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Abstract
The compaction parameters of soils known as the optimum moisture content (OMC) and maximum dry density (MDD) are
necessary for the geotechnical engineering applications such as the fills, embankments, and dams. However, it takes a long time
to determine the compaction parameters due to the laboratory test procedure. It was aimed to estimate the compaction parameters
of soils with four soft computing methods and also to compare the performance of the methods in this study. For this purpose, a
wide database consisting the index and standard proctor (SP) test results were used. Although all AI methods used in this study
are successful on estimation of theMDD and OMCparameters, it was seen that the ELMmethodwas the most successful method
on the prediction of compaction parameters.
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Introduction

Soil masses often do not have the properties required for en-
gineering structure constructions. In such cases, in order to
obtain the desired properties, the geotechnical properties of
the soil can be improved. The selection of the soil improve-
ment techniques to be applied depends on many factors such
as the type of soil on the field, the condition of the soil and the
economic factors. The aim in all improvement techniques is to
increase the soil density and strength, and to reduce the per-
meability and settlements. One of them, the compaction meth-
od, is used to increase the density and bearing capacity of the
soil and reduce the permeability.

The compaction is to increase the dry density by the ap-
plied energy of the soil where the water content (w) is
changed. Air volume reduces while water and solid part do
not compact, and the grains come closer together. If the soil is

added with some water and compacted, the soil will have a
certain dry unit weight (γd) and if the same soil is increased in
water content and compacted in the same energy, the dry unit
weight gradually increases. By increasing the water content,
the dry unit weight reaches the highest value which is defined
as maximum dry density (MDD) (γdmax), and after this limit
value, the dry unit weight begins to decrease if the water is
added to the soil. The water content providing the maximum
dry density is defined as the optimum moisture content
(OMC) (wopt). The MDD and OMC are two significant pa-
rameters representing the compaction behavior of the soils
which are determining with the standard proctor (SP) and
modified proctor (MP) tests in the laboratory. These two pa-
rameters are determined on compaction curve that obtained
from the laboratory tests and have an important role in
compacted fillings which are inevitable for engineering struc-
tures such as highways, railways, and earth dams.

However, the laboratory tests for determination of the wopt

(OMC) and γdmax (MDD) have time consuming and laborious
process and required an important effort. For this reason,
many scientists and researchers have tried to determine the
compaction parameters from index properties of soils by em-
pirical correlations based on the regression analysis (Table 1).
The effect of index properties on compacted the soils has been
known for a long time. The grain size and grain distribution on
coarse-grained soils and the consistency limits on fine-grained
soils are the main factors. In addition, the tests to determine
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the index properties have a fairly easy and inexpensive proce-
dure compared with the compaction tests.

The proposed correlations related to relationships between
the physical characteristics and the compaction parameters are
generally based on multiple linear regression (MLR) analysis.
The most important problem with the use of these correlations

is that the correlations are usually developed for a particular
locality or same geological origin soils. The use of these

Table 1 Proposed empirical correlations for determining the compaction parameters

Equation References

γdmax = 0.89(LL − PL) − 1.26LL + 89.8Gs − 102.07
wopt = 0.611LL − 0.42(LL − PL) + 2.14

Jeng and Strohm (1976)

γdmax = (Gs/100)(45.6 – 1.28FM logD10–6.64 × 10
2 FM PL + 1.43FM)

γdmax = (Gs/100)(45.9 + 7.5FM − 0.45logU − 7.54 × 10−2FM)
wopt = 0.01(26.14 + 12,7PL − 95FM2 − 88.1log2U
wopt = 0.01(1035 − 905logD50 + 0.22C

2 + 106FMlogD50

Wang and Huang (1984)

γdmax = 2.44–0.02 PL − 0.008 LL (Iraq)
γdmax = 2.27–0.019 PL − 0.003 LL (USA)
wopt = 0.24 LL + 0,63 PL – 3.13 (Iraq)
wopt = 0.14 LL + 0.54 PL (USA)

Al-Khafaji (1993)

γdmax = 1.6148 − 0.1329(−No.4) + 0.5576(+ No.200) (for SP)
γdmax = 1.9300 − 0.1940(−No.4) + 0.4166(+ No.200) (for MP)
wopt = 0.2108 + 0.0227(−No.4) − 0.1470(+No.200) (for SP)
wopt = 0.1589 + 0.0212(−No.4) − 0.1118(+ No.200) (for MP)

Engin (2003)

γdmax = 0.23(93.3 − PL)
wopt = 0.92PL

Sridharan and Nagaraj (2005)

γdmax = 0.223G + 0.411FC (for SP)
γdmax = 0.234G + 0.233S + 0.055FC (for MP)
wopt = 0.618PL − 0.453PI (for SP)
wopt = 0.284LL (for MP)

Olmez (2007)

γdmax = 21.84 − 0.27 wopt (for SP)
wopt = 0.92PL (for SP)

Sivrikaya (2008)

γdmax = − 0.1008 LL + 21.16
γdmax = − 0.2283 PL + 21.88
γdmax = − 0.078 LL − 0.062 PL
wopt = 0.8442 PL + 0.1076
wopt = 0.3802 LL + 2.4513
wopt = 0.323 LL + 0.157 PL

Gunaydin (2009)

γdmax = 0.253G + 0.236S + 0.218FC − 0.234LL + 0.161PI (for SP)
γdmax = 23.673 − 0.357 wopt (for SP)
γdmax = 0.265G + 0.278S + 0.127FC − 0.213LL + 0.166PI (for MP)
γdmax = 25.702 − 0.528 wopt (for MP)
wopt = − 0.032G − 0.009S + 0.046FC + 0.659LL − 0.473PI (for SP)
wopt = 0.420LL (for SP)
wopt = −0.005G − 0.007S + 0.141FC + 0.267LL − 0.073PI (for MP)
wopt = 0.292LL (for MP)

Sivrikaya et al. 2013

LLLiquid limit,PL plastic limit,Gs specific gravity,FM finenessmodulus,D10 effective grain size,U uniformity coefficient,C clay content,D50 average
grain size, E compaction energy, No.4 passing No.4 sieve, No.200 passing No.200 sieve,G gravel content, S sand content, FC fine content, PI plasticity
index, SP standard proctor, MP modified proctor

Table 2 Statistical specifications of index and compaction parameters

LL
(%)

PL
(%)

GC
(%)

SC
(%)

FC
(%)

wopt

(%)
γdmax (kN/
m3)

Min 19 10 0 1 1 6 12.70

Max 87.50 44 97 87.20 99 32 22.60

Mean 41.13 20.04 20.57 38.79 40.65 14.40 18.37

Std.
Dev.

11.04 4.68 22.31 17.69 22.44 4.76 1.79

Table 3 Performance results of the GMDH model

#Layer OMC MDD

Training Testing Training Testing

MSE R MSE R MSE R MSE R

2 0.619 0.8493 0.546 0.8793 0.809 0.8590 1.03 0.8373

3 0.603 0.8503 0.528 0.8798 0.804 0.8584 0.901 0.8657

4 0.671 0.8247 0.820 0.8297 1.17 0.7984 0.88 0.8476

5 0.635 0.8432 0.538 0.8834 0.834 0.8598 0.924 0.8401

6 0.821 0.8001 0.674 0.8325 0.925 0.8401 0.680 0.8943

7 0.587 0.8623 0.451 0.9047 0.628 0.8662 0.756 0.9174
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correlations for an area outside the grounds of the locality
where the correlations are developed can cause significant
differences between the expected and computed compaction
parameters. Therefore, it is necessary to be cautious about the
use of the compaction parameters determined by empirical
correlations.

Recently, geotechnical engineering practices has begun to
include many studies related with soft computing methods
(Lee and Lee 1996; Najjar and Basheer 1996; Kiefa 1998;
Juang and Chen 1999; Sakellariou and Ferentinou 2005;
Wang et al. 2005; Kim and Kim 2006; Sinha and Wang
2008; Samui 2008; Abdel-Rahman 2008; Kuo et al. 2009;
Gunaydin 2009; Nejad et al. 2009; Kalinli et al. 2011;
Samui and Kothari 2011; Isik and Ozden 2013; Tenpe and
Kaur 2015; Abdalla et al. 2015; Chenari et al. 2015; Suman
et al. 2016).

In this paper, soft computing methods such as group
method of data handling (GMDH)–type neural network,
support vector machine (SVM), Bayesian regularization
neural network (BRNN), and extreme learning machine
(ELM) were used to predict the compaction parameters
of the soils. The index properties of soil samples were
used as an input parameter on estimation of compaction
parameters for all models.

Database compilation

Database containing the index and standard proctor (SP) test
results of 451 soil samples was used for this study.
Approximately half of the dataset was provided from pub-
lished studies (Gunaydin 2009; Olmez 2007), and the remain-
der part was provided from laboratories focused on different
soil investigations such as compaction tests in various parts of
Turkey. As mentioned in the introduction section, the grain
size distribution on coarse-grained soils and the consistency
limits on fine-grained soils are the most effective features. In
this context, the database was formed by the percentages of
liquid limit (LL), plastic limit (PL), fines content (FC), sand
content (SC), and gravel content (GC) of the compacted soils.
The soil classes of the soil samples has a wide scale such as
CH, CI, CL, GC, GM, GP, GP-GC, GP-GM, GW, GW-GC,
GW-GM, MH, MI, ML, SC, SP, SP-SC, and SW-SC.
Statistical description of the data is given in Table 2.

Method

The GMDH is a more complex model, which is gradually
evaluated on a set of multiple input, single output data pairs

Fig. 1 Determination coefficient performance values for OMC parameter

Fig. 2 Determination coefficient performance values for MDD parameter
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(Vissikirsky et al. 2005). The GMDH architecture is a self-
organizing polynomial neural network model with a flexible
structure (Ghanadzadeh et al. 2012). Firstly, the data set is
divided into training and test sets, and the calculations are
made according to the following regression equation for both
input variable pairs;

Quadratic : by ¼ G xi; x j
� � ¼ w0 þ w1xi þ w2x j þ w3xix j

þ w4x2i þ w5x2j

ð1Þ

The weights in the above equation are obtained according
to the least squares method. Then, new variables are obtained
by using polynomial equations. The output of the polynomial
equation of variables is carried to the next layer with the min-
imum error value. Thus, new variables are produced from the
input variables that best describe the output variable.

E ¼ ∑M
i¼1 yi−Gi xi; x j

� �� �2

M
➔minimum ð2Þ

Fig. 3 Distribution and error graphics related to the OMC parameter

Fig. 4 Distribution and error graphics related to the MDD parameter
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The GMDH model has been used with success in geotech-
nical practice in recent years (Jirdehi et al. 2014; Kordnaeij
et al. 2015; Hassanlourad et al. 2017; Ardakani and Kordnaeij
2017).

ELM is basically similar to artificial neural networks with
one hidden layer. Therefore, the working principle of ELM is
to some extent the same as the working principles of artificial
neural networks (ANN). However, in over-learning machines,
the weights (Wi) in the hidden layer are randomly assigned,
and these values are not changed (not updated) at a later stage
of training. In contrast, the weights (βi) between the output
layer and the hidden layer are determined at once, analytically
and quickly using a linear model. The basic ELM model is
based on feedforward neural networks with a single hidden
layer (Huang et al. 2006). The ELM method has begun to be
used in most geotechnical problems and successful results
were achieved (Muduli et al. 2013; Huang et al. 2017a;
Huang et al. 2017b; Liu et al. 2014; Li et al. 2016; Liu et al.
2015).

Determining the number of hidden neurons is most of the
biggest challenges in creating an ANNmodel. Overfitting can
be occurs when the number of neurons is high, and there is a
difficulty in training the network when there are few hidden
nodes. In addition, an ANN model that is designed to be
complex or simple will have poor predictive performance.
To overcome this, BRNN model, which describes ANN’s
training function with a probabilistic approach, was proposed
byMacKay (1991). BRNN is a widely used model for solving
nonlinear problems (Bui et al. 2012; Okut 2016; Caballero
and Fernández 2006). The BRNN method has been used on
different geotechnical problems and obtained good results

(Nejad et al. 2009; Das et al. 2010; Muduli et al. 2014;
Sabat 2015).

SVM model theory was first proposed by Cortes and
Vapnik (1995). SVM is widely used for regression and classi-
fication purposes. An extended version of SVM, also known
as support vector regression (SVR), has been developed for
complex regression problems. SVM method has been widely
used in different geotechnical problems in recent years
(Kordjazi et al. 2014; Sabat 2015; Samui 2008; Samui et al.
2008; Samui and Kothari 2011). In these studies, the theory of
the SVR model is also explained in detail.

Results

GMDH results

In this paper, different GMDH architectures were used to pre-
diction of the compaction parameters. The results of these
trials are given in Table 3. Since the rise in the number of
hidden layers caused an increase in the calculation costs, a
maximum of 7 trials were performed. However, when the
number of hidden layers rises, it is seen that the MSE error
values decrease and R determination coefficients increase and
also the success of the model increases (Table 3). The regres-
sion graphics and curves belonging to the actual and predicted
values are given on Figs. 1 and 2. The graphics and histograms
related to errors and distributions are given in Figs. 3 and 4.

ELM results

The training and test sets were randomly generated in ELM
models. The R and MSE performance values obtained for
OMC and MDD parameters are given in Table 4.

In this study, different architectural structures of ELM have
also been tried to estimate OMC and MDD parameters. The
different architectural structures of the ELM model were car-
ried out for the 70–30% training-test set, and the obtained
results are given in Tables 5 and 6.

Table 4 Performance criteria in the case of output OMC and MDD

Data Sets Train Test

R MSE R MSE

OMC 0.8678 0.3161 0.9358 0.2091

MDD 0.8502 0.3502 0.9521 0.5123

Table 5 Effect of different activation functions for OMC (70–30%
training-test set)

Types of activation functions R MSE

Sigmoid-22 0.9304 0.2543

Sine-19 0.9336 0.2437

Hardlimit-6 0.8955 0.3441

Triangular basis-45 0.9068 0.2863

Radial basis-24 0.9369 0.2224

Table 6 Effect of different activation functions for MDD (70–30%
training-test set)

Types of activation functions R MSE

Sigmoid-6 0.9282 0.4840

Sine-6 0.9465 0.4673

Hardlimit-55 0.8893 0.5421

Triangular basis-5 0.9342 0.4385

Radial basis-52 0.9309 0.4402
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The best performance in predicting OMC was achieved
with radial basis activation function (Table 5). The best
performance in predicting MDD was obtained with sine
activation function (Table 6). It is clear that the estimated
and the actual values for the OMC and MDD were seen
to be close when related graphics are examined (Fig. 5
and 6).

Many trials were performed for the estimation of the
OMC and MDD parameters with ELM. The training set
was used to train the model while the test set was used to
verify the generalization ability of the model in the trials
with ELM. The R and MSE performance values obtained
in estimating the OMC and MDD parameters are given in
Fig. 7. It is understood that the training period for the
OMC parameter is very well performed (Fig. 7a).
However, the same performance could not be demonstrat-
ed in the testing process. In trials where the number of
neurons in the hidden layer is greater than 30, it is seen
that the values of R and MSE are wavy for the test

samples; in addition, the MSE error values are increased.
Accordingly, it can be said that there is no functional
relationship between the R and MSE performance criteria
and the number of neurons in the hidden layer. However,
the performance of ELM’s generalization ability depends
on the number of neurons in the hidden layer. Similarly,
when the number of neurons in the hidden layer of the
ELM is greater than 30–40 for the estimation of the MDD
parameter, the performance of the model was reduced. In
other words, the MSE error values were increased, and the
R values were decreased (Fig. 7b).

BRNN results

In this paper, the weights between hidden-output layers
and input-hidden layers in neural networks were also cal-
culated with Bayesian regularization model. To show the
performance of success, BRNN method was compared
with different training methods. The variables in the input

Fig. 5 The estimated and the actual values for OMC
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Fig. 6 The estimated and the actual values for MDD
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layer are the index properties of soil such as LL, PL, FC,
SC, GC, and the compaction parameters (OMC or MDD)
are used in the output layer. Different activation functions
and different neuron numbers for the hidden layer were
used for the success of the BRNN model. Training and
test sets were randomly generated in each attempt. Min–
max conversion was applied to the data before the analy-
sis. The best performance results were obtained by using
log-sigmoid and linear activation functions in hidden and
output layer, respectively. The performance results obtain-
ed with BRNN in the estimation of OMC and MDD
parameters are given in Table 7. The best results obtained
with BRNN as R = 0.9191 and MSE = 0.0043 for OMC
and R = 0.9219 and MSE = 0.0047 for the MDD parame-
ter, respectively. The regression graphs obtained for 70–
30% training-test sets of OMC and MDD parameters are
given in Figs. 8 and 9. The graphs show the regression
models between measured and estimated values for train-
ing, testing, and all data.

To show the success of the BRNN method, other
ANN training methods were also tested, and the results
were compared with BRNN (Tables 8 and 9). All
methods were used with the same activation functions
and architectures.

As seen in the Tables 8 and 9, it has been observed that the
best success for the estimation of OMC and MDD parameters
is obtained with BRNN. The results obtained with BRNN for
test data set as R = 0.9191 and MSE = 0.0043 for OMC
(Table 8) and R = 0.9219 and MSE = 0.0047 for the MDD
(Table 9), respectively. However, acceptable results have been
obtained with other train methods.

SVM results

In this section, trials were performed with SVM models in
different architectures for the estimation of OMC and
MDD. Different kernel functions were used by investigat-
ing the effect of kernel function on SVM model perfor-
mance. In addition to specifying the kernel function, the
decision of the user-defined parameters C and ε is also
important. The performance values for the estimation of
OMC and MDD parameters are given in Tables 10 and
11.

The prediction achievements showed little change ac-
cording to the variation of ε parameter. The best success
in estimating the OMC parameter with SVM was R =
0.8510 and MSE = 2.5247 in the case of ε = 0.010, and
the best success in estimating the MDD parameter was
R = 0.8483 and MSE = 0.9557 in the case of ε = 0.002
(Tables 10 and 11).

The graphics of R values observed for different kernel
functions and ε values are given in Fig. 10. The perfor-
mances obtained by different kernel functions of OMC
and MDD parameters are seen on Figs. 10 and 11. As
shown in Figs. 10, 11, and 12, the most successful kernel
function in estimating OMC and MDD parameters is ob-
served as RBF
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Table 7 Performance criteria in the case of output OMC and MDD

Data sets Training set Test set All set

MSE R MSE R MSE R

OMC 0.0039 0.9329 0.0043 0.9191 0.0041 0.9289

MDD 0.0045 0.9270 0.0047 0.9219 0.0046 0.9258
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Discussion

In the present study, many trials were performed to obtain best
prediction performance of OMC and MDD with different
training algorithms, different activations, or kernel functions
in all models. Eventually, the performance results of the
GMDH, ELM, BRNN, and SVM models are compared.
Comparison of the prediction performances of all models are
presented in Table 12.

Despite the overfitting problem, ANN models are widely
preferred by many researchers in solving linear and nonlinear
problems. The GMDH method, which has been gaining in-
creasing popularity in recent years, is a successful model if
there is a linear relationship between data (inputs and outputs).
On the contrary, the ELM and BRNN methods are known as
successful on solving nonlinear problems. SVM can be used
for classification and regression purposes and has been suc-
cessfully applied in the solution of nonlinear problems in re-
cent years.

There are various research studies focused on to solve com-
plex geotechnical problems by the types of AI techniques
(Samui and Kothari 2011; Das and Basudhar 2007; Das
et al. 2010; Liu et al. 2015; Huang et al. 2017a, b; Muduli

et al. 2013; Nejad et al. 2009; Sabat 2015; Samui 2008). It is
clear that the AI techniques are found to be more efficient
compared to statistical models in the aforementioned studies.
When AI techniques are compared in themselves, the success
results can vary according to the content of the study.
Although ANN models seem to be more successful than
SVM when the relationship between inputs and output is not
linear, all AI techniques can be more successful in different
data sets.

Conclusions

In this paper, prediction models were developed by using
soft computing methods such as GMDH, ELM, BRNN
and SVM for the compaction parameters of soils and
compared the model performances. Totally 451 test data
(index and Standard Proctor) belongs to the compacted
soils were used for the study. Trials with GMDH were
carried out with different architectures. The best perfor-
mance success was obtained with 7 hidden layer (R =
0.9047, MSE = 0.451 for OMC; R = 0.9174, MSE = 0.756
for MDD) (Table 3). In trials with ELM, the best
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Table 9 Performance criteria in
the case of output MDD for 70–
30% training-test sets

Training model Training set Test set All set

MSE R MSE R MSE R

Bayesian regularization 0.0045 0.9270 0.0047 0.9219 0.0046 0.9258

Levenberg-Marquardt 0.0099 0.9506 0.0091 0.8477 0.0093 0.9193

Conjugate gradient Polak-Ribiére 0.0046 0.9214 0.0054 0.8993 0.0051 0.9137

BFGS quasi-Newton 0.0032 0.9494 0.0040 0.9071 0.0039 0.9372

Conjugate gradient Powell-Beale 0.0038 0.9403 0.0042 0.9179 0.0040 0.9332

Gradient descent adaptive learning 0.0072 0.8822 0.0080 0.8416 0.0078 0.8700

Gradient descent with momentum 0.0179 0.6936 0.0175 0.6934 0.0176 0.6885

Gradient desc. with momentum and adaptive
learning

0.0051 0.9182 0.0085 0.7472 0.0080 0.8642

Resilient 0.0040 0.9366 0.0048 0.9018 0.0044 0.9250

Scaled conjugate gradient 0.0037 0.9386 0.0045 0.9076 0.0041 0.9283

Table 10 Performances observed
with SVM in the case of output
OMC

ε Radial basis function Polynomial function Sigmoid function Linear function

R MSE R MSE R MSE R MSE

0.001 0.8504 2.5274 0.7875 3.6064 0.8292 2.9004 0.8391 2.7843

0.002 0.8503 2.5276 0.7875 3.6064 0.8294 2.9013 0.8383 2.7932

0.003 0.8503 2.5285 0.7873 3.6142 0.8300 2.902 0.8379 2.7957

0.004 0.8505 2.5264 0.7873 3.6142 0.8306 2.8981 0.8378 2.7936

0.005 0.8507 2.5256 0.7873 3.6142 0.8306 2.8981 0.8386 2.787

0.006 0.8505 2.5266 0.7873 3.6142 0.8306 2.8981 0.8402 2.7816

0.007 0.8506 2.5256 0.7873 3.6142 0.8288 2.8965 0.8402 2.7816

0.008 0.8505 2.5263 0.7873 3.6221 0.8294 2.9088 0.8407 2.7723

0.009 0.8507 2.5251 0.7874 3.6130 0.8277 2.9058 0.8396 2.7802

0.010 0.8510 2.5247 0.7874 3.6130 0.8277 2.9058 0.8396 2.7802

Table 8 Performance criteria in
the case of output OMC for 70–
30% training-test sets

Training model Training set Test set All set

MSE R MSE R MSE R

Bayesian regularization 0.0039 0.9329 0.0043 0.9191 0.0041 0.9289

Levenberg-Marquardt 0.0099 0.8460 0.0091 0.8738 0.0093 0.8536

Conjugate gradient Polak-Ribiére 0.0036 0.9437 0.0050 0.8751 0.0047 0.9227

BFGS quasi-Newton 0.0033 0.9514 0.0042 0.8930 0.0040 0.9359

Conjugate gradient Powell-Beale 0.0038 0.9441 0.0046 0.8988 0.0044 0.9303

Gradient descent adaptive learning 0.0093 0.8419 0.0087 0.8915 0.0092 0.8613

Gradient descent with momentum 0.0159 0.7181 0.0165 0.7206 0.0163 0.7190

Gradient desc. with momentum and adaptive
learning

0.0065 0.9033 0.0076 0.8229 0.0074 0.8804

Resilient 0.0033 0.9506 0.0042 0.9015 0.0044 0.9353

Scaled conjugate gradient 0.0032 0.9494 0.0044 0.8991 0.0041 0.9324
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performance was obtained with Radial Basis activation
function and 24 neurons in the hidden layer on the pre-
diction of OMC (R = 0.9369 and MSE = 0.2224) (Table 5)
while the best performance on the prediction of MDD was
obtained with Sine activation function and 6 neurons in
the hidden layer (MSE = 0.4673and R = 0.9465) (Table 6).
Besides, in trials where the number of neurons in the
hidden layer is greater than 30, it was seen that the
MSE error values are increased (Fig. 7). Trials with
BRNN were also performed different activation functions.
The best performance results were obtained as R = 0.9191
and MSE = 0.0043 for OMC; R = 0.9219 and MSE =
0.0047 for the MDD (Table 7). In addition, the BRNN
was compared to the other ANN training methods such as
the LM, BFG, CGB, CGP, GDA, GDM, GDX, RP and SCG
and found to be the most successful (Tables 8 and 9). In trials
with SVM, the best performance was determined with RBF
kernel function on the prediction of both OMC (R = 0.8510
and MSE = 2.5247) and MDD (R = 0.8483 and MSE =
0.9557) parameters (Tables 10 and 11).

As a result of this study, it is seen that the ELM meth-
od was the most successful method on the prediction of
compaction parameters. And also, The ELM and BRNN
methods are found to be more successful than GMDH due
to the lack of a very linear relationship between the data.
This has also been confirmed with compare of the perfor-
mance results of all methods (Table 12). However, the
SVM has been considered as the lowest-performing

Table 11 Performances observed
with SVM in the case of output
MDD

ε Radial basis function Polynomial function Sigmoid function Linear function

R MSE R MSE R MSE R MSE

0.001 0.8482 0.956 0.7717 1.1914 0.8421 0.9697 0.8418 0.9708

0.002 0.8483 0.9557 0.7717 1.1914 0.8420 0.9701 0.8450 0.9611

0.003 0.8483 0.9557 0.7721 1.1909 0.8419 0.9704 0.8447 0.9619

0.004 0.8481 0.9563 0.7717 1.1915 0.8419 0.9704 0.8452 0.9606

0.005 0.8479 0.9564 0.7719 1.1912 0.8413 0.9718 0.8451 0.9608

0.006 0.8480 0.9564 0.7719 1.1912 0.8418 0.9705 0.8451 0.9611

0.007 0.8478 0.9565 0.7719 1.1912 0.8415 0.9718 0.8450 0.9612

0.008 0.8471 0.9588 0.7722 1.1911 0.8417 0.9712 0.8446 0.9624

0.009 0.8471 0.9595 0.7722 1.1911 0.8427 0.9687 0.8442 0.9641

0.010 0.8469 0.9599 0.7739 1.1891 0.8428 0.9684 0.8441 0.9638

Table 12 The comparison of the model performance results

MODEL OMC MDD

R MSE R MSE

ELM 0.9358 0.2091 0.9521 0.5123

BRNN 0.9191 0.271 0.9219 0.596

GMDH 0.9047 0.628 0.9174 0.756

SVM 0.8510 2.5200 0.8483 0.9557
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Radial basis function Polynomial function

Sigmoid function Linear function
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0,001 0,002 0,003 0,004 0,005 0,006 0,007 0,008 0,009 0,01

Radial basis function Polynomial function

Sigmoid function Linear functiona b

Fig. 10 . R values for different kernel functions. (A) R values for the OMC, (B) R values for the MDD
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method in this study. The results obtained with SVM
method were less successful in all trials on the prediction
of both OMC and MDD parameters comparing to the
ANN-based models. It is believed that the limitation on

achieving more successful results is due to the small num-
ber of data (451 test data) and it is thought that the
success rates of different soft computing models will in-
crease if the data set is expanded in the future.

a

b

c

d

Fig. 11 The actual and predicted with different kernel functions OMC values. a Predicted with LF, b predicted with PF, c predicted with RBF, d
predicted with SF

a

b

c

d

Fig. 12 The actual and predicted with different kernel functions MDD values. a Predicted with LF, b predicted with PF, c predicted with RBF, d
predicted with SF

Arab J Geosci (2020) 13: 159 Page 11 of 13 159



Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

References

Abdalla JA, Attom MF, Hawileh R (2015) Prediction of minimum factor
of safety against slope failure in clayey soils using artificial neural
network. Environ Earth Sci 73(9):5463–5477

Abdel-Rahman AH (2008) Predicting compaction of cohesionless soils
using ANN. In: Proceedings of the institution of civil engineers
ground improvement, vol 161, pp 3–8

Al-Khafaji AN (1993) Estimation of soil compaction parameters by
means of Atterberg limits. Q J Eng Geol Hydrogeol 26:359–368.
https://doi.org/10.1144/GSL.QJEGH.1993.026.004.10

Ardakani A, Kordnaeij A (2017) Soil compaction parameters prediction
using GMDH-type neural network and genetic algorithm. Eur J
Environ Civ Eng, 1–14

Bui DT, Pradhan B, Lofman O, Revhaug I, Dick OB (2012) Landslide
susceptibility assessment in the Hoa Binh province of Vietnam: a
comparison of the Levenberg–Marquardt and Bayesian regularized
neural networks. Geomorphology 171:12–29. https://doi.org/10.
1016/j.geomorph.2012.04.023

Caballero J, Fernández M (2006) Linear and nonlinear modeling of anti-
fungal activity of some heterocyclic ring derivatives using multiple
linear regression and Bayesian-regularized neural networks. J Mol
Model 12(2):168–181

Chenari RJ, Tizpa P, Rad MRG, Machado SL, Fard MK (2015) The use
of index parameters to predict soil geotechnical properties. Arab J
Geosci 8(7):4907–4919

Cortes C, Vapnik V (1995) Support vector networks. Mach Learn 20(3):
273–297

Das SK, Basudhar PK (2007) Prediction of hydraulic conductivity of clay
liners using artificial neural network. Lowland Technol Int J 9(1):
50–58

Das SK, Samui P, Sabat AK, Sitharam TG (2010) Prediction of swelling
pressure of soil using artificial intelligence techniques. Environ
Earth Sci 61(2):393–403

Engin H (2003) A laboratory investigation on the correlations of standard
and modified compaction test values. Master’s thesis, Dokuz Eylul
University, Turkey

Ghanadzadeh H, Ganji M, Fallahi S (2012) Mathematical model of
liquid–liquid equilibrium for a ternary system using the GMDH-
type neural network and genetic algorithm. Appl Math Model 36:
4096–4105

Gunaydin O (2009) Estimation of soil compaction parameters by using
statistical analyses and artificial neural networks. Environ Geol 57:
203–215. https://doi.org/10.1007/s00254-008-1300-6

Hassanlourad M, Ardakani A, Kordnaeij A, Mola-Abasi H (2017) Dry
unit weight of compacted soils prediction using GMDH-type neural
network. Eur Phys J Plus 132:357

Huang GB, Zhu QY, Siew CK (2006) Extreme learning machine: theory
and applications. Neurocomputing 70:489e501

Huang F, Huang J, Jiang S, Zhou C (2017a) Landslide displacement
prediction based onmultivariate chaotic model and extreme learning
machine. Eng Geol 218:173–186

Huang F, Yin K, Huang J, Gui L, Wang P (2017b) Landslide susceptibil-
ity mapping based on self-organizing-map network and extreme
learning machine. Eng Geol 223:11–22

Isik F, Ozden G (2013) Estimating compaction parameters of fine- and
coarse-grained soils by means of artificial neural networks. Environ

Earth Sci 69:2287–2297. https://doi.org/10.1007/s12665-012-2057-
5

Jeng YS and Strohm WE (1976) Prediction of the sherar strength and
compaction characteristics of compacted fine-grained cohesive
soils. Final report, U.S. Army engineer waterways Experiment
Station, soils and pavement laboratory, Vicksburg

Jirdehi RA, Mamoudan HT, Sarkaleh HH (2014) Applying GMDH-type
neural network and particle warm optimization for prediction of
liquefaction induced lateral displacements. Appl Appl Math 9(2):
528–540

Juang CH, Chen CJ (1999) CPT-based liquefaction evaluation using ar-
tificial neural networks. Comput Aided Civ Inf Eng 14(3):221–229

Kalinli A, Acar MC, Gunduz Z (2011) New approaches to determine the
ultimate bearing capacity of shallow foundations based on artificial
neural networks and ant colony optimization. Eng Geol 117(1–2):
29–38. https://doi.org/10.1016/j.enggeo.2010.10.002

Kiefa MAA (1998) General regression neural networks for driven piles in
cohesionless soils. Geotech Geoenviron Eng 124(12):1177–1185

Kim YS, Kim BT (2006) Use of artificial neural networks in the predic-
tion of liquefaction resistance of sands. J. Geotech. Geoenviron.
Eng. ASCE 132(11):1502–1504. https://doi.org/10.1061/
ASCE1090-02412006132:111502

Kordjazi A, Nejad FP, JaksaMB (2014) Prediction of ultimate axial load-
carrying capacity of piles using a support vector machine based on
CPT data. Comput Geotech 55:91–102. https://doi.org/10.1016/j.
compgeo.2013.08.001

Kordnaeij A, Kalantary F, Kordtabar B, Mola-Abasi H (2015) Prediction
of recompression index using GMDH-type neural network based on
geotechnical soil properties. Soils Found 55(6):1335–1345

Kuo YL, Jaksa MB, Lyamin AV, KaggwaWS (2009) ANN-based model
for predicting the bearing capacity of strip footing on multi-layered
cohesive soil. Comput Geotech 36(3):503–516. https://doi.org/10.
1016/j.compgeo.2008.07.002

Lee I, Lee J (1996) Prediction of pile bearing capacity using artificial
neural networks. Comput Geotech 18(3):189–200. https://doi.org/
10.1016/0266-352X(95)00027-8

Li AJ, Khoo S, Lyamin AV,Wang Y (2016) Rock slope stability analyses
using extreme learning neural network and terminal steepest descent
algorithm. Autom Constr 65:42–50

Liu Z, Shao J, Xu W, Chen H, Zhang Y (2014) An extreme learning
machine approach for slope stability evaluation and prediction.
Nat Hazards 73(2):787–804

Liu Z, Shao J, Xu W, Wu Q (2015) Indirect estimation of unconfined
compressive strength of carbonate rocks using extreme learning ma-
chine. Acta Geotech 10(5):651–663

MacKay DJC (1991) Bayesian Methods for Adaptive Models. Ph.D.
thesis, California Institute of Technology

Muduli PK, Das SK, Das MJ (2013) Prediction of lateral load capacity of
piles using extreme learning machine. Int J Geotech Eng 7(4):388–
394

Muduli PK, Das SK, Bhattacharya S (2014) CPT-based probabilistic
evaluation of seismic soil liquefaction potential using multi-gene
genetic programming. Georisk 8(1):14–28. https://doi.org/10.1080/
17499518.2013.845720

Najjar YM, Basheer IA (1996) Utilizing computational neural networks
for evaluating the permeability of compacted clay liners. Geotech
Geol Eng 14:193–212

Nejad FP, Jaksa MB, Kakhi M, McCabe BA (2009) Prediction of pile
settlement using artificial neural networks based on standard pene-
tration test data. Comput Geotech 36(7):1125–1133

Okut H (2016) Bayesian regularized neural networks for small n big p
data. In Artificial Neural Networks-Models and Applications.
InTech

Olmez A (2007) Determination of compaction parameters by means of
regression approaches. Master’s thesis, Niğde Universty, Turkey (in
Turkish)

159 Page 12 of 13 Arab J Geosci (2020) 13: 159

https://doi.org/10.1144/GSL.QJEGH.1993.026.004.10
https://doi.org/10.1016/j.geomorph.2012.04.023
https://doi.org/10.1016/j.geomorph.2012.04.023
https://doi.org/10.1007/s00254-008-1300-6
https://doi.org/10.1007/s12665-012-2057-5
https://doi.org/10.1007/s12665-012-2057-5
https://doi.org/10.1016/j.enggeo.2010.10.002
https://doi.org/10.1061/ASCE1090-02412006132:111502
https://doi.org/10.1061/ASCE1090-02412006132:111502
https://doi.org/10.1016/j.compgeo.2013.08.001
https://doi.org/10.1016/j.compgeo.2013.08.001
https://doi.org/10.1016/j.compgeo.2008.07.002
https://doi.org/10.1016/j.compgeo.2008.07.002
https://doi.org/10.1016/0266-352X(95)00027-8
https://doi.org/10.1016/0266-352X(95)00027-8
https://doi.org/10.1080/17499518.2013.845720
https://doi.org/10.1080/17499518.2013.845720


Sabat AK (2015) Prediction of California bearing ratio of a stabilized
expansive soil using artificial neural network and support vector
machine. Electron J Geotech Eng 20(3):981–991

Sakellariou MG, Ferentinou M (2005) A study of slope stability predic-
tion using neural networks. Geotech Geol Eng 24(3):419–445

Samui P (2008) Support vector machine applied to settlement of shallow
foundations on cohesionless soils. Comput Geotech 35(3):419–427.
https://doi.org/10.1016/j.compgeo.2007.06.014

Samui P, Kothari DP (2011) Utilization of a least square support vector
machine (LSSVM) for slope stability analysis. Scientia Iranica
18(1):53–58. https://doi.org/10.1016/j.scient.2011.03.007

Samui P, Sitharam TG, Kurup PU (2008) OCR prediction using support
vectormachine based on piezocone data. J Geotech Geoenviron Eng
ASCE 134(6):894–898. https://doi.org/10.1061/(ASCE)1090-
0241(2008)134:6(894)

Sinha SK, Wang MC (2008) Artificial neural network prediction models
for soil compaction and permeability. Geotech Geol Eng 26:47–64

Sivrikaya A (2008) Models of compacted fine-grained soils used as min-
eral liner for solid waste. Environ Geol 53:1585–1595

Sivrikaya A, Kayadelen C, Cecen E (2013) Prediction of the compaction
parameters for coarse-grained soils with fines content by MLR and
GEPActa Geotechnica Slovenica, 2013/2

Sridharan A, Nagaraj HB (2005) Plastic limit and compaction character-
istics of fine-grained soils. Ground Improv 9(1):17–22

Suman S, Mahamaya M, Das SK (2016) Prediction of maximum dry
density and unconfined compressive strength of cement stabilised
soil using artificial intelligence techniques. Int J Geosynth Ground
Eng 2:11. https://doi.org/10.1007/s40891-016-0051-9

Tenpe A, Kaur S (2015) Artificial neural network modeling for predicting
compaction parameters based on index properties of soil. International
Journal of Science and Research (IJSR), Volume 4, Issue 7

Vissikirsky VA, Stepashko VS, Kalavrouziotis IK, Drakatos PA (2005)
Growth dynamics of trees irrigated with wastewater: GMDHmodel-
ing, assessment, and control issues. Instrum Sci Technol 33(2):229–
249

Wang MC and Huang CC (1984) Soil compaction and permeability pre-
diction models. J Environ Eng ASCE, Vol 110. 6:1063-1083

Wang HB, Xu WY, Xu RC (2005) Slope stability evaluation using back
propagation neural networks. Eng Geol 80:302–315

Arab J Geosci (2020) 13: 159 Page 13 of 13 159

https://doi.org/10.1016/j.geomorph.2012.04.023
https://doi.org/10.1016/j.scient.2011.03.007
https://doi.org/10.1061/(ASCE)1090-0241(2008)134:6(894)
https://doi.org/10.1061/(ASCE)1090-0241(2008)134:6(894)
https://doi.org/10.1007/s40891-016-0051-9

	The performance comparison of the soft computing methods on the prediction of soil compaction parameters
	Abstract
	Introduction
	Database compilation
	Method
	Results
	GMDH results
	ELM results
	BRNN results
	SVM results

	Discussion
	Conclusions
	References


