due to specific bands (Bornemann et al. 2010;
Calderon et al. 2013).

This study aims to understand how combination tillage
with OMW application influence a range of functional soil
properties on the long-term in arid agro-ecosystems of south-
eastern Tunisia, and to assess changes of functional organic
carbon groups using MIR spectroscopy under uncultivated
soil and two contrasting cultivated soils in arid climates.

Materials and methods

Description of experimental site

The study area is located in Sfax-Tunisia and called Chaâl
(34°51′63″, 10°06′43″). This organic agricultural area has a
surface of 18,000 ha and is composed of more than 12 farms.
The majority of the soil texture in this area is sandy (Soil
texture data provided by the Chaâl farm station 2016).
Different soil managements were identified in studied area:
cultivated soils planted with olive trees for long and short-
term periods, one uncultivated soil in the long-term with na-
tive vegetation (Natural soil). Planting density is the common
density used in the region corresponding to 17 trees/ha with a
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squared grid of 24 m. The climate of the region is an arid
Mediterranean climate. At the study period, the mean temper-
ature was 23 °C and the average annual rainfall was 143 mm
of studied area (Climatic data provided by the Chaâl farm
station 2016).

Study design and trial management

The experimental field was a site covering a whole surface of
80 ha. Within this site three treatments corresponding to dif-
ferent soil management practices. Each treatment was com-
posed from three parcels. Thus, three parcels were considered
as replicates for each treatment. The first treatment (NC) has
been an uncultivated soil for more than 80 years (since 1936)
covering 20 ha. The NC treatment has been soil colonized by
native arid vegetation since1934. In treatment NC three par-
cels were considered separated by at least 200 m and covering
each 2 ha. It was considered as a control soil without any
amendment and farming practices.

The second treatment was a cultivated soil with frequent
soil tillage and without amendment for the last 80 years (CT1)
covering 40 ha. Within CT1 treatment three parcels were con-
sidered separated by at least 200 m and covering each 6 ha.
The third and last treatment was a tilled plot with yearly addi-
tion of 5 l.m−2 of OMW for 20 years (CT2) covering 20 ha.
During the olive mill operation (from early November to late
December) OMW was spread, since 1996 until 2016 yearly,
homogenously on the soil covering the entire surface between
trees. Within CT2 treatment three parcels were considered
separated by at least 200 m and covering each 2 ha.

CT1and CT2 treatments were tilled to depths varying be-
tween 5 and 25 cm five times a year using tractor driven
cultivator. These soils were tilled five times a year i.e., twice
before blooming during winter and early spring (for weed
control, aeration of soil…), one more in late spring (for weed
control), one very superficial during summer to destroy capil-
larity channels and reduce evaporation and one reaching the
depth of 20 to 25 cm during autumn to break compaction
according to the local agricultural management practices. In
fact, in this arid region, farmers’ practices to mitigate high
temperatures and low rainfall aim to avoid any competition
for water by eliminating any natural vegetation and reduce
evaporation through tillage.

Physical and chemical analyzes of the OMWare presented
in Table 1.

Fresh OMW was taken from an olive oil extraction plant
located in Chaâl Sfax, Tunisia. In General, there is low vari-
ability of the composition of OMWs between seasons and
within the same season. In fact, The OMW’s characteristics
depend on the olive variety, climate conditions, and cultiva-
tion practices as well as on the oil extraction process. In our
study, since 1996 the used OMW has been produced in the
olive mill of Chaâl farm from fruits and trees of same variety

(Chemlali) belonging to the same farm, under the same cli-
matic conditions, and cultural practices. Compositions of
OMW were in agreement with others reported by Gargouri
et al. (2014) who worked in the same field.

Soil sampling

Fifteen soil samples were collected randomly using soil auger
from every treatment. In fact, five soil samples were taken
from each parcel. Samples were taken from the superficial
layer to a depth of 20 cm. All soil samples were air dried
and sieved on a sieve with a 2 mm mesh prior to analytical
analysis.

Soil analysis

Particle size distribution was determined by the Robinson pi-
pette’s method and the texture were determined from the par-
ticle size analyzes using the texture diagram (Gee and Bauder
1986). Soil moisture content was measured immediately after
sampling (soil samples were placed in sealed plastic bags and
isolated container during the transport to the laboratory
40 min) by drying samples at 105 °C until weight constancy
for 48 h. The pHwas measured in water suspensions (1:5w/v)
using a pHmeter (typeMettler ToledoMP 225). The electrical
conductivity (EC) was determined on the liquid extract of the
saturated paste after 4 h of rest andmeasured by a conductivity
meter AME type 123 at 25 °C. The chloride (Cl−) concentra-
tion was measured by silver nitrate titration (Pauwels et al.
1992). The carbon content was determined by the dichromate
oxidation technique as described in the Walkley and Black
method (Pauwels et al. 1992). The amount of organic matter
(OM) in the soil was indirectly determined through carbon
content determination using a multiplication factor of 1.72
(Pauwels et al. 1992). Cation exchanges were first extracted
by stirring 5 g of soil with 100 ml ammonium acetate (0.1 N)
during 60 min followed by filtration. The filtrate was then

Table 1 Chemical characteristics of freshOlivemillwastewater fromChaâl
Sfax, Tunisia (average values of three replications ± SD for each sample)

Parameters analyzed Values

pH 4.56 ± 0.28

Electrical conductivity (mS /cm) 22.35 ± 0.42

Organic carbon(%)/DM 42.71 ± 0.11

Organic matter (%)/DM 86.8 ± 0.23

Total nitrogen %/DM 1.57 ± 0.01

C/N 27.20 ± 0.06

Calcium (mg /kg) 5700 ± 0.12

Potassium (mg/kg) 33,600 ± 0.22

Sodium (mg/kg) 22,000 ± 0.21
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analyzed by atomic absorption spectrophotometry (Pauwels
et al. 1992).

The cation exchange capacity (CEC) was determined after
saturation of the adsorption sites by a 1 N ammonium acetate
solution and the desorption of NH4

+ by K+ was performed
using 1 N KCl. The CEC was estimated by the amount of
desorbed K+ (Pauwels et al.1992).

Physical and chemical analyzes were performed in tripli-
cate for each soil sample.

MIR spectral data acquisition

Diffuse reflection Mid-infrared spectroscopy data were ac-
quired using a Fourier transform MIR-spectrometer equipped
with a high throughput HTS accessory (Bruker Optics,
Ettlingen, Germany). Soil samples are loaded into shallow
wells in multiplate accessory with 96 wells using a micro
spatula. Samples are replicated four times. The MIR spectra
(4000–400 cm−1) were acquired at a resolution of 4 cm−1 and
with a co-addition of 64 scans. For MIR analysis all soil sam-
ples were analyzed. Forty-five soil samples were analyzed.
The reported spectrum is the mean spectrum for each
treatment.

7Data analysis

Descriptive analysis of the data sets was performed by classi-
cal statistics, determining minimum, maximum mean values,
and the skewness. The mean value was calculated on the basis
of 15 soil samples collected from each plot. The data were
submitted to variance analysis using SPSS 13.0 for windows.
The mean values of the treatments were compared using the
Tukey’s range tests at 5% level of significance (p = 0.05).

Principal component analysis (PCA) was applied based on
the correlation matrix between the components and standard-
ized variables using XLSTAT.2014. PCAwas used to cluster
patterns of 45 soil samples collected from three different ag-
ricultural plots based on their physical and chemical analysis.

Results

Soil properties

Particle size distribution of the soils indicated that studied
soils have coarse soil texture with low clay content, high
sand content in CT1 and NC and high silt in CT2. Thus,
NC and CT1 had sandy loam texture. Conversely CT2
had silt loam texture. Analyzes of moisture content
showed that NC had a higher significant value (3.18%
±0.84). The low significant values (1.06% ±0.94 and
1.34% ± 0.84) were recorded in both plots CT1 and
CT2. Soils NC and CT1 were alkaline and soil CT2 was

acid. The mean highest EC was found in CT2 followed by
NC and the lowest value was recorded in CT1. A decrease
of soil chloride content was recorded in CT1 as compared
to NC. On the other hand, chloride concentration had not
decreased in CT2. This plot had higher chloride content as
compared to CT1 and NC plots.

Significant difference of SOM concentration was deter-
mined between CT1, NC, and CT2. The low amount (0.82%
±0.45) was recorded in CT1 soil while it reached 1.87% ±0.35
in CT2 and 3.19% ± 0.93 in NC soil.

The highest mean CEC was observed in NC, followed by
CT1 soil, and the lowest under CT2, despite CT2 with OMW,
the NC stayed always with the highest CEC content.
Exchangeable cation values (calcium, sodium, and potassium)
in soil NC were higher than those in soil CT1 and CT2. There
is not a large difference between exchangeable cation values if
one compares CT2 with NC (Table 2).

Principal component analysis

The principal component analysis (PCA) showed the
correlation between soil properties under each treatment.
PCA analysis for NC treatment showed that the pH was
correlated positively with EC, CEC, moisture content,
Cl− and potassium according to factor 1 (Fig. 1a). On
the other hand, the pH variation was opposite to SOM
1. It was correlated negatively with calcium and sodi-
um. SOM was correlated to calcium and sodium nega-
tively according to factor 1 (Fig. 1a).

The CT1 treatment and PCA analysis found that the pH,
SOM and group included CEC, EC, and Cl−, and moisture

Table 2 Soil properties under conventional tillage (CT1), no-tillage
with native vegetation (NT), and conventional tillage combined with
OMWapplication (CT 2). (Means with different letters indicate a signif-
icant difference at P = 0.05)

Soil property Cultivation practices

CT1 NC CT2

Clay (%) 0.17 0.23 0.36

Silts (%) 37.07 33.46 70.69

Sand (%) 62.75 66.30 28.94

Moisture content(%) 1.06 ± 0.94b 3.18 ± 0.84a 1.34 ± 0.79b

pH 9.17 ± 0.76a 8.34 ± 0.68b 6.78 ± 0.64c

EC (mS/cm) 0.48 ± 0.17b 0.54 ± 0.40b 1.44 ± 0.44a

Chloride (meq/l) 25.8 ± 0.19c 236.94 ± 0.87b 481.46 ± 0.97a

Organic matter (%) 0.82 ± 0.45c 3.19 ± 0.93a 1.87 ± 0.35b

CEC (cmolc/kg) 4.91 ± 0.85a 5.96 ± 0.93a 2.95 ± 0.96b

Calcium (%) 3100 ± 0.28b 4500 ± 0.25a 4700 ± 0.17a

Potassium (%) 100 ± 0.01b 700 ± 0.08a 800 ± 0.08a

Sodium (%) 500 ± 0.02b 100 ± 0.02a 100 ± 0.04a
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content and potassium were correlated positively according to
factor 1. On the other side, the pH was correlated negatively
with calcium according to factor 1 (Fig. 1b).

PCA analysis for the CT2 treatment (Fig. 1c), pH and
moisture content were correlated positively according to fac-
tor 1. CEC, calcium, and potassium were also correlated pos-
itively according to factor 1. SOM, EC, Cl− and sodium were

correlated positively according to factor 2. The pH correlated
negatively with CEC, potassium, and calcium according to
factor 1 (Fig. 1c).

MIR spectroscopy

Qualitative analysis and signals of MIR spectroscopy are pre-
sented in Fig. 2 and Table 3 respectively. The occurrence of
absorbance bands in the vicinity of 3622, 3392 and 3388 cm−1

indicated the presence of the kaolinite and gibbsite in soil
samples. Signals centered around 2922 cm−1 and 2852 cm−1

were termed aliphatic C2 (Tivet et al. 2013). These bands were
only observed in the spectra of samples from NC and CT2
plots. In addition, the spectra showed a band around
2230 cm−1, more intense in spectra of samples from CT2
plots, that may be due to organic molecules (-CH2, -CH3,
and -NH3), SiOH bonds, cation OH bonds in phyllosilicate
minerals (kaolinite, montmorillonite) (Conforti et al. 2015).
The signals around 1630 cm−1 are characteristics of aromatic
C=C vibrations and asymmetrical stretching C=O of COO
(Tivet et al. 2013). The signal of aromatic C=C vibrations
was higher in spectra of samples issued from NC and CT2
plots than CT1 plot. Bands in the signal around 1462 and
1423 cm−1 characteristic of axial deformation in phenolic O-
H group, with aliphatic C1, H2O, and amine (Carra et al.
2017) cannot be clearly observed in spectra of samples issued
from CT1 plots. In contrast, these groups were present in
spectra of samples from CT2 and NC plots. In addition, peaks
at 1100, 800, and 700 cm−1 are possibly due to Si–O stretching
and bending or OH bending vibrations (Madejova 2003).

40080012001600200024002800320036004000

wavenumbers
(cm-1)

CT1 NC CT2

Fig. 2 MIR spectra of soil samples (0–20 cm) from a cultivated and tilled
soil for more than 80 years (CT1), tilled and treated soil over 20 years
with olive mill wastewater (OMW) and uncultivated soil for more than
80 years with arid native vegetation (NC)

Fig. 1 Biplot of a correlative scaling of the principal component analysis
(PCA) of soil properties in uncultivated soil (NC) since 1936 with arid
native vegetation (A); soil properties in cultivated and tilled soil (CT1) for
more than 80 years (B); soil properties after application olive mill waste-
water with tillage for more than 20 years (C)
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Discussion

Change soil properties with tillage and OMW
application

Soil texture is the most fundamental quantitative soil physical
property that influences most of the other properties and pro-
cesses of the soil (Fisher and Binkley 2000). Thus, soil capac-
ity for carbon storage depends on the distribution of their
particle size (Arrouays et al. 2006). Thus, in coarser soil tex-
tures, the potential carbon sequestration is small, near zero,
while the carbon storage potential is high in fine soil textures
(clay soils). Indeed, Najmuldeen et al. (2010) assess the effects
of soil texture of six textural classes (sandy loam, loamy sand,
silty loam, silty clay loam, clay loam, and loam) on chemical
compositions and carbon mineralization in soil. They found
that carbon mineralization in fine soil textures (clay loam,
loam, and silty clay loam), is significantly (p ≤ 0.01) higher
than coarser soil textures (silty loam, loamy sand and, sandy
loam). They did not found differences between sandy loam
and silty loam textures. Studied treatment (NC, CT1, CT2)
have poor structure and low SOC storage.

The highest values of moisture content found in NC have
indicated that uncultivated plots have higher moisture content.
Therefore, it can be said that tillage reduced moisture content.
This higher moisture content could be attributed to the mini-
mum soil disturbance with little exposure of the soil surface to
the atmospheric demand and with consequent reduction of
water in soil. Our results were in accordance with Kargas
et al. (2012), whom reported that untilled plots retain more
water than tilled plots. Indeed, higher moisture content was
registered in topsoil (0–10 cm) under no tillage (McVay et al.
2006). The increase of moisture content in CT2 as compared
to CT1 can be due to the effect of OMWapplication given that
tillage reduces soil moisture content. Indeed, where the con-
tent of SOM is greater, more water can be stored especially in
topsoil (Bot and Benites 2005). This is can be confirmed also

by OMW’s application during 20 years with tillage which led
to an increase in soil moisture content in soil CT2. It has been
suggested that continuous application of OMW increases soil
water retention capacity (Mohawesh et al. 2014). In fact, the
higher organic matter and salts content on OMW blocked
large sized pores thus, OMW reduced large soil pore and im-
prove soil water holding capacity (Mahmoud et al. 2010).
Thus, OMW’s application seemed to improve soil water hold-
ing capacity. Tillage with OMW’s application could be a
means for water storage in particularly arid climates and
semi-arid countries.

The lower value of soil pH in NC as compared to CT1 can
be attributed to the higher concentration of organic matter
accumulated on soil surface which cause an increase in the
concentration of electrolytes and pH reduction (Rahman et al.
2008). However, tillage reduces SOM, and therefore, the soil’s
ability to resist changes in soil pH. The lower value of soil pH
in CT2 may be due to the low pH of OMW and their higher
content inorganic matter since organic acids are also produced
as a result of OM decomposition (Bot and Benites 2005).
OMW’s application on soil had a significant decrease on the
pH soils (Lopez-Pineiro et al. 2006). The low soil pH im-
proves the solubility and availability of certain nutrients (P,
Fe, Mn, Zn, B, and Cu) in soils (Mohammad and Mazahreh
2003). OMW’s application on soil for long-term can be effi-
cient to reduce soil alkalinity and to improve the availability of
nutrients for crops. Indeed, in most cases, a pH range of 6.0–
7.5 is optimum for the adequate availability of nutrients in the
soil (BARC 2005).

The highest mean EC value determined in CT2 as com-
pared to NC and CT1 may be due to the high mineral content
of the effluent (Gargouri et al. 2014). This increase may be
explained by the mineralization and transformation of organic
matter on soil. Indeed, EC’s increase after OMW’s application
was also described in other studies (Lopez-Pineiro et al. 2006)
following short- and long-term field and greenhouse studies.
Thus, the spread of OMW leads to increase in soil salinity.

Table 3 Fundamental vibration and functional group of major MIR bands observed in soil samples

Wavenumbers (cm−1) Vibration and functional Group Reference

3392 O- H stretching of kaolinite Brinatti et al. 2010

3622 O–H stretching of kaolinite Carra et al. 2017

3388 O-H stretching of gibbsite Brinatti et al. 2010; Balan et al. 2006

2922 C-H Aliphatic groups stretching Tivet et al. 2013

2852 C-H Aliphatic groups Tivet et al. 2013

2230 SiOH bonds, cation O-H bonds in phyllosilicate mineral stretch Conforti et al. 2015

1630 C-C Aromatic groups and C-O stretching of carboxylic acid anions Cocozza et al. 2003

1462 deformation of C–H –CH2 and –CH3 groups Carra et al. 2017

1423 Deformations of O-H phenolic groups and aliphatic group Carra et al. 2017

1100, 800, 700 Si–O stretching and O-H bending absorptions Madejova 2003
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The decrease of soil Cl− in CT1 may due to the downward
movement of chloride with water infiltration into deeper
layers. In addition, chloride is highly soluble and remains in
the soil solution (Abyaneh et al. 2004). The highest concen-
tration of Cl− in amended and tilled plots could be due to its
concentration in OMW (Mollaei et al. 2010). In fact, the
OMW has the highest value of Cl− (Bouknana et al. 2014).
This high Cl− content is due to OMW wealth from fruits and
used water in extraction process. Indeed, chlorides are impor-
tant inorganic anions contained in varying concentrations in
the OMW (Bouknana et al. 2014).

The highest levels of SOM in NC were due to the accumu-
lation of native vegetation in soil surface. This confirmed that
with no tillage system, plant residues left on the soil surface
enhance the SOM concentration in top soil (Conceiçao et al.
2013). Low SOM concentration in CT1 can be explained by
the effect of tillage. Tillage reduced the production of natural
biomass and revolved the top soil enhancing exposure of or-
ganic matter to degradation. Indeed, tillage, when combined to
aridity, avoided quasi totally natural biomass production.
Moreover, aridity and organic matter exposure to oxidation
by tillage accelerated the SOM degradation and mineralization.
In fact, many studies reported that the SOM content in soils of
Chaâl area is very low (less than 1%) (Gargouri et al. 2014).

The higher amounts of SOM in CT2 can be attribut-
ed to OMW which is rich in organic compounds. Thus,
OMW’s application in the long-term can be used to
enhance SOM in soils. Zenjari and Nejmeddine (2001)
confirmed that OMW’s application induces an increase
of SOM concentrations in soil surface. Thus, OMW’s
application is a good strategy to restore SOM in arid
areas mainly after removal of their phenolic compounds
(Piotrowska et al. 2011). Using combination tillage with
OMW’s application for long-term helps build SOM and
improves nutrients in the soil surface which enhanced
soil fertility.

The significant difference between CEC concentration in
NC and CT1 may be an indication that tillage and cultivation
reduce soil CEC. Tarkalson et al. (2006) reported greater CEC
under no-tillage due to the increased potential of conserving
plant nutrients. Yet, low CEC could be due to low clay and
organic matter concentration in CT1, since this plot had a low
content in SOM of 0.82% ± 0.45, and clay content of 0.17%.
Low CEC concentration in CT2 can be explained by the effect
of OMW’s application on soil pH. There is a strong relation-
ship between the CEC and the pH of the soil, since the soil pH
increases with the increasing of CEC concentrations. In fact,
in this treatment with the lowest pH, CEC was lower. Indeed,
acid soils have a low CEC (Baligar and Bennett 1986). These
results are consistent with those reported by Munawar and
Wanti (2016) whom observed a decrease of CEC with de-
creasing pH when adding humic acids (HA). This can be
explained by the incorporation of HA in soil aggregate

reducing their contact with soil solution causing at the same
time less adsorption of H+ and pH decrease and lower CEC.

Exchangeable bases (calcium, potassium, and sodium)
were lowered in CT1 except sodium due to the decline of
SOC in mechanically tilled plot due to rapid break. In fact,
long-term tillage reduced the concentration of soil exchange-
able cations. Rahman et al. (2008) found that exchangeable
cations were significantly higher in the surface soil under no-
tillage compared to the plowed soil. OMW’s application for
the long term increased exchangeable cation. This is due to the
high amounts of soluble salts in OMW, mainly potassium.
Some studies reported that OMW contains high amounts of
nutrients and other compounds that might be beneficial to soil
fertility and productivity (Belaqziz et al. 2008; Lopez-Pineiro
et al. 2011).Thus, combination of tillage with OMW’s addi-
tion can be useful alternative solutions for arid soil where the
soil is characterized by low nutrient availability and
productivity.

Correlation between soil properties

The positive correlation determined with pH and properties
(CEC, moisture content, EC, Cl−, and potassium) in NC with
soil properties (CEC, EC, moisture content, Cl− and SOM) in
CT1 and with moisture content in CT2 was justified by the
role of humified organic matter with colloidal properties.
Indeed, this organic fraction improves soil structure and en-
hances soil water holding capacity and CEC too. Thus, soil
moisture and cation wealth were improved. Consequently, in
these conditions, soil fertility was improved. The opposite
relationship between pH and SOM in NC were maybe related
to the relationship between soil pH and SOM, especially when
regarding that the soil pH decreased with the increasing of
SOM concentrations. The negative correlation between pH
and groups of CEC, calcium and potassium in CT2, pH and
calcium in CT1, pH and calcium and sodium in NC may be
related to the relationship between soil pH and CEC, since the
soil pH increases with increasing CEC concentration. The
increase of EC, Cl− content and sodium content in CT2 were
related to the mineralization of OMW that provides soluble
ions increasing EC among them is chloride.

Change organic carbon functional groups after tillage
and OMW application

The higher signals for aliphatic C2 compounds around
2922 cm−1 and 2852 cm−1 and observed just in NC and CT2
were more evident in the spectrum of soil samples having
higher organic carbon concentrations (Madari et al. 2006).
The fact that these groups did not appear in CT1 may be
caused by the using of tillage. In fact, Tivet et al. (2013)
reported that tillage can reduce aliphatic groups. The groups
of aliphatic C1 cannot be clearly observed in CT1 and were
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observed clearly in CT2 and NC; they can indicate that con-
ventional tillage reduces aliphatic structures. These results are
similar to results conducted in sub-tropical and tropical
Brazilian environments by Tivet et al. (2013) and Carra et al.
(2017). Moreover, lower aliphatic-C1 groups in soil were ob-
served under conventional plow-based tillage as compared to
native vegetation and no-till systems. Aliphatic groups
appearing in soil CT2 were attributed to the effect of
OMW’s application in the long-term. It has been reported that
aliphatic groups increase during the decomposition of organic
matter (AitBaddi et al. 2004). The higher signal of aromatic
groups (C=C) in NC and CT2 as compared to CT1 can indi-
cate that conventional tillage reduces aromatic compounds. In
addition, the increasing of aromatic-C was also observed in
the surface layers (0–20 cm) under native vegetation as com-
pared to conventional plow-based tillage (Tivet et al. 2013).
Soil spectrum in CT2 contained a higher signal of C=C vibra-
tion as compared to CT1. This is may be due to the decom-
position of OMW in soils in the way of humification and more
processed forms of carbon (Calderón et al. 2006). Thus, the
incorporation of OMW in soil CT2 can lead to an increase
both of aromatic and aliphatic structures. This is may be at-
tributed to OMW especially because it is rich in phenols and
organic compounds. The higher peak of aromatic-C and
aliphatic-C in CT2 has a positive impact on soil aggregation
through organo-mineral interactions, and because aliphatic-C
acts as a binding agent between micro-aggregates. This func-
tion is essential for the stabilization of SOCwithin aggregates,
and for long-term sequestration (Tivet et al. 2013). It is true
that in coarse soils potential carbon sequestration is small, near
zero, while the carbon storage potential is high in clay soils.
Moreover, application of OMW on coarse soils induced an
increase of functional aromatic /aliphatic C groups. Thus,
coarse soils in arid climate can stabilize SOC when a combi-
nation of tillage with OMW is used in the long-term. Applied
no tillage in arid regions is hardly to be applied, combination
OMW application with tillage may be useful management to
increase the soil structural stability, soil quality by increasing
the quantity of soil humic acids (HAs) with enhancing humi-
fication degree and aromatic structures formation in arid soils.

Conclusion

Conventional tillage and addition of olive mill wastewater
(OMW) for more than 20 years led to a change of soil fertility
as compared to an uncultivated soil for more than 80 years.
Application of tillage without amendment (CT1) for more
than 80 years reduced functional organic carbon groups and
affected soil fertility. Condensations of organic carbon func-
tional groups as well as a higher amount of SOM, exchange-
able cations, CEC, and humidity content were higher in both
uncultivated soil (NC) and cultivated soil with addition of

OMW (CT2) as compared to cultivated soil without amend-
ment (CT1). In addition, SOM, exchangeable cations, aromat-
ic, and aliphatic structures increased after application 5 l.m−2

for more than 20 years in CT2. No tillage is hardly useful in
arid regions. Therefore, combination of tillage with OMW’s
application (5 l.m−2) was considered as the best solution to
remediate soil fertility in terms of restoring soil carbon, en-
hancing sustainability of agro ecosystems and reducing envi-
ronmental problems in arid climates. However, it is necessary
to assess leaching risks of OMW components.
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