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Abstract
Rate of penetration of a tunnel boring machine (TBM) in a rock environment is generally a key parameter for the successful
accomplishment of a tunneling project. Tunneling time is one of the factors that determine the tunneling method (blast or
mechanical work). In traditional method, tunneling time depends on the progression function of blast cycle, while in mechanized
tunneling method the required time for boring is determined by advance rate and consequently penetration rate. The advance rate
is a function of penetration rate of TBM, which is the ratio of the length of boring part of the tunnel to the excavated time of the
same part. Penetration rate, on the other hand, is a function of lithology and geomechanical properties of the rock and also the
boring machine. So far, many efforts have been made to develop a method to predict the penetration rate (TBM) of the machine.
Among these methods are empirical models, particularly NTH model, including models that can be used to predict the penetra-
tion rate. In this study, statistical analysis was used to obtain importance of parameters involved in penetration rate and compare
the performance of neural networks with other mathematical models based on the principles of probability. In addition, the
artificial neural network (ANN) was compared with models of Innaurato and NTH, which indicates high performance of neural
networks in predicting penetration rate compared with the other two models. As a result, neural network was chosen and then
proceeded to build the network optimized.
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Introduction

One of the most important considerations for tunnel boring
machine (TBM) is the performance analysis of the machines
in different types of rocks (Mohammadi et al. 2014). In many
cases, because of its easy measurement, uniaxial compressive
strength (UCS) of rock has been used for predicting the TBM
performance (McFeat Smith 1977; Roxborough and Phillips
1975; Ozdemir 1977; Pang et al. 1989; Torabi et al. 2013).
Also, a number of experimental tests (i.e., Brazilian tensile
strength (BTS), Schmidt hammer, Taber abrasion, point load
index, shore hardness, and drilling rate index tests) have been

used to estimate TBMperformance (Blindheim 1979; Fowel and
McFeat Smith 1977; Howarth et al. 1986). During the past de-
cades, numerous TBM performance predictions have been intro-
duced based on rock mass classification systems such as rock
mass rating (RMR) (Sapigni et al. 2002; Ribacchi and Lembo
Fazio 2005; Bieniawski et al. 2007; Ramamurthy 2008;
KhademiHamidi et al. 2010), rock structure rating (RSR) system
(Cassinelli et al. 1982; Innaurato et al. 1991), rock mass index
(RMi) (Palmstrom 1995), rock mass quality system (Q)
(Hassanpour et al. 2009), geological strength index (GSI)
(Hassanpour et al. 2009), and rockmass quality for tunnel boring
machines (QTBM) (Barton 2000; Oraee and Salehi 2013).

Mechanical behavior of rock masses is caused by several
factors related to the environment and geological processes
that form them. Defining these factors, especially the geolog-
ical one, in common forms of mathematics is difficult for
subsequent analyses. In most cases, only some of these factors
are used rather than all of them as main variables in formulas.
Therefore, the experimentally obtained data are not consistent
with the predicted results of these formulas. Although
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tunneling machines were applicable in moderate strength
rocks and uniformly geological conditions in the past, the
technological developments have now resulted in the broader
scope of the machines as well as their wider applicability and
greater advance rate. Mechanized tunnel excavation method
widely applied in the world TBMs is used for mechanized
excavation of different tunnels, such as road and rail transport
and water transfer. Typically, excavation of water tunnel starts
downstream from the outlet of the tunnel with a positive slope
upward so that the water runs out of the tunnel without
pumping. In machine drilling, many factors including the
characteristics of the rock mass, rock material properties, ma-
chine characteristics, geological conditions, operator skill, and
technical knowledge are effective. The interaction between
the machine and the rock mass is a dynamic, complex, uncer-
tain, and nonlinear effect. Hence, modeling the penetration
rate of drilling machine and applying mathematical models
founded on the basic principles of probability and statistics
is a very difficult task. Generally, prediction methods of ad-
vance and penetration rate used in industry are divided into
two experimental (mostly NTH) and shear (mostly CSM)
models (Nilson and Ozdemir 1993; Bruland 2000). Several
researchers applied some parameters for assessing the
performance and penetration rate of TBM. For example,
Graham (1976) used rock uniaxial compressive strength;
Farmer and Glossop (1980) applied rock strength and
uniaxial compressive strength; Haykin (1991) incorporated
rock structure and uniaxial strength; and Barton (2000) used
rock classification system. Empirical methods are developed
based on observation, practical machine and ground parame-
ters, and the fitting between rock properties and machine pen-
etration rate parameters. Some researchers, including Tarkoy
(1974), Graham (1976), Farmer and Glossop (1980), and
Nelson (1983) predicted penetration rates only with respect
to a parameter or combination of rock with a machine param-
eter. Researchers such as Cassineli, Innaurato, Park, and
Hassanpour introduced the penetration rate as a function of
rock classification systems such as RMR, RSR, RQD, and Q
(Innaurato et al. 1991; Park et al. 2001; Hassanpour et al.
2011; Barton 2000). Also, NTH method has been established
based on empirical relationships between mechanical param-
eters, rock geological conditions, and productivity of the ma-
chine with the actual progress of the tunnel. The advantage of
the experimental method is that all impacts from the ground
and the machine are normally considered. On the other hand,
the development of technology and providing machines with
different capabilities limits further use of this method. Note
that the model proposed in this work is for a special case of the
presented conditions and is not applicable to all situations. In
recent years, methods of artificial neural networks are used as
a new tool to predict the penetration rate. Artificial neural
networks (ANNs), which are inspired by the brain’s structure
and its parallel function, need no pure mathematical model.

Nevertheless, like humans, the gained experience and results
are generalized in this modeling. In cases where there is no
relationship between input and output parameters, and there is
no clear relationship between them detectable by conventional
methods, using artificial neural networks, it is a good idea for
estimation and modeling. The main advantages of these net-
works arise from the fact that they do not require the formu-
lation and dynamic, network, and the possibility of more ef-
fective parameters. Considering the neural network capabili-
ties, they can be much easier and less costly and give results
that are more accurate to engineers.

To predict the parameter involved in TBM penetration rate
using neural network required, a record of all parameters and
the effective parameters is prepared to predict the desired
quantity. Two conventional empirical methods (NTH and
Innaurato) and the fundamental of neural networks—as the
subject of present study—are discussed in this work. In
NTH model, the influence of force parameters for each disc
rotation speed frontal shear, disc spacing, the machine poten-
tial, the life of the disc, drilling rate, joints, and fractures are
included. Drilling rate and disc life indices are obtained using
the friction values, tenderness tests, and the available relations
and the corresponding graphs. Parameters including penetra-
tion rates, according to the drilling rate, the penetration force
per disc, diameter, discs spacing, and joints in the rock mass
are calculated. Next, considering the delay in drilling time due
to disc replacement, the machine propelling failure, the time
required for maintenance and repair of the backup system is
calculated, followed by estimation of utilization factor and
advance rate. Here, fracture rate and crushing rock mass are
more important than other rock mass parameters.

In Innaurato model, rock mass parameters and rock struc-
ture are simultaneously applied and RSR classification is
used. The most important shortcoming of this model is
neglecting the machine parameters (strategic and geometrical
parameters). According to the database chosen by Innaurato to
create his ownmodel (five tunnels with a length of 19 km) and
limited compressive strength of the rock (50 to 150 MPa),
poor results are derived from this model when the resistance
is lower than this range.

Artificial neural network

Artificial neural network (ANN) is an information processing
system that simulates both structure and functions. This net-
work consists of numerous simple processing elements
(neurons) capable of performing complex data processing
and knowledge representation (Kosko 1994). The neural net-
work is normally trained by processing a large number of
input and output patterns to achieve matching and prediction.
It is basically mapping the input and output values; hence, it
has excellent interpolation capabilities, especially when the
input data are noisy. Neural networks may be used as a
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substitute for auto-correlation, multivariable regression, linear
regression, trigonometric, and other statistical analysis tech-
niques. When data are analyzed using a neural network, it is
possible to detect important predictive patterns that were not
previously apparent to a non-expert. A particular network,
which depends on the nature of the problem to be solved,
can be defined using three fundamental components: transfer
function, network architecture, and learning law (Simpson
1990).

Multilayer perceptron networks

Structure of a given ANN consists of many units called as
neurons. Information processing by neurons is shown in
Fig. 1. Information received by the neurons (P1 and P2) as
the weights (W1 and W2) is multiplied and then summed so
that the total input to each neuron is achieved. The weights,
which are the indicative of connecting intensity of the neu-
rons, are determined during the learning process (da Silva
et al. 2017). The mathematical form of the above operation
can be observed in the below equation (Shahin et al. 2008). In
some cases, a fixed amount called bias or oblique weight is
added to each neuron in the above equation and consequently,
Eq. (1) is expressed as Eq. (2):

Net j ¼ ΣWIRPR Ri¼1 ð1Þ
Net j ¼ ΣW PR Ri ¼ 1 þ BJ ð2Þ

In the next step, a nonlinear activation function is
applied to the total input of each neuron, using which
the output of the neuron is determined. In neural

networks, neurons are arranged in layers. In the simplest
form of these networks, there is a layer of input neurons
completely connected to the layer of output neurons.
This structure is called as single-layer perceptron net-
work, because the calculations are done only at the
nodes of the output layer. The second type of network
is build using one or more hidden layers. Addition of a
hidden layer to the network enhances its capability in
estimating a nonlinear mapping. Increasing the number
of hidden layers enables the network to obtain statistical
information that are more accurate. Activation function
can be either linear or nonlinear. A stimulus function is
selected considering the problem that is supposed to be
solved by neural network. Most commonly used func-
tions are tangent sigmoid (tansig) and hyperbolic tan-
gent function. The neurons are located in layers at the
layered neural networks. As a result, the capacity of the
network increases especially when the input value is
high. Neurons in the input layer do not perform any
computation on input vector to the second layer (first
hidden layer). The outputs of the second layer multi-
plied by the weight vectors make the inputs for the
third layer (second hidden layer).

The study area

Nowsoud water transfer tunnel project is a part of the
water supply project in the tropical west terrains of Iran.
This tunnel with a total length of 50 km is located
around Hirvi in the vicinity of Azgele. The tunnel is
constructed on the Sirvan River. The river basin is lo-
cated in the Iran-Iraq border. The study area is located

Fig. 1 Schematic of a three-layer
neural network
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in simply folded zone of Zagros fold-and-thrust belt that
shows fairly regular wavelength folds running along
hundreds of kilometers and also cut by several major
faults (Agard et al. 2011). Rock units in tunnel route
consist of shale and clayey limestone of Pabdeh and
Gurpi formations (Late Cretaceous and Tertiary), respec-
tively; however, the rock layers are mainly Cretaceous
limestone. The oldest rocks exposed in the tunnel are
the Jurassic evaporate units. Based on the lithological
characteristics, rock masses in the tunnel route are di-
vided into different units including limestone (Li),
limestone-shale (Li-Sh), marl (MA), marly limestone
(ML), limy shale (LS), crushed zone (CZ), and fractured
zone (FZ). According to geological and engineering
geological investigations, there are 23 rock units in this
area. These rock units are mainly limestone (Li) and
limestone-shale rocks (Li-Sh) as presented on geological
section of the tunnel in Fig. 2.

Data used

In this study, the effects of geotechnical parameters on the
penetration rate (PR) were analyzed in 63 sections along the
tunnel. Data set used in each section included uniaxial com-
pressive strength (UCS), Brazilian tensile strength (BTS),
modulus of elasticity (E), cutter life index (CLI), modulus of
deformation (M), porosity (n), tunneling quality index (Q),
rock mass rating (RMR), geological strength index (GSI),

and rock structure rating (RSR). Number of data used and
the minimum and maximum values of each parameter are
presented in Table 1.

Prediction of penetration rate by statistical method

In order to predict the penetration rate by using artificial neural
networks, first the parameters affecting the penetration rate for
making the network architecture are selected. Next, the most
effective parameters for optimized network design and simu-
lation were detected. Through the analysis, a statistical study
using by SPSS software was performed on the input data, so
that to compare the results of this method with those produced
by neural network models. Statistical analyses are common
methods in rock engineering and engineering geology for de-
signing prediction models of the penetration rate. This model-
ing is conducted based on two simple and multivariate regres-
sion approaches. In this study, to obtain a simple regression
(SR), in addition to linear equations (y = ax + b), other nonlin-
ear equations were also investigated. Using the data in Table 2,
the correlation between UCS, BTS, E, CLI, M, and n, with
penetration rate (PR), was studied for 23 lithological units in
Nowsoud tunnel. All three mechanical parameters mentioned
indicated an exponential relationship with penetration rate
(PR) of TBM. Among these, the uniaxial compressive
strength (UCS) has the highest correlation with the TBM pen-
etration rate (PR). The correlation between the engineering
classification of rock mass (RQD, Q, GSI, RSR, RMi, and

Table 1 Statistics of data used in this study

Parameters

UCS (MPa) BTS (MPa) E (GPa) n (%) Q GSI RSR RMR PR (m/h)

Number of data 63 63 63 63 63 63 63 63 63

Maximum value 120 7.5 22.5 9 11.87 66 61 65 10.22

Minimum value 15 0.35 1 2 0.22 25 18 25 2.45

Mean 58.57 3.45 5.68 5.27 2.95 43.84 40.53 46.96 5.32

Standard deviation 37.04 2.03 3.89 2.74 2.22 9.21 12.56 10.69 1.77

Fig. 2 Geological section along the tunnel
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RMR) with PR was also evaluated in this work. Statistical
results showed that all classification systems have statistically
insignificant relationship with the PR. Among the classifica-
tion systems, RSR and RMR indicated highest (R2 = 0.67) and
lowest (R2 = 0.40) exponential relationship with PR, respec-
tively (Table 2).

Multiple linear regression

Multiple regression is a modeling approach applied to deter-
mine the linear relationship between a dependent variable and

Table 2 Determination coefficient values of the SR method

Parameter R2 Parameter R2

UCS (MPa) 0.77 GSI 0.59

E (GPa) 0.54 RSR 0.67

BTS (MPa) 0.64 RQD 0.6

CLI 0.62 RMR 0.4

Q 0.48 M (MPa) 0.45

Porosity 0.31

Table 3 Values obtained using the MLR method

Model
number

Independent
variables

Coefficients of the
variables

Statistics
t

(Sign) (R2) Equation model

Model 1 CONSTANT
UCS (σc)
E
BTS (σt)
CLI (Ic)

− 0.419
− 0.004
0.120
− 0.444
− 0.90

− 0.123
− 0.969
2.448
− 4.807
− 1.822

0.902
0.337
0.017
0.000
0.074

0.601 PR = − 0.419 − 0.004*σc + 0.12*E − 0.444*σt − 0.9 Ic

Model2 CONSTANT
UCS (σc)
Q
BTS (σt)
SIGMA
CLI (Ic)
E

− 2.478
0.15
0.080
− 0.042
− 0.299
0.165
− 0.17

− 1.057
3.599
0.664
− 0.530
− 4.869
4.851
− 0.475

0.295
0.001
0.510
0.598
0.000
0.000
0.636

0.819 PR = − 2.475 + 0.15*σc + 0.08Q + − 0.042*σt − 0.299*SIGMA+ 4165*
Ic − 0.17*E

Model3 CONSTANT
E
UCS (σc)
RSR
SIGMA
BTS (σt)
CLI (Ic)

0.254
0.129
0.010
− 0.042
− 0.225
0.064
0.126

0.103
1.337
2.554
− 2.596
− 6.380
0.725
3.512

0.919
0.0187
0.013
0.012
0.000
0.000
0.001

0.856 PR = 0.254 + 0.129* Qd + 0.010* σc − 0.042* RSR − 0.225*
SIGMA+ 0.064* σt + 0.126 Ic

Model4 CONSTANT
UCS (σc)
SIGMA
BTS (σt)
CLI (Ic)
M
RMR

0.244
0.04
− 0.166
0.046
0.151
0.078
− 0.074

0.121
0.998
− 4.831
0.664
5.275
0.973
− 4.881

0.904
0.323
0.000
0.510
0.000
0.335
0.000

0.861 PR = 0.244 + 0.04*σc − 0.166*SIGMA + 0.046* σt + 0.151* Ic + 0.074*
Qd − 0.074 *RMR

Model5 CONSTANT
UCS (σc)
SIGMA
BTS (σt)
CLI(Ic)
RMR
E

0.471
0.004
− 0.160
0.058
0.152
− 0.072
0.020

0.226
0.966
− 4.571
0.819
5.236
− 4.765
0.661

0.822
0.338
0.000
0.416
0.000
0.000
0.511

0.870 PR = 0.471 + 0.004* σc − 0.16*SIGMA + 0.058* σt + 0.152*
Ic − 0.072*RMR+ 0.02*E

Model6 CONSTANT
UCS (σc)
SIGMA
BTS (σt)
CLI (Ic)
POROSITY
RMR

− 0.007
0.004
− 0.163
0.045
0.159
0.001
− 0.073

− 0.003
0.844
− 4.596
0.671
5.257
− 4.713
0.024

0.997
0.402
0.000
0.505
0.000
0.098
0.000

0.827 PR = − 0.007 + 0.004* σc − 0.16*SIGMA + 0.045* σt + 0.159*
Ic − 0.001*RMR+ 0.001*n

Model7 Constant
UCS (σc)
BTS (σt)
CLI (Ic)
GSI
E

4.091
− 0.063
− 0.082
− 0.241
0.082
− 0.004

1.208
− 3.413
− 1.809
− 2.325
1.771
− 0.935

0.232
0.001
0.076
0.024
0.082
0.354

0.669 PR = 4/901 − 0.063* σc − 0.082* σt − 0.241* Ic + 0.082*GSI-0.004*E
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one or more independent variables. Regression analysis is a
statistical method that tries to determine the relationship be-
tween two or more variables using the values of one variable
based on one or more variables in predicting process. In the
statistical model described in this study, the relationship be-
tween the independent and dependent variables is considered
as follows:

Y ¼ b0 þ b1X 1 þ⋯þ bkX k ð3Þ
where Y is the dependent variable, Xk … X1 are independent
parameters, b0 is a constant, and b1... bk are parameters coef-
ficients. The purpose of regression analysis is to determine the
regression parameters and compare the model with the depen-
dent variable (Y). Note that the equations obtained from sim-
ple regression (other than the relationship between UCS and
PR) are not reliable performance, so as the next step statistical
analysis was performed using multivariate regression. In order
to predict the PR, which is some independent parameters in
multiple regression, and the parameters of the intact rock, rock
mass and rock classification systems were used as indepen-
dent parameters. In this study, seven statistical models were
used, where one model is only based on the intact rock me-
chanical parameters and the other models are based on a com-
bination of intact rock parameter and rock mass classification

(GSI, RSR, and RMR). Details of these models are presented
in Table 3. Equations derived for the seven models designed
for production of the PR are presented in Table 3. Validity of
models was assessed using different criteria such as square of
correlation coefficient (R2) and t Student’s test. According to
Table 3 and their square of the correlation coefficient, models
3, 4, and 5 with R2 0.856, 0.861, and 0.870, respectively,
indicate acceptable factor to predict PR.

The first models that were created based on the intact
rock mechanical parameters indicate an R2 value of 0.601.
As shown in Table 3, model 7, which was created based on
a combination of UCS, E, and GSI, is different from model
1 (R2 = 0.66) in terms of predicting PR values, implying
that GSI has no positive effect on enhancing predictive
power of the model. Application of GSI in the model not
only has a positive effect on network performance but also
reduces it. The main explanation for this outcome is that
estimating this parameter based on only qualitative charac-
teristics of the rock mass that involves human errors.
According to Al Atik and Abrahamson (2010), large quan-
tities of regression coefficients in the prediction models do
not necessarily mean their superiority. Thus, to assess the
correlation between model and experimental results, we
applied T test with a confidence level of 95% for all
models. If the calculated t value is greater than the param-
eter value, the degree of certainty (Sign) drops below 0.05,
and then it is considered as a significant variable in the
success of the prediction model. Therefore, based on
square of correlation coefficient values and t statistic of
the generated models, the models with effective input pa-
rameters in the neural network structure were chosen in-
cluding rock material and classification systems. Finally,
model 3 with coefficient of determination of (R2 = 0.85)
and degree of importance (Sign) below 0.05 was selected
as the optimum model for statistical prediction of the PR.

Table 4 Input parameters in network structure and values of correlation coefficients obtained from the neural network method

Model
number

Input parameters Network
structure

Coefficient
network (R2)

RMSE Coefficient of
network test (R2)

RMSE Neural
network (R)

Neural
networks (R2)

1 UCS, BTS, RSR, E, CLI, 5-4-5-1 0.77 0.4 0.62 0.22 0.89 0.79
2 UCS, BTS, RSR, E, CLI 5-7-7-1 0.83 0.24 0.72 2.22 0.91 0.83
3 UCS, RSR, E, CLI 4-7-7-1 0.80 0.12 0.73 0.24 0.89 0.79
4 UCS, RSR, E, CLI 4-5-4-1 0.75 0.35 0.39 0.24 0.86 0.74
5 UCS, RSR, E, CLI 4-5-1 0.85 0.18 0.55 0.32 0.92 0.84
6 UCS, BTS, RSR, E, CLI 5-5-1 0.83 1.12 0.33 0.1.3 0.91 0.83
7 UCS, BTS, Q, E, CLI 5-5-1 0.80 0.33 0.83 0.12 0.89 0.79
8 UCS, BTS, Q, E, CLI 5-5-6-1 0.80 0.17 0.71 0.32 0.89 0.79
9 UCS, BTS, Q, E, CLI 5-125-1 0.82 0.308 0.73 0.15 0.90 0.81
10 UCS, BTS, RMR, E, CLI 5-125-1 0.88 0.22 0.84 0.14 0.94 0.88
11 UCS, BTS, RMR, E, CLI 5-6-7-1 0.86 0.21 0.51 0.23 0.93 0.86
12 UCS, BTS, RMR, E, CLI 5-712-1 0.84 0.31 0.80 0.15 0.92 0.84
13 UCS, BTS, RMR, E, CLI 5-12-12-1 0.78 0.35 0.53 0.19 0.88 0.77
14 UCS, BTS, RMR, E, CLI 5-9-1 0.84 0.37 0.82 0.14 0.91 0.82
15 UCS, BTS, RMR, E, CLI 5-3-1 0.64 0.44 0.63 0.19 0.78 0.60
16 UCS, BTS, RMR, E, CLI 5-8-1 0.80 0.27 0.86 0.17 0.89 0.79

Table 5 Evaluation of network performance in models with different
network structure

Model number 9 10 11 12

Bnd1 12 17 5 6

Bnd2 4 2 3 8

Bnd3 2 1 5 4

Average error 0.33 0.29 0.34 0.45
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Prediction of penetration rate by using neural
networks method

A set of input and output data is required to design a proper
network. As is expressed in the principles of artificial neural
networks, a network must be trained with a set of pairs as
training couples and be tested with a set of evaluation data.
Therefore, prior to training, one of the most important and
most difficult stages is defining the neural network structure
and requires it to choose the optimal number of layers as well
as the optimal number of neurons in each layer. In this regard,
there is no specific method for determining the optimal net-
work. Generally, it has been suggested that for a constant
number of layers’ number of neurons in each layer is deter-
mined by error and trial. The numbers of neurons in input and
output layers are limited to the respective number of the input
and output parameters of the model.

Although there is no certain way to determine the number
of hidden layers, some researchers believe that many issues
can be solved using a middle (hidden) layer (Hornik 1989;
Hecht-Nielsen 2010; Basheer 2000). However, to achieve ac-
ceptable results in this study, the large networks with one and
two hidden layers were designed. The number of neurons in
the hidden layer is another important parameter in network
construction. If the number of hidden layer neurons is low,

the network cannot reflect nonlinear mapping between input
and output with required accuracy. On the other hand, the
excessive number of neurons in the hidden layer has a nega-
tive effect, as it increases the number of network elements and
inaccuracy involved in learning process and adjusting the
weight vectors on one hand, and increase in probability over
fitting on the other (Menhag 2011; Kia 2010). To optimize the
network, the outputs and the inputs were normalized within a
range of − 1 and + 1. To predict the penetration rate, feedforward
backpropagation network with an input layer, two hidden layers
and an output layer were built, where a tansig transfer function
was applied in the hidden layer. To determine the number of
neurons in the middle layer, various networks with different
number of neurons in the hidden layerwere trained and evaluated
and the best network was selected among them. The estimated
values of PR in networks against the real PR data were plotted in
a coordinatewith actual data in x-axis and the predicted ones in y-
axis. If all predicted PRs are equal to the actual PR values (y = x),
all points are on the line. Diversion of points from this line
indicates the degree of difference between the network output
and the actual values. The optimum model structure was chosen
based on input parameters, R2, and the root mean square error
(RMSE) value of network training and testing. Based on the
abovementioned points, network model with input parameters
including UCS, BTS, RMR, E, and CLI and network structure

Fig. 3 Determination of error
band for network structure
5*12*5*1

Table 6 Sensitivity
analysis of input data and
the objective function

Eliminated parameters RMSE (test)

UCS 0.32

BTS 0.19

RMR 0.17

CLI 0.15

SIGMA 0.13

Table 7 Comparison of multivariate regression and neural network
with import data which consist of composited intact rock mechanical
parameters and rock mass classification

RMSE R2 Model

0.14 0.88 ANN

2.15 0.85 MLT
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of 5 × 12 × 5 × 1 (five input, 12 neurons in hidden layer 1, five
neurons in the hidden layer 2, and one output channel which is
the penetration rate) were found as most accurate in terms of
quantitative and qualitative conditions to determine the PR
(Table 4). Standard error of the mean (SEM) was applied to
determine the optimal number of cells in the middle layer. To
achieve this goal, error band of models 9,10, 11, and 12 were
used as they provide higher correlation coefficient. To evaluate
the grids, three bands (Y =X ± 0.25, Y =X ± 0.5, and Y =X ± 1)
shown in Table 5 were defined. The frequency of each of these
three bands was considered as the evaluation criteria. This fre-
quency shows that the accuracy of the network and the probable
PR can be potentially predicted by the network. Finally, model
10 with average error of 0.29 was found as appropriate to predict
the PR. The probability that the network output 5 × 12 × 5 × 1 is
different from the actual penetration rate of less than 0.25, 0.5,
and 1 m is 0.2, 0.047, 0.047 m, respectively. Three cited a band
for network 5 × 12 × 5 × 1 is shown in Fig. 3.

Sensitivity analysis

Sensitivity analysis was used to determine the sensitivity of
the model to changes in parameter values and structure of the
model. Different values were assigned to determine the sensi-
tivity of parameter to measure the change in model behavior.
In fact, the sensitivity analysis allows determining the degree
of confidence in a model with uncertainty of parameters. One
of the major initiatives after modeling is determining the sen-
sitivity of modeling aim in terms of the input parameters.
Typically, to determine the effect of input parameters on the
target, variations of test error are investigated with removing
one of the input parameters. The large differences between the
actual and predicted values indicate the greater influence the
omitted parameter on the results. After applying the above
method on existing data, the effects of various parameters
were calculated in the network. Table 6 shows that the uniaxial

compressive strength (UCS) is the most effective parameter
on the PR. Two other parameters, CLI and SIGMA, are less
effective than other parameters.

A comparison was made between the multivariate regres-
sion and neural network using the input data, consisting of
intact rock mechanical parameters and rock mass classifica-
tion. Table 7 presents that the neural network model 10 (with
UCS, BTS, RMR, E, and CLI as input data and the struc-
ture 1 × 5 × 12 × 5) indicates higher R2 and lower RMSE com-
pared with model 3 (multivariate regression with E, BTS,
RSR, CLI, and UCS as input data). This fact implicates that
neural network accuracy in predicting the PR is higher than
that of multivariate regression.

Comparison between ANN with NTH and Innaurto
methods

To compare performance of different models designed for
Nowsoud tunnel, the average difference between the actual
and predicted values of PR in various models was plotted.
Here, the lithology units of tunnel route were divided into
three main units and compared with those of different models.
As shown in Fig. 4, the neural network model with input
parameters of E, CLI, UCS, BTS, and RMR and network
structure of 5 × 12 × 5 × 1 indicates R2 = 0.88, while R2 is
0.57 for NTH model for PR prediction. Besides, units ML-
SH and SH-LS have the minimum difference to the actual
values penetration rates in ANN method and in Li unit value
predicted by the neural network model is closer to the actual
penetration rate (Fig. 5).

Discussion

Results indicate that three types of parameters affect the pen-
etration rate of TBM in the case of this study including

y = 0.3355x + 11.015
R² = 0.3178

y = 0.385x + 3.5196
R² = 0.5687

y = 0.774x + 1.1726
R² = 0.8814
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geotechnical parameters of intact rock, geotechnical parame-
ters of rock mass, and finally machine-related parameters.
Among these parameters, UCS has the most effect on pene-
tration rate of TBM in rock units of study area. This is because
of that the strength and toughness of rock material have a
major influence on rock mass boreability and in turn on
TBM performance (Salimi et al. 2016). For this reason, the
most previous models for prediction of penetration rate have
used the uniaxial compressive strength of intact rock as a main
input parameter (e.g., Graham 1976; Rostami and Ozdemir
1993; Bieniawski et al. 2006; Farrokh et al. 2012; Zare
Naghadehi et al. 2018). Rock structure and discontinuity char-
acteristics also affect the PR of TBM in rock units of this study
as it is clear from the correlation between penetration rate and
rock mass classification systems of RSR, RMR, and GSI.
Among the rock mass classification systems, RSR shows the
highest correlation with penetration rate in regression analyses
(Table 2). Rock mass classification systems integrate charac-
teristics related to the rock structure and discontinuities, in-
cluding spacing and orientation of discontinuities that have
important impacts on TBM performance and its penetration
rate. In addition to intrinsic characteristics of intact rock and
rock mass, machine-related factor of CLI also influences the
RP. In comparison with geotechnical characteristics, CLI has a
lower impact on penetration rate. In this study, regression
analysis led to knowing those geotechnical parameters that
highly influenced the penetration rate of TBM in Nowsoud
Tunnel. Selection of the most influential parameters and ap-
plying the ANN method for integration these parameters re-
sulted in reliable prediction models for penetration rate. As
presented in Fig. 4, predicted values of penetration rate are
close to observed ones. This observation proves the effective-
ness of selected geotechnical parameters and also the efficien-
cy of the ANN method. The influence of geotechnical param-
eters on the penetration rate after using the artificial neural
network was also evaluated by sensitivity analysis. The results
of sensitivity analysis and ranking the influence of geotechni-
cal parameters on the penetration rate are illustrated in Fig. 6.
As this figure shows, UCS is the most influential geotechnical
parameters on penetration rate followed by BTS and RMR.

Conclusions

The effect of geotechnical parameters on the penetration rate
of TMB in Nowsoud Tunnel was evaluated. Regression anal-
yses showed that penetration rate correlated well with the
strength of intact rocks and discontinuity characteristics from
rock mass classification systems. The strongest correlation
was observed between penetration rate and UCS. Then, the
most influential parameters were selected as input parameters
for the ANN method based on regression analyses results.
Predicted penetration rates obtained from the ANN method
were very close to observed penetration rates in study tunnel,
revealing the effectiveness of selected parameters for predic-
tion of penetration rate. Examination of the impacts of input
parameters on the results of ANN by sensitivity analysis
showed that UCS has the highest impact on ANN results
and predicted penetration rates in Nowsoud tunnel. BTS and
RMR stand in the next levels of importance, respectively. It
can be concluded that selection of influential geotechnical
parameters and applying powerful methods such as ANN
make it possible to predict and estimate TBM performance
and its penetration rates in various rock units that are essential
for time scheduling in tunneling projects.
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