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Abstract

This study proposes a new method to obtain the lateral response of pile groups by incorporating the pile group effect in layered
soils. When a pile is loaded laterally, it creates a zone of influence in the direction of loading. In a pile group, each pile placed in
the influence zone of prior piles is exposed to extra loads due to the load transfers from other piles. This mechanism results in a
group effect which causes each pile in the group to have a different deflection curve compared to that of an identical isolated
single pile under the same load. This study starts with a mathematical approach to model the interaction of two piles and then
extends it to pile groups. The governing differential equation of a pile deflection problem is modified to take the pile-soil-pile
interaction into account and solved analytically for each pile while the soil parameters and displacement fields around each pile
are obtained numerically using the finite difference method written in Fortran language. The model captures the additional pile
deflections induced by the group effects in pile groups and the results match well with the results of the existing methods,

especially the finite element method.

Keywords Pile groups - Shadowing effect - Lateral group response - Pile-soil interaction

Introduction

Piles are often used when soil strength properties are not
enough to sustain the loads from the superstructure. When
loads are very high, piles are used in groups to meet a required
load-carrying capacity. Pile groups may also experience
strong lateral loads such as wind loads. If piles are closely
spaced, lateral loads acting on the piles can be transferred to
other piles via pile-soil-pile interactions in a group. One of the
main parameters controlling the interaction among piles is the
radial distance between piles. This interaction becomes espe-
cially significant for pile groups consisting of a large number
of piles. If a pile is loaded laterally on top, it creates a dis-
placement field, a zone of influence, in the direction of load-
ing. The soil in this field will displace mainly in the direction
of loading and the magnitude of displacements will be
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inversely proportional to the distance from the loaded pile.
These influence zones overlap in a pile group, and interactions
transfer the loads to the next piles in line causing additional
loads on piles. This mechanism is called group effect, also
known as shadowing effect, that causes a reduction in the
load-carrying capacity of each pile under anticipated load dis-
tribution in pile groups (Bonakdar and Oumeraci 2015;
Giannakos et al. 2012; Heidari et al. 2014; Ilyas et al. 2004,
McVay et al. 1996). There are several experimental and com-
putational modeling attempts in the literature to capture the
group effect in the response of pile groups. A broad review of
earlier works in modeling the response of laterally loaded pile
groups was presented by Duncan et al. (1994). Various re-
searchers conducted field experiments or laboratory experi-
ments to determine the group effect in laterally loaded piles
(Brown et al. 1987; Guo et al. 2014; Matlock et al. 1980;
McVay et al. 1996; Meimon et al. 1986; Moss et al. 1998).
Computational methods vary, however, they can be simply
classified as discrete models and continuum models.
Discrete models represent soil layers with discrete springs,
whereas continuum models take the continuous structure of
soils into account.

Practitioners often time apply the p-y method to determine
the response of pile groups to lateral loads. In the p-y method,
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a load-deflection curve or load resistance determined by a
single pile analysis is modified to account for group effect
by a p-multiplier. Experimental works for this method mainly
focuses on determining the p-multipliers, which denote load
reduction parameters for each pile, depending on its location
in the group. Then, the p-multipliers are used to scale down
the load-deflection curve of a separate single pile and applied
to each pile in the group (Abdrabbo and Gaaver 2012;
Comodromos and Papadopoulou 2013; Duncan et al. 1994,
McVay et al. 1995; Ooi et al. 2004; Rollins et al. 1998, 2006;
Tahghighi and Konagai 2007). The main drawbacks of the
experimental studies are the difficulty to simulate soil layers,
which can vary for different sites, and model the pile groups
with non-homogeneous pile distribution. Numerical works
including the finite difference method (FDM) and the finite
element method (FEM) also exist in the literature to analyze
the pile groups or determine the p-multipliers (Bransby 1996;
Brown and Shie 1991; Comodromos and Pitilakis 2005;
Elhakim et al. 2016; Fan et al. 2007; Larsson et al. 2012;
Law and Lam 2001; Papadopoulou and Comodromos 2010;
Wau etal. 2015; Yang and Jeremi’c 2003). Especially, the finite
element method has been often applied to analyze pile groups.
Broad literature in constitutive models implemented in FEM
software and the availability of FEM commercial software
packages provide the opportunity to include the realistic be-
havior of soils through plasticity models. Although the finite
element—based models are applicable to a wide range of prob-
lems and commercial software options are available for engi-
neers, applying FEM in the design stage of a structure may
require enormous computational source and time. It might
include numerous runs and pre-/post-processing for large pile
groups, especially with a non-uniform pile distribution (differ-
ent pile spacings). The boundary element method (BEM) has
been also used substantially to model piles and pile groups (Ai
and Feng 2014; Ai and Li 2015; Ai et al. 2016; Banerjee and
Driscoll 1976; Mamoon et al. 1990; Padron et al. 2007; Sen
et al. 1985; Xu and Poulos 2000). Some recent significant
contributions in the application of BEM have been introduced
by Aiand Feng (2014), Ai and Li (2015), and Ai et al. (2016).
The researchers analyzed laterally loaded pile groups placed
in transversely isotropic soils by applying the boundary ele-
ment method considering pile-soil-pile interaction, and also
presented a framework of FEM-BEM coupling for pile group
analysis under dynamic loads. Overall, the BEM was demon-
strated as a strong and efficient method to be employed for
pile group analyses by various researchers. Another numerical
approach was proposed by Ashour et al. (2004) who evaluated
the behavior of a pile group based on the strain wedge model
to obtain the p-y curves of each pile in the group.

An important approach followed by researchers is the
method based on beam on Winkler foundation (BWF) models
(Bahrami and Nikraz 2017; Mylonakis and Gazetas 1999;
Tahghighi and Konagai 2007). This method discretizes the
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soil layers as linear springs and sometimes also with dash-
pots (for dynamic problems to include damping), each of
which represents a different type of soil layer along the pile
shaft. The method has been used for single laterally loaded
piles and also pile groups. It allows using the well-known
differential equation of an elastic foundation on Winkler’s
springs for a single pile. Mylonakis and Gazetas (1999)
employed it for determining the lateral vibration of laterally
loaded pile groups. The researchers set up a model by starting
with two piles in layered soils under a lateral load. To deter-
mine the deflection of the unloaded pile due to interaction
forces, the soil displacements around the loaded pile was cal-
culated by multiplying the pile deflection with an attenuation
function since the soil displacements cannot be obtained di-
rectly from their single pile analysis.

Sun (1994) modeled a laterally loaded single pile embed-
ded in a linear elastic medium by using the variational method.
The model considers the continuous structure of the soil layer,
which is the main difference between the BWF approach, and
introduces an additional term appearing in the fourth-order
differential equation of the pile deflection. The researcher ob-
tained the solution for the pile deflection problem and pro-
posed the relations for the displacement field of an elastic
continuum around the pile. The application of variational prin-
ciples to derive the governing equations for foundation-soil
systems has been also presented as an alternative way by
Asik (1999) and Asik and Vallabhan (2001) for a single foot-
ing under vertical excitation. Basu et al. (2009) assumed two
different attenuation functions in radial and circumferential
directions in the formulation proposed by Sun (1994). This
new assumption resulted in two coupled differential equations
to be solved for displacements rather than the single differen-
tial equation given by Sun (1994). Salgado et al. (2014) also
applied variational principles and presented a solution
algorithm including a complicated mathematical approach
for laterally loaded pile groups. The work of Salgado et al.
(2014) differs from this study in formulating the problem by
applying the principle minimum potential energy and calculus
of variations to whole pile group system and surrounding soil
rather than extending the single pile—based solution. In a
mathematical view, Salgado et al. (2014) accounted for soil
displacements and decay functions all solved simultaneously
in a coupled fashion, whereas the proposed approach in this
study considers the interaction effect as a force term acting on
piles, which yields a totally different mathematical solution
method for obtaining pile deflections.

The interaction model proposed and applied by Mylonakis
and Gazetas (1999), who employed it under dynamic loads for
the soil layers presented by discrete springs, does not consider
soil continuity and displacements around the pile being ana-
lyzed. This study follows a similar interaction idea but solves
a different differential equation. The solution of the governing
equation in this work and the way of calculating the
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attenuation factors are based on totally different displacement
assumptions and mathematical equations than those of
Mylonakis and Gazetas (1999). The author of the present
work developed a Fortran code, which makes use of the model
in the literature for single piles proposed by Sun (1994) and
the later modified version by Basu et al. (2009) for the solution
of a laterally loaded single pile and extends these earlier works
to pile groups by accounting for the new interaction model
among the piles. Then, the mathematical model has been de-
veloped to account for the interaction effects among piles.
This new approach introduces the application of the interac-
tion idea to piles under static loads and embedded in continu-
ous soils, formulates the mathematical model in conjunction
with an iterative algorithm as described in Section “Interaction
between two piles” to have consistent soil parameters with
deflections caused by the interaction forces. The next section
introduces the single pile model that is the basis for the pile
groups model followed by the new interaction developed in
this study and the extension to the pile groups with numerical
examples.

Laterally loaded single pile

This section briefly mentions the previous method proposed
by Sun (1994) and modified by Basu et al. (2009) for a later-
ally loaded single pile that forms a basis for this study to
further extend it to pile groups. Following the single pile so-
lution, the interaction model which is proposed by this study
between two piles is introduced.

For a pile embedded in a linear elastic soil layer (Fig. 1), the
displacements can be approximated by (Basu et al. 2009):

up = w(z)¢,(r)cost (1)
ug = —w(z)gy(r)sind (2)
u, =0 3)
40
(2] L

- a

N a4

Fig. 1 Schematic numerical discretization of a pile and soil

where w is the pile deflection; u, and uy are the radial and
circumferential displacements, respectively, at any point in
the soil medium around the pile; and ., is the vertical displace-
ment and assumed to be negligible for a laterally loaded pile,
which is the interest of this work. ¢,(r) and ¢4(r) are the
dimensionless attenuation displacement functions descending
with the radial distance from the pile center,  is the radial
coordinate, and @ is the angle measured from the radial axis
as shown in Fig. 1. Equations. (1)—(3) produce a continuous
displacement field around the pile.

The deflection of a single pile embedded in a continuous
soil consisting of multiple layers can be expressed as:

o'W 00w
82'4 _21‘? -+ k,‘Wl' =0 (4)

where w; is the normalized deflection of pile by the pile length
L, and defined for each layer as w~; = w;/L, 7 is the depth

and normalized by Lp}i and E are also the soil parameters of
ith layer, which take the soil stiffness into account. 7and k are
normalized as7 = (tle,) /(E,I,) and k= <kL;§> /(Epl,), re-
spectively. The solution of Eq. (4) is expressed as:

wi(z) = Cﬁ@l + Cé@z + Cg¢3 + CZ¢4 (5)

C; are the constant coefficients for each layer wherej=1...
4 and to be found from BCs and continuity equations on the
deflection, slope, moment, and shear force at interfaces of
subsequent layers. @j are known functions and defined as:

@, = sinhp,zcosq;z (6)
@, = coshp;zcosq;z (7)
&5 = coshp;zsing;z (8)
&, = sinhp,zsing,;z 9)
where p; and ¢; are, respectively, defined as:
=) ~1)
VEk &+t
pi 3 (10)
g=\ 5 (1)

Depending on the relation between 7 and k, the mathe-
matical solution and definitions of @; may vary. Here, the

author assumed the case where k > 7 throughout this
work. The single pile solution requires the pile and soil
to be discretized along the radial axis, circumferential ax-
is, and also the vertical axis (see Fig. 1). A three-
dimensional displacement field due to the lateral load on
a pile can be obtained by Egs. (1)—(3), which require the
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two coupled differential equations to be solved numerical-
ly for ¢,(r) and ¢y(r). In this work, a band matrix solver
routine is applied to solve these equations numerically.
This modification increased the speed of the single pile
model and made the method computationally more effi-
cient to be further developed for pile group analyses. The
solution of these coupled differential equations include
the parameters ~,, where m = 1...6. These parameters de-
pend on material properties of the soil and pile deflection
directly. An iterative scheme is necessary to calculate ~,,
since they involve the pile deflection term w. Although
this parameter is a scalar value in Sun (1994), it becomes
a set of six different parameters (7;) each of which con-
sists of lengthy mathematical expressions depending on ¢
and k in the work of Basu et al. (2009). The definitions of
the soil parameters ¢ and £, and also ~; can be already
found in those previous works; therefore, they will not
be repeated here for the sake of simplicity. Readers are
referred to those works for the detailed mathematical def-
initions of the parameters.

If we consider only a single layer and drop the subscript i
for simplicity for a pile loaded by a normalized force F =
(FL,)/(E,I,) at z=0, the constants in Eq. (5) can be obtain-
ed from the BCs which are:

Fw 0w ~
52 62 z=0
Similarly, if there is also a moment M acting on the top of

the pile where M= fP—LI’p

(=)
T2
0z

and if the pile is fixed at (Z = 1) the bottom end

=M (13)

=0

W= (14)

(=)

However, the BCs can be changed to represent a floating
pile with a rigid pile-cap, which requires to assign a displace-
ment BC and no rotation (simulating a rigid cap) for the pile
top and free-end BC at the bottom. For this case, BCs will be:

=0 (15)
z=1

{AV}Z 0 :{X/mp (16)
mo (17)
& |,
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where Wy, is a known pile-cap displacement. At (z = 1), the
pile-tip BCs are:

3w _o*w —
(a—f—zt—vf)\’ —\/ 2kiw (18)
z=1

0z

5.
0z z=1

Eq. (5) together with Egs. (12)—(19) complete the solution
of the differential equation of a single laterally loaded pile for
the given BCs.

Interaction between two piles

This section follows the terminology used in previous studies
(Loria et al. 2018; Mylonakis and Gazetas 1999; Randolph and
Wroth 1979). First, we consider a pile group consisting of two
closely spaced piles embedded in an elastic continuous medium.
Then, the results for pile group consisting of various numbers of
piles are presented in “Numerical examples.” The first pile,
which has a force acting on its head, is called the “source” pile.
The source pile is first analyzed with the assumption that the
“receiver” pile (the second pile), on which no force acts, does
not exist. Recall that the single-pile deflection problem is formu-
lated assuming that soil displacements around the pile are repre-
sented by displacement functions given in Egs. (1)~(3). From Eq.
(5) and also Egs. (1)—(3), the deflection of any soil column,
where other piles are located in the group around the source pile,
can be calculated by Eq. (20) (Fig. 3(a)).

0" (20)

r=s

where W’ is the displacement of the soil column at a radial dis-
tance s from the loaded pile, W' is the deflection of the source
pile, 2" 2 is the attenuation factor, which is a function of u, and
ug. Unlike BWF methods that give only the pile deflection but
not the displacement field around the pile, the present method
calculates the attenuation factor directly from the single-pile so-
lution, and it does not require another assumption to find the
displacement around the pile. The attenuation function can be
given as:

0" = {¢ECOSZ(912) + ¢§Sin2(912)}|r—s (21)

where 6, is the angle between the radial axes of two piles as
shown in Fig. 2.

The displacement field in the soil generated by the source
pile can be now obtained on all the nodes in a mesh around the
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the receiver pile is now assumed to present in the neighbor-
hood of the source pile, mathematically, the deflection

of the receiver pile can be obtained by solving Eq. (23):

(23)

w

0z

w? is the deflection of the receiver pile. The right-hand

side of Eq. (23) denotes the force acting on the receiver pile. If

we define the right-hand side of Eq. (23) as:

Fig. 2 The radial distance and angle between two piles

pile (Fig. 1). However, the receiver pile will have a different

displacement profile than the soil displacement since it has a
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soil at the exact location of the second pile is multiplied by the
stiffness of the soil and considered as the continuous force
acting along the pile shaft of the receiving pile (Fig. 3). The
be modified to include this effect as presented in Eq. (22). If

higher stiffness than the soil layer. The displacement profile of
governing differential equation of a single-pile deflection can

Fig. 3 Pile-soil-pile interaction
between two closely spaced piles

ﬁ Attenuation factor

Force acting on

the receiver
pile’s shaft

pringer

Qs
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&y [
—2f v;) = sinhpzcosqz {—Zt {CIPZ_C1q2+2C3qp}Q<1~2)}
0z

(2)
+cosh pz cos gz {—2t {Czpz—Czq2 + 2C4qp}9(1*2)}
(2)
+-cosh pz sin g7 {—Zt {—C;qz—Clqp + 2C3q2}(2(]‘2)

[2)
~+cosh pz sin g7 {—Zt {—C4q2—C2qp + 2C4p2}9(]"2)]

and

%(2)7\/" = sinh pz cos qf(E(z)Cl !2(1'2)) + cosh pz cos qf(%(z)czﬂ(l'z))
+cosh pz sin qZ(%(Z)CngU'ZJ) + sinh pZ sin qZ(;(2>C4Q<1'2))

Then, P(z) can now be put in the form of:
P(z) = Asinhpzcosqz + Beoshpzeosqz + Ccoshpzsingz
+ Dsinhpzsingz (27)

where A, B, C, and D are given as:

) 2
C1 QM D=21 {Cp*—Cig* +2C3qp} 212 (28)

e
A=T
B=k 00297 {CoP—Co? +2Cagp} 21D (29)
C = k721D (~CagP—Crgp + 2032} 0202) (30)
D = k7 10 [~Ca—Cagp + 2C.p* 20D (31)

The differential equation for the deflection of the receiver
pile will be in the form of:

@) @)
ot _(2) 3w ~2)_(

W TR ) (32)
& 0z

Z Z

The solution of Eq. (32) gives us the deflection of the
receiver pile. The total solution is equal to the summation of
the homogeneous solution and particular solution. Since the
right-hand side of Eq. (32) is completely defined, the particu-
lar solution of this fourth-order differential equation can be
determined analytically. The closed form of this solution can
be given as:

@) © )

wo=w, =W, +w, (33)
where va) will have the same form with the solution of Eq.

(5) with different constants, and Vv;” can be expressed as:

@)
Wp :F1W|+F2W2+F3¥73+F4q)4 (34)

where
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¥, = sinhpzcosqz (35)
W, = coshpzcosqz (36)
V3 = coshpzsingz (37)
¥4 = sinhpzsingz (38)
and where I'jis defined as:
A D
p, = 1Aat DB} (39)
K
Ba+ E
Da—A
[y="" b (41)
Ea—B
ro=2 (42)

Also, «, 3, and K are defined respectively as:
2
a :p4 4 q4_6p2q2_2(p2_q2) (az_bZ) + (a2 4 bz) (43)

ﬁ _ 4p2q2 (q27p2 + a27b2) (44)

K= ((a +p) +(b+ q)2> ((a—p)2 + (b + 61)2)

((d +p)2 + (bfq)z)) ((a*p)2 + (b*q)z) (45)
where
o @ (46)
z(Z):t(z)
N (47)

~(2
Note that the definitions of the normalized slope @( ), nor-

malized moment M (2), and normalized shear force 5(2) along

the second pile are derived from the definition of deflection by
taking derivatives with respect to Z. Therefore, the rotation,
moment, and shear force equations can be determined for the
second pile as follows:

o ai

o =2 (48)
dz
_@\?

@ d(w )

M = . (49)
dz
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_@\? _2)\?
o d() ()
S = ——2k (50)
dz dz

Equations (48)—(50) are, respectively, given analytically in
the open form as:

8" = C\(ar—b®s) + Ca(ab—bbs) + Cs(adbs—bdy) + Co(ads—bd, )
+1(pW2=qWs) + I (pV1=q¥3) + T3 (pPa + q02) + La(pWs + q¥1)

(51)

+C3K(a (b)) 5 + 2abd | + C4 ((a) (b) )¢4+2ab¢2]
+11 [(PP=47)W1=2pq %3] + T2[(P*—g )%*21%]974}
+15[(P°=")Ws + 2pqW1] + T's[(p°~47)Wa + 2pq ]
(52)
7 = faf(@r-307)an + (072007
+C [a((a )=3(b 2)@ +b( (a)z)%}
+C; [a((a )2 - 2)(154 + b( (a)2>q52}
+Cala((@-3(6)7) @5 + b((6)-3(a)’) 1
(2)
27 [cl (a®y—b®y) + Cy(ady—bPs)
+C3(ady + bPy) + Cy(ads + bd)) (53)

+I5 (p(P*-3¢%) W1 + q(q7—3p*) ¥
+13(p(P* =367 )W — q(¢°=3p% ) ¥
+14(p(p*=3¢7) 5 — q(47=3p%) 1)

(2)
wy [Fl (pW2—qWs) + o (p¥1—qWs)
F13(pW4 4 qW2) + Ta(p¥s + 61971)}

|
+01(p(P*3¢7) W2 + q (‘123192)%;
)

Equations (33) and (51)~(53) are the total solutions for v~v<2>,

é(z>, M (2), and E(z), respectively, which are the summations of
particular and homogeneous solutions. This section summarized
the solution method for two piles, one of which is loaded, to
determine the deflection of the unloaded pile under the interac-
tion effect. This pile-soil-pile interaction can be generalized for
multiple piles when all the piles are loaded with the same or
different loads. The effect of each pile on the other piles can be
determined and the total deflections of piles accounting for the
group effect can be obtained. A flow chart describing the appli-
cation of the algorithm to pile groups is given in Fig. 4. These
algorithm steps are necessary to obtain the consistent deflections
and soil parameters after the interaction forces acted on the piles.
This method takes the superposition approach as a basis when
calculating total interaction in a group, however, it also looks for
the consistent ; values, rather than simply adding up the

interaction forces, during the individual analysis of
piles. The definitions of 7; values include the deflection
of the pile being analyzed; therefore, they need to be
updated after interaction forces are taken into account.
When extending the solution to larger pile groups
consisting of more than two piles, the solution obtained
from a single-pile analysis is used to calculate the in-
teraction forces acting on other piles in the group.
Assuming all the piles are in identical conditions, this
single-pile solution is accepted to be the solution of one
of the piles and attenuation factors as well as interaction
forces on other piles are determined. The attenuation
factors and interaction forces received by piles will vary
depending on their respective locations. After total
forces on the piles are calculated, an iteration on ~;
values starts and continues until the desired accuracy
in between two consequent steps is acquired. Then,
the procedure can be repeated for the rest of the piles.
At this point, another global iterative scheme might be
added to check the differences in ~; values for each pile
again after all the interaction forces and updated dis-
placement values are determined. However, the current
algorithm works well under the linear elastic material
assumption. The next section presents the application
of the proposed method to example problems.

Numerical examples

The numerical examples require the domain to be discretized as
shown in Fig. 1. Three hundred and fifty-one increments in cir-
cumferential direction which give A9=360"/35171.02" have
been chosen. There are 351 nodes in radial direction with Ar=
0.05 m, which reaches a total radial distance of 17.55 m from the
pile center, and also 101 nodes for each layer along the pile length.

Radial nodes are used to determine ¢, () and ¢,(r) over
the soil domain surrounding a pile. These functions simply
indicate how far the displacement of the soil around a pile
would extend from that pile. Thus, one number to cover the
largest domain, which is the diagonal distance in Example 3,
was selected for the number of radial nodes. In Example 3, the
biggest distance is between the most distant corner piles and it
is less than 17 m. For the example problems, more radial
nodes were also used and it was found that the results were
not changed significantly; therefore, only the results with 351
radial nodes were reported. The number of nodes in the verti-
cal direction is basically needed to determine the deflection
profile of the pile and surrounding soil. Also, the interaction
forces are calculated by using these nodes along the pile
length. Hence, the number of nodes in the vertical direction
mostly depends on how smooth force or deflection profile is
needed. As a result, this grid has been found sufficient to
acquire the accuracy in the comparisons given in this section.
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Example 1: interaction effect

The first example considers two identical piles, each of
which has a length of 10 m and a radius of 0.6 m. The
piles are fixed at the bottom and the source pile is
loaded by a force of 600 kN on top, while the receiver
pile is not loaded. Elasticity moduli have been taken for
the pile and soil, respectively, as Ej, =28 x 10° kPa and
E,=7x10° kPa for the piles and soil, respectively. This
example demonstrates the effect of a laterally loaded
pile on the displacement profile of an unloaded pile;
therefore, the displacement of the receiver pile will be
due to the interaction effect solely (Fig. 5).

Example 2: small pile groups

The next example presents the application of the proposed
approach to the small pile groups consisting of two, four,
and six piles.

Two-pile group

For the first case which is a two-pile group, the material prop-
erties and geometry are the same as in Example 1. The pile
spacing s, radial distance, between the piles is 4 m, and all the
piles have the same load, which is 600 kN. The pile group
consisting of two piles investigates two different pile line-ups:

Fig. 4 Flow chart of the solution
algorithm

[Read material properties, pile group and soil geometric properties, and boundary conditions}

|

[Obtain W and %=1 from the single pile solution}

|

[Calculate attenuation factors for all piles Ql...np,l...np7 np: number of piles}

Do loop for j=1...n,

Update y; <— 7"

{Calculate ¢, and ¢ with y,}

!
[Calculate interaction forces from all piles Y P(z) in Eq. (39)]
!
Determine w, in Eq. (48)
!

[Calculate new atteniation factors .Ql___,,p,l___,,p}

|

Check if
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(1) piles in line and (ii) piles side by side. To investigate the
accuracy of the proposed method, the results of the present
analysis are compared with those of the finite element method.

Four- and six-pile group

The next case includes the application of the method to the
pile groups consisting of four piles and six piles, respectively.
Figure 8 presents the pile placing for four- and six-pile groups.
For this example, the pile diameters have been chosen to be
1 m. The rest of the problem geometry as well as material
properties are the same as described in Example 1.
The main purpose of this example is to demonstrate
the robustness of the proposed approach. The compari-
sons of the results with the finite element (FE) model
results are provided, and also analysis times for two-
pile, four-pile, and six-pile groups and also the FEM
analysis times are compared.

Example 3: pile group with a cap

Piles in a group generally work under a rigid cap. This exam-
ple analyzes a group of nine piles, which are connected to each
other by a rigid pile cap on top. This kind of group will, in
essence, contain a similar load transfer mechanism; therefore,
it entails the necessity for seeing load distribution among the
piles in the group. The loading direction and pile numbering
for this example are as shown in Fig. 11(a). The piles are
placed symmetrically about the origin of x—y plane with
s=6 m, r,=0.5 m, and L,=6 m. The pile cap imposes a
boundary condition, which dictates a fixed rotation at top 0
= 0 and the rigid cap displacement u,,, of 10 mm for all the
piles in the group. Other material parameters are £, =25 X
10" Pa, v=0.2, and E, = 10 x 10’ Pa. As opposed to the pre-
vious examples, the free bottom-end boundary condition is

Fig. 5 Problem geometry and

assumed, which will result in a base displacement for the piles

(Fig. 11(b)).
Example 4: group efficiency

This example intends to provide a comparison of the present
study with the previous work by Salgado et al. (2014) avail-
able in the literature. Group efficiency charts are convenient to
compare the average load taken by each pile in pile groups
with that of a single pile under identical conditions (Salgado
et al. 2014). A group efficiency chart obtained from the re-
sponse of the pile group considered in Example 3 in a two-
layered soil is presented. The soil layers have the same thick-
ness (H; = H,) and plots are provided with different E; /E,
ratios where Ej, and E, are Young’s moduli, respectively, for
the upper layer and lower layer as shown in Fig. 13(a). Group
efficiency, the ratio of average force on each pile to the single-
pile force, is defined by
(Fr/mp)

R (54)
where F'7is the summation of forces on the piles, 7, is the total
number of piles, and F is the top force of a single pile caused
by the same cap displacement given in Example 3. For a
slightly different case with £, =25 x10° Pa and Eg =Ey, =
10 x 10° Pa, the group efficiency comparison with Salgado
et al. (2014) is presented in Fig. 14.

Results and discussion

The set-up given in Example 1 reveals how the shadowing
effect between closely spaced two piles causes significant in-
teraction displacements experienced by the receiver pile. The
deflection profiles of the receiver pile with varying Poisson’s

S=TI1)

material properties for Example 1
to demonstrate the load transfer

from a source (loaded) pile to a
receiver pile

A

E,=28x10° kPa
E=7x103% kPa
v=0.1

F=6x10%? kN

12

Source pile

7

Fixed base Receiver pile
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ratios v and pile spacings s are given in Fig. 6. The compari-
sons of the displacements of the source and receiver piles are
also presented in Fig. 6. Figure 6(a) presents the effect of
material properties in terms of Poisson ratio of the soil layer
on the receiver pile deflections. As it is seen from Fig. 6, the
higher Poisson’s ratio, the larger deflections, which is expect-
ed. Figure 6(b) presents the significant effect of the radial
distance on the additional pile deflections, and Fig. 6(c) com-
pares the deflection of the source pile with that of the receiver
pile when s = 4 m. Both figures present the considerable inter-
action effect.

Figure 7 shows the pile deflections and comparisons with
the FEM results. In Fig. 7, the two cases were considered,
which are piles placed in line and piles placed side by side.
These two different placements of the piles have been chosen
to simply show the shadowing effect on piles depending on
their locations. Piles are exposed to more shadowing effects
when they are placed as in Fig. 7(a) since the second pile is in
the loading direction. The example was set-up to check if the
model is capable of capturing this behavior. The comparisons
presented consistent results with those of the FEM analyses
for both cases in which the loading directions are different. As

Fig. 6 The interaction effect on
the receiver pile. a The deflection
profile of the receiver pile varying
with different Poisson’s ratio
when s =4 m. b The deflection
profile of the receiver pile varying
with pile spacing. ¢ Comparison
of receiver pile’s deflection with
the source pile deflection
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Fig. 7 Comparison of the results 0 I T T T
Proposed Method
FEM

with the finite element model
results a two piles placed in line, b 1
two piles placed side by side. The
deflection curves of the piles in

both line-ups are the same due to

symmetry

Depth(m)

T T 0 T T T T T

Proposed Method
FEM 1

Depth(m)
o

oJoll

0.5 1 1.5 2

Deflection (cm)

(a)

expected, the model worked well and gave less displacements
for piles which are placed side by side as in Fig 7(b).

Figure 8 shows the formations of the four- and six-pile
groups. Figure 9(a) presents the deflection of a pile in the
four-pile group since the deflection profiles of the other piles
in the group are the same due to the symmetry in the geometry
and loads. Figure 9(b) and (c) show the deflections of pile-1,
which is the mid-front row pile, and pile-2, which is the front
left corner pile, respectively, for the six-pile group. Figure 9
also includes the FEM results and the deflection profile of an
identical single pile. The single-pile deflection is given to
emphasize the importance of the shadowing effect as the num-
ber of piles placed in the close vicinity increases.

As clearly seen in Fig. 9(a), the model results capture the
pile deflections obtained from the finite element model in the
four-pile group. All the piles in this group have the identical
deflection profile as expected and the results of the model are
in accordance with the FEM results. Figures 9(b) and (c) show
that pile-1 has larger displacements. The reason is that this pile

25 3 3.5 0 0.5 1 1.5 2 2.5 3

Deflection (cm)

(b)

is surrounded by other piles at the symmetry line and exposed
to the load transfers from both sides. Thus, the interaction
effect for this pile is the largest among all. The deflection of
a separate identical single pile under the same load in Fig. 9
indicates the substantial group effect in pile groups.
Moreover, Table 1 compares the analysis times for two-pile
(in-line), four-pile, and six-pile groups and those of the FEM
analyses. It shows the computational efficiency and supports
the proposed method for possible applicability to large-scale
pile groups. Biased meshes as seen in Fig. 10 were used in the
FE analyses to better capture maximum displacements. The
grid of mesh used in the present analyses has 351 radial nodes,
351 circumferential increments, and 100 nodes in vertical di-
rections. It is apparently denser than the finite element mesh
given in Table 1 and also shown in Fig. 10, which also proves
the robustness of the method; one reason is that the analytical
solution of the pile deflection accounting for the group effect
has been obtained and implemented. Unlike the finite element
method, the proposed approach uses this analytical solution to

Fig. 8 Small pile groups of A y Yy

identical piles showing pile ! A

placement for a four-pile group, b i Pile-2 E

six-pile group A F E A F e » 4 F +F A F
:- 2

FER

O

L]
Pile-1

(b)
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Fig. 9 Comparison of the
analysis results of the proposed
method with the finite element
model results for pile groups a
identical deflection profile of each
pile in the four-pile group, b the
deflection profile of the mid-
column pile (pile-1) in the six-pile
group, ¢ the deflection profile of
the front corner pile (pile-2) in the
six-pile group

obtain the pile deflection; however, it calculates the soil pa-
rameters and displacements descending with radial distance in
a numerical way. This performance is very important, espe-
cially when it is compared to the commercial FEM software
which requires a significant amount of time in pre-/post-pro-

cessing and also expertise.

Table 1
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Deflection (cm)
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Although the soil stiffness parameters & and ¢ take the stift-
ness of the soil around the pile, this approach does not con-
sider the existence of the other piles directly while calculating
the response of individual piles. The present method ignores
the additional stiffness increase in soil layers, which is taken

into account by FEM clearly, due to the existence of the other

circumferential increments, and 100 nodes in vertical directions for the analyses

Analysis times of the proposed method and finite element method for each case in Example 2. The present method used 351 radial nodes, 351

Case name Model analysis time (sec) FE analysis time (sec) Number of nodes in
FE analysis

Group of 2 piles in line 0.67187 13.06 3495

Group of 4 piles 1.25000 13.56 5190

Group of 6 piles 1.64063 15.93 11,784
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Fig. 10 Finite element meshes for the pile groups a two piles (half domain), b four piles, and ¢ six piles

column in the mesh, this assumption is alleviated by
the iterative algorithm to have consistent pile deflections
and the comparisons (Figs. 7 and 9) with the FEM results
basically prove that it does not have a significant effect on the

piles in the physical problem when calculating the deflection
of piles. Even though the proposed method can be de-
veloped to take such stiffness increase by assigning the

elastic material properties of the pile into the soil
L oadingdirection

Y Pile ca
e —
; | e g

Fig. 11 Pile group with a cap. a
Top view of the pile group, b
schematic side view

:
~

(b)
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response with the linear elastic material assumption for soil
and pile (Fig. 11).

Figure 11(a) and (b) show the pile numbering
and schematic side view of the nine-pile group,
respectively. Figure 12 summarizes the analysis results for
the problem described in Example 3. The pile cap imposes
the same top displacement for the piles in this example.
Figures 12(a), (b), and (c) present the deflection, shear force,
and moment, respectively, along the pile lengths in the group.
The plots are presented only for piles 4, 5, 7, and 8 since other
piles will have the same response with these piles depending
on their location due to the symmetry in the x—y plane.
Figure 12 also indicates a strong interaction effect again as
observed in the previous examples. The free-end displacement
for pile-5 is larger than the other piles since it is located in the
symmetry center and exposed to the highest total interaction
force. The top force and moments of the piles are all smaller

0 T T T T A

Pile-4
Pile-5

— — — Pile-8
4 Single Pile

Depth (m)
w

I

10 10.5
Deflection (mm)

(a)

than that of a single pile. The results in Fig. 12(b) and (c)
indicate that the corner piles are exposed to more top force
and top moment compared to the interior piles when there is a
rigid pile cap.

For pile groups, Eqgs. (12), (13), (16), and (17) should be
given careful attention, especially in the case of closely spaced
pile groups. If piles loaded by large head forces are placed in
close vicinity of the other piles, mathematically, this model
can estimate interaction forces causing large pile head deflec-
tions. This additional interaction deflection would enforce the
pile to have a larger pile head force based on Eq. (12), but it
will be constrained by the imposed force BC at the top. A
similar mechanism can be possible for the other top BC case,
in which a prescribed displacement representing a rigid pile-
cap is applied as the top BC, although the pile-head force is
determined after interaction effects are taken into account by
applying Eq. (50). For both cases, it would be needed to

0 T T T

Pile-4
Pile-5

— — — Pile-8
4 Single Pile

Depth (m)
w

200 300 400 500 600 700 800 900
Shear force (KN)

(b)

Depth (m)
w

— — — Pile-8
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6
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Fig. 12 Nine-pile group with a rigid cap a deflection, b shear force, and ¢ moment diagrams along the pile lengths
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Fig. 13 Group efficiency in a single-layered soil and two-layered soils
with various Eg/Es, ratios

implement a constraint which prevents the mathematical so-
lution from creating extraordinary interaction forces on the
other piles. As yet, such large interaction forces have not been

0.65 T T T T T

The proposed method
0.6 [ | ==—Salgado et.al. (2014) B

0.55

0.5

0.45

0.4

0.35

0.3

0.25

2 3 4 5 6 7 8
s/D

0.2 n

Fig. 14 Comparisons of the results with Salgado et al. (2014) for the
same geometry and properties for a group embedded in a single layer

observed in the numerical examples. It can be seen that the
method works well as the FE analysis results present a very
close match for pile deflections for the applied force BC. In
addition, the body deflections did not go beyond the pile head
deflections due to interaction forces for the problem consid-
ered in Example 3 as seen in Fig. 12. For a same prescribed
displacement value, piles in a group will have less head
forces—the total load is shared among piles—compared to a
single pile as mentioned above, but this force value will vary
for piles because of their locations in the group. By applying
this approach, the displacement-force curve of a pile group
with a rigid pile-cap can be obtained through the summation
of the pile head forces which will be equal to the total load
applied on the pile group at that particular lateral displace-
ment. In the proposed approach, the governing differential
equation of a pile is solved with updated interaction forces
acting as a distributed load. The solution satisfies the imposed
BCs and interaction forces create only additional pile
deflection.

Figure 13(a) shows the pile group described in Example
4.Figure 13(b) presents 7 vs. s/D ratios to be employed for a
variety of different pile geometries and pile spacings for the
problem. Figure 13(b) also shows group efficiency n with
varying stiffness ratios between the upper layer and lower
layer. Figure 13(b) expresses that group efficiency 7 increases
as the pile spacing increases, which indicates the average load
on piles also ascends up to a point and the load transfer (in-
teraction forces) decreases. This behavior is magnified when
the elasticity modulus of the upper layer modulus gets larger
than that of the lower layer. But it loses its influence as it
reaches around s/D = 6 because the large pile spacing causes
each pile to behave like an isolated pile, which might not be
desired.

Figure 14 presents a comparison with the previous study by
Salgado et al. (2014). Although the methods show a small
difference for the range s/D = 2..6, the general trend is similar,
especially for s/D = 6..8. Salgado et al. (2014) indicates higher
group efficiency value for the range s/D =2..6, while the pro-
posed method in this study estimates lower values of
group efficiency for the same range. Both methods ap-
proximate to each other for the higher values of s/D.
Salgado et al. (2014) assumed a displacement field
which allows the displacements in loading direction on-
ly in a Cartesian coordinate system, whereas this study
enables the soil to have displacements in both radial
and circumferential directions. However, the main
source of the difference can be the algorithm and
mathematical model used by Salgado et al. (2014) in
the determination of the decay function and soil param-
eters. Researchers also employed a set of simplifications
to consider dominant terms when solving the system of
coupled equations for the decay functions in the itera-
tive algorithm. Eventually, all these are anticipated to

@ Springer



322 Page 16 of 17

Arab J Geosci (2020) 13: 322

result in small variations in the comparison of the s/D
ratios.

Conclusions

This study proposed a new method for calculating the re-
sponse of laterally loaded pile groups embedded in layered
soils. The analyses for pile groups with different sets of BCs
have been presented and the results have been compared to the
results of the FEM analyses and a previous study. Based on
the results presented in this study, one can conclude that the
comparisons of the proposed method with the FEM analyses
show matching results and a better performance than the FEM
analyses. The results also show a good agreement with the
previous work by Salgado et al. (2014) for the group efficien-
cy example. The comparisons of analysis times with the FEM
times also present the computational efficiency and robustness
of the method. Especially, for large pile groups which can be
consisting of tens of piles, modeling efforts such as meshing
and convergence analyses may require substantial amount
of time, whereas the Fortran code developed for this study
only requires a simple input file, which includes mainly geo-
metric, material properties, and load data. Also, it depends on
users to decide on the number of radial and vertical points.
These computational advantages demonstrate the possibility
to further extend the model to include soil plasticity that will
provide the opportunity to model experiment results for which
deformation range can no longer be modeled by elastic behav-
ior assumptions.

It has been observed that the existence of other piles when
calculating the soil stiffness in the single pile response does
not affect the group response significantly or mitigated by -,
iterations. Moreover, determining the attenuation function an-
alytically without any assumptions provides substantially ef-
fective and accurate interaction force calculations. These two
observations also support that the present method can be a
basis for further development for cases, as mentioned above,
which demand more computational power. Overall, the model
proposed in this study provides the opportunity for researchers
to investigate the problem in a computationally efficient way.

The effect of the interaction is also clearly observed in the
results. Clear shadowing effects have been obtained in free-
head and rigid-cap examples. For the pile groups with rigid-
pile cap and free-end conditions, the interaction effects cause
more tip displacement for the piles in a group. A group effi-
ciency chart was presented which can be applied to pile group
analysis assuming that deformations stay small and elastic
behavior assumptions remain valid. The analyses indicated
that the piles at the outer corner for this group are exposed
to more force than the interior piles. Group efficiency in-
creases with s/D ratio, especially between s/D =2..6, while
this ratio gets less efficient after that range. For a soft soil layer

@ Springer

underlying a stiffer layer with the same thickness, this effect is
even more highlighted by higher E/E, ratios.
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