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Abstract
Soil moisture is a key element in hydrological processes, and the accessibility of the moisture in the soil controls the
mechanisms thereof amid land surface and atmospheric progressions. Many studies have examined the role of the land
surface temperature (LST) and normalised difference vegetation index (NDVI) in changes in soil moisture. Nevertheless, an
understanding of the influence of the temperature vegetation dryness index (TVDI), which combines the LST and the
NDVI, on soil moisture remains elusive, including in the transition zone area from the Chengdu Plain region to the
Longmen Mountains (TZ). In this study, the TVDI was calculated based on the NDVI and LST, using LANDSAT 8
operational land imager/thermal infrared sensor (OLI/TIRS) images. From the TVDI, regression models were trained by
using 96 observation points of in situ soil moisture measurements to calculate the soil moisture in the transition zone. The
results revealed that there is a strong and significant negative correlation between the TVDI and the in situ measured soil
moisture (P < 0.05, r = 0.710, R2 = 0.504). This indicates that the TVDI can reflect the soil moisture status in the TZ. The
overall spatial patterns of soil moisture content were relatively high in the northwestern and central mountainous areas but
were relatively low in the southeastern plains. Our study uniquely illustrates the spatial patterns of the relationship between
TVDI variability and soil moisture variability in the TZ, western China and provides an approach for using remotely sensed
soil moisture to optimise the parameterisation of soils in agricultural water management.

Keywords Soil moisture . Normalised difference vegetation index (NDVI) . Land surface temperature (LST) . Temperature
vegetation dryness index (TVDI) . Remote sensing (RS) . Geographical information system(GIS)

Introduction

Soil moisture is a critical variable in many physical processes
related to agriculture, hydrology, and meteorology or clima-
tology (Maria Jose Escorihuela and Quintana-Seguí 2016;

Wang et al. 2016). Assessments of soil moisture are especially
significant for drought monitoring by agricultural industries
and for observations of the ecological environment. In that
regard, a great deal of attention has been paid to how changes
in the land surface temperature (LST) and normalised differ-
ence vegetation index (NDVI) affect soil moisture. However,
relatively less attention has been paid to how the temperature
vegetation dryness index (TVDI), which is based on an em-
pirical parameterisation of the relationship between LST and
NDVI variations, impacts soil moisture. For example, the
TVDI has not been studied in the area of the Longmen
Mountains (TZ).

There are many different techniques for in situ soil mois-
ture measurement (Skierucha and Wilczek 2010; Skierucha
et al. 2012), but they are cost-intensive and require major
efforts to be put in place (Chen et al. 2015). Moreover, only
a few networks are available for in situ soil moisture measure-
ment. Thus, remote sensing (RS) and geographical
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information system (GIS) are valuable spatiotemporal data
and spatial analysis tools for soil moisture investigations
(Chen et al. 2015; George P. Petropoulos et al. 2015).

Researchers in China and globally have investigated the
impact of TVDI changes on soil moisture, owing to the avail-
ability of RS data of an areas over different time periods El
Hajj et al. (2016). Watson et al. (1971) were the first to carry
out a soil moisture inversion, using a model that combined the
LST and thermal inertia. Sen and Yuan (2007) examined the
relationship between the summer season NDVI and local-
level climate variables, including precipitation and
temperature in Minnesota from 1990 to 1997, using
geographically weighted regression. Gao et al. (2011) present-
ed a new drought assessment method that spatially and
temporally integrated TVDI with a regional water stress
index, based on a synergistic approach. Chen et al. (2011)
investigated the potential of the TVDI for assessing soil mois-
ture in the Huang-Huai-Hai plain from moderate resolution
imaging spectroradiometer (MODIS) data. Chen et al.
(2015) used the TVDI to investigate the differences in soil
moisture under four types of mono-species forests and two
types of mixed forests in Nanjing. Rébecca Filion et al.
(2016) investigated the potential of radar and LANDSAT
data in generating reliable soil moisture maps to support
water management and agricul tura l pract ices in
Mediterranean regions, particularly during dry seasons.
Eftychia Taktikou et al. (2016) evaluated the capability of a
soil water content predicted from RS to indicate the soil water
content at a short time and space scale, through comparisons
with daily soil moisture data determined in situ using dielec-
tric devices. Wang et al. (2016) investigated the spatial distri-
bution and limiting factors of the vegetation growth and
NDVI change trends in two major alpine grasslands (alpine
meadow and alpine steppe) in relation to soil temperature and
soil water conditions, using datasets of the plateau scale soil
water content, frozen soil type, vegetation index, and LST. A
land parameter retrieval model was used to derive enhanced
resolution soil moisture and vegetation optical depth data from
advanced microwave scanning radiometer brightness temper-
atures, as sharpened by a modulation technique based on high-
frequency observations (A.I. Gevaert et al. 2016).
Comparisons with soil moisture from in situ measurements
or model simulations indicated show that the TVDI is feasible
for monitoring soil moisture (Chen et al. 2015).

Previous analyses indicated that soil moisture can be
measured to some degree and have investigated the potential
for obtaining the soil moisture through the relationship be-
tween the LST and NDVI, based on RS data. Although the
findings from these studies are important, little research has
focused on investigating the soil moisture in the ecologically
fragile TZ, in western China. This research is important,
both for helping us understand how the soil moisture and
TVDI are linked over time and also for ensuring the

assessment of the soil moisture. Therefore, this study inves-
tigates the suitability of RS data for estimating the soil mois-
ture in the TZ.

The scale effects and cloud influence on optical RS data are
very important scientific problems in RS (Chen et al. 2015)
and can increase the uncertainty in soil moisture retrieval.
LANDSAT 8 OLI/TIRS images have a higher spatial resolu-
tion (30–120 m) than Terra/Aqua MODIS images (250–
1000 m) or Nat iona l Oceanic and Atmospher ic
Administration-Advanced Very High Resolution Radiometer
(NOAA-AVHRR) images (1100 m) where cloud cover affects
the LST calculation and results in errors in the calculation.
Therefore, this study uses good-quality images.

The objectives of this study are to (1) identify the distribu-
tion of the NDVI; (2) present the retrieved LST data based on
atmospheric correction algorithms; (3) determine the suitabil-
ity of the TVDI for estimating the soil moisture in the TZ; (4)
estimate the soil moisture through RS data and establishment
of the results with field measured soil moisture data.

Materials and methods

Study area

The study area is located in the northwest region of the
Sichuan Basin between 103° 57′–104° 20′ E and 31° 15′–
31° 41′ N (Fig. 1), in the transition zone between the
Chengdu Plain region and the Longmen Mountains (TZ),
and has a surface area of 79.48 km2. The northwest section
of the study area is a part of the TZ, whereas the southeast
section of the study area is a part of the Chengdu Plain. Thus,
the terrain is high in the northwest section and low in the
southeast section, and there is a large difference in altitude
between these sections. The study area lies in the subtropical
humid climate zone of the Sichuan Basin and has a mild cli-
mate, abundant precipitation, and four distinct seasons, i.e.
typical characteristics of the continental monsoon climate.
The average annual temperature is 15.7 °C, and the average
annual precipitation is 1053.2 mm. The distribution of vege-
tation in the region exhibits a distinct vertical gradient, owing
to terrain and climate effects.

Data sources

Themain types of research data in this study included RS data,
field measured soil moisture data, and auxiliary data. The RS
data included LANDSAT-8 OLI/TIRS RS images taken on 28
April 2016, with track number 129/038. The RS data was
acquired from the ‘US Geological Survey Earth Resources
Observation and Science’ data centre (USGS EROS Data
Center), and a digital elevation model (DEM) was acquired
from the Data Center for Resources and Environmental
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Sciences, Chinese Academy of Sciences (RESDC), the
Institute of Remote Sensing and Digital Earth, Chinese
Academy of Sciences. The auxiliary data included 1:50,000
topography maps and vector boundary data for the study area,
which were all obtained from a key lab of land resources
evaluation and monitoring in the Southwest, Ministry of
Education, i.e. Sichuan Normal University, while Global
Positioning System (GPS) sampling data were obtained via
field surveys.

Field work and soil samples processing

The field measured data was collected within a week be-
fore and after the RS imaging time, by handheld GPS de-
vices. The weather was stable during the field work, and it
could be determined that the soil moisture remained rela-
tively stable. One hundred and twenty-four soil observa-
tion points of in situ soil moisture measurements were se-
lected to ensure that each land use types had at least ten
observation points (Fig. 1). However, cloud cover serious-
ly influences LST retrieval and often limits the applicabil-
ity of the TVDI for estimating soil moisture on a regional
scale. Ninety-five effective field measured data points were

retained using data exploration and elimination of abnor-
mal values, such as the large errors caused in soil sampling
or sample processing, points seriously influenced by cloud
cover as determined based on GIS and Statistical Package
for the Social Sciences software.

Previous results have shown that in the root zone of the soil
profile, the relationships between the TVDI and soil moisture
at depths of 0–20 cm in the soil samples were closer than those
at depths (Patel et al. 2009; Chen et al. 2011; Sun et al. 2012;).
The sampling depth in this study was approximately 20 cm,
and each soil sample was crumbled before being placed in an
aluminium box with a known accurate mass. Each sampling
point was geo-referenced using a handheld GPS system.
Samples were placed inside an oven preheated to 105 °C ±
2 °C and were then baked for 12 h. After removal and cooling
to room temperature, each fresh soil sample was then imme-
diately weighed to an accuracy of 0.001 g. For each sampling
point, three measurements were made for the purpose of par-
allel determination. If there were significant discrepancies be-
tween the measurements for the first parallel sample, another
round of drying would be carried out before re-weighing.

The main task during the field study was to measure the
soil moisture using a direct method. The dried soil samples

Fig. 1 Location of study area
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were weighed using a Mettler balance, and the percent gravi-
metric soil moisture was calculated using Eq. (1):

Ms ¼ Wt−Dy
� �

=Dy � 100 ð1Þ

where theMs,Wt, and Dy were soil moisture, soil wet weight,
and soil dry weight, respectively.

Remote sensing processing

The RS data were projected using the Gauss–Krüger projec-
tion and were referenced to the World Geodetic System-84
coordinate system. The geometric corrections were performed
on the 2016 RS images (using the 1:50,000 topographical
maps) to create the reference image.

The ‘Environment for Visualizing Images’ (ENVI) soft-
ware offers quick atmospheric correction (QUAC) and ‘Fast
Line-Of-Sight Atmospheric Analysis of Hypercubes’
(FLAASH) atmospheric correction tools. QUAC is an atmo-
spheric correction method for multispectral and hyperspectral
imagery that works with the visible and near-infrared spectra
in the shortwave infrared wavelength range. FLAASH is a
first-principles atmospheric correction tool that corrects wave-
lengths in the visible spectrum through the near-infrared and
shortwave infrared regions and can correct images collected in
either vertical or slant-viewing geometries. The atmospheric
correction of the LANDSAT 8 OLI/TIRS images in this study
is accomplished using the ENVI 5.1 FLAASH model, which
is based on the ‘MODTRAN4 RT’ model (French and
Norman 2003).

The maximum likelihood method and GPS field data were
used for the supervised classification of the 2016 images. The
GPS field information was used to compare validation points
to evaluate the accuracy of the determined land use types. The
overall classification accuracy was above 90%, with a kappa
coefficient of 0.856 or higher. Land use information was ob-
tained on farmlands, forested lands, grasslands, water bodies,
built-up land, and unused lands (Fig. 2).

The areas of each land cover types in the study area are
presented in Table 1. According to Table 1, the land use was
dominated by forested lands and farmlands, and these land
types accounted for 83% or more of the study area. The data
regarding the dependence of the land use landscape patterns on
the elevation in the study area were obtained through spatial
superposition analysis and statistical analysis of the land use
maps and elevations. The results showed that cultivated lands,
built-up land, andwater areas were primarily distributed within
the 535~854-m elevation range, and the proportion of the cor-
responding surface area in the study area was occupied more
than 48%. The forested areas were mainly distributed in the
854~3299-m elevation range, and the proportion of the surface
area in the study area was 38.47%. The unused lands were
mainly distributed in the 854~2209-m elevation range.

Calculation of NDVI

The NDVI is an appropriate indicator for vegetation
growth status, biomass, and vegetation coverage (Liang
et al. 2012). It ranges from − 1 to 1. Negative values
indicate that the ground is covered by clouds, water, or
snow, and thus, reflects visible light; 0 indicates the
presence of rocks or bare soils, with the near-infrared
and red bands being approximate or equal; and the pos-
itive values indicate the presence of vegetation cover,
with the value increasing with greater coverage. The
NDVI was calculated using the following Eq. (2):

NDVI ¼ NIR−Rð Þ= NIRþ Rð Þ ð2Þ
where the NIR and R are the near-infrared band and red
band reflectance values, respectively.

After an atmospheric correction of the results, some pixel
values would become negative. This means that outliers be-
yond [− 1,1] existed among the NDVI values. To facilitate
calculations, the background for the NDVI values of these
pixel values was set as 0 (Peng et al. 2016). The outliers were
eliminated using Band Math in ENVI 5.1, yielding the proc-
essed NDVI data: (NDVI lt − 1) × 0 + (NDVI gt 1) × 0 +
(NDVI ge − 1 and NDVI le 1) × NDVI

where the lt denotes ‘less than’, gt denotes ‘greater than’,
denotes ‘less than or equal to’, and ge denotes ‘greater than or
equal to’.

Retrieval of fractional vegetation covers

A pixel binary model was used to determine the fractional
vegetation covers (FVC). The NDVI value of a mixed pixel
is formed by two components: areas with vegetation cover
(NDVIveg) and those with bare soil/no vegetation cover
(NDVIsoil) (Zhao 2003). The FVC is calculated using the fol-
lowing Eq. (3):

FVC ¼ NDVI−NDVIsoilð Þ= NDVIveg−NDVIsoil
� � ð3Þ

where the NDVIveg represents the NDVI values of the pure
vegetation cover pixels, and NDVIsoil represents the NDVI
value of the bare soil cover pixels.

The NDVI value of a pixel is affected by various
factors, including the atmosphere, surface conditions,
year, season, and regional conditions. These cause
NDVIsoil and NDVIveg to vary over space and time.
For the calculation of NDVI values in this study, the
confidence interval was set to 5% and 95% of the cu-
mulative probability distribution table for the region’s
NDVI values. The NDVI values in the vicinity of 5%
and 95%, specifically 0.003794 and 0.773399, were se-
lec t ed as the NDVIso i l and NDVIveg , va lues ,
respectively.
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Retrieval of the land surface temperature

Currently, the algorithms used for the RS retrieval of LST
include the atmospheric correction algorithms (Sobrino et al.
2004; Li et al. 2004; Mao et al. 2005), single-window algo-
rithms (Qin et al. 2001; Jiménez-Muoz et al. 2014; Zhou et al.
2011), and split-window algorithms (Wan and Dozier 1996;
Ri et al. 2013). The LANDSAT 8 OLI/TIRS contains two

thermal infrared bands: the band10 (10.60~11.19 μm) and
band11 (11.50~12.51 μm). The US Geological Survey
(USGS) has pointed out that some calibration errors can be
found with the band 11. It is recommended to use only the
TIRS band 10 in quantitative research rather than using two
channels (Gao et al. 2017). As LANDSAT 8 OLI/TIRS 10
data is located at a lower atmospheric absorption band than
TIRS11, its atmospheric transmissivity is higher, making it
more suitable for single-band inversions of the LST
(Jiménez-Muoz et al. 2014; Yu et al. 2014). The main differ-
ence between the single-window and single-channel algo-
rithms is that in terms of atmospheric parameters, the former
requires both near-surface temperatures and atmospheric
moisture content, whereas the latter only requires atmospheric
moisture content. Hence, the LANDSAT 8 OLI/TIRS 10 data
and atmospheric correction method were adopted in this study
for the inversion of the LST.

The atmospheric correction algorithms for calculating the
LST were as follows: first, the atmospheric effect on surface

Fig. 2 Land use patterns in study
area

Table 1 The areas of each land cover types

Land use types Area (units: ha) Proportion (units: %)

Forest land 38,271.42 48.152

Water body 2299.95 2.894

Cultivated land 28,212.93 35.497

Built-up land 9459.63 11.902

Grass land 1233.09 1.551

Unused land 3.15 0.004
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thermal radiation was estimated; second, this atmospheric im-
pact was subtracted from the total thermal radiation observed
by satellite sensors, and the surface thermal radiation intensity
was obtained; finally, the thermal radiation intensity was con-
verted to the corresponding LST.

Land surface emissivity

According to previous studies (Qin et al. 2004; Sobrino
et al. 2004), the calculation process for land surface emis-
sivity is as follows: first, the RS image is divided into
town, water, and natural surface; second, the land surface
emissivity values of the natural surface and towns are cal-
culated based on the FVC. The emissivity value of the
water is 0.995 because water continuity is strong and has
fewer mixed pixels (Qin et al. 2004); the land surface emis-
sivity values of the natural surface and towns are calculated
based on the FVC as follows:

εsf ¼ 0:9625þ 0:0614FVC−0:0461FVC2 ð4Þ
εbd ¼ 0:9589þ 0:086FVC−0:0671FVC2 ð5Þ
where εsf, εbd are the emissivity values of the cities and towns,
and natural surfaces, respectively, and FVC is the fractional
vegetation cover of a pixel.

The ground radiation brightness

The thermal infrared radiation brightness is calculated as fol-
lows:

B Tsð Þ ¼ Lλ−L↑−τ 1−εð Þ � L↓
� �

=τ � ε ð6Þ

where the B(TS) is the radiation brightness values in the ther-
mal infrared band of a blackbody (Wm−2sr−1μm−1), Lλ is the
thermal infrared radiation brightness value, L↑is the upwelling
atmospheric radiance (Wm−2sr−1μm−1), L↓ is the down
we l l i ng a tmosphe r i c i r r a d i a n c e d i v i d ed by π
(Wm−2sr−1μm−1), ε is the land surface emissivity, and τ is
the total atmospheric transmittance along the path between
the land surface and the satellite sensor. The imaging time
and the centre latitude and longitude information were obtain-
ed from the official website of NASA (http://atmcorr.gsfc.
nasa.gov/) and were used to determine the τ, L↑, and L↓

values as 0.76, 1.79 and 2.98 Wm−2sr−1μm−1, respectively.

LST

The inverse function of the Plank formula and the thermal
infrared radiation brightness values was used to calculate
the LST (Sospedra et al., 1998). Thermal radiances were
converted to corresponding luminance temperatures, ac-
cording to Planck’s law. The temperature value was

calculated in Kelvin (Ts) or Celsius from the above pro-
cesses, as follows:

Ts ¼ k2= ln
k1

B Tsð Þ þ 1

� �
ð7Þ

LST ¼ k2= ln
k1

B Tsð Þ þ 1

� �
−273:5 ð8Þ

where Ts is the effective at-satellite brightness temperature in
Kelvin (K), the LST is the land surface temperature in Celsius
(°C), and k1, k2 for LANDSAT 8 OLI/TIRS are constant
values of 774.8853 W/(m2. Μm.sr) and 1321.0789 K,
respectively.

Calculation of the temperature vegetation dryness index

The TVDI is a method for land surface soil moisture retrieval
based on the optical and thermal infrared RS channel data
(Sandholt et al. 2002). Therefore, the TVDI was used to esti-
mate the soil moisture in the TZ. If an image contains a large
space of soil moisture and green vegetation, the space presents
a triangle. The triangle forms because the LST decreases as the
vegetation cover increases. The scatter plot between the NDVI
and LST is termed as the LST_NDVI space and is closely
associated with surface evapotranspiration and moisture
Amani et al. (2016).

Any random NDVI value corresponds to a set of dry and
wet edges. The maximum LST decreases as the NDVI in-
creases along the x-axis on the dry edge (Sandholt et al.
2002), and the stomatal resistance to evapotranspiration is a
key factor, which is partly controlled by the limited moisture
availability (Sandholt et al. 2002; Chen et al. 2015). The wet
edge consists of a group of points forming a horizontal line.
The LST is independent of the NDVI on the wet edge, and for
the points closer to the wet edge, the evapotranspiration ca-
pacity and soil moisture become higher (Chen et al. 2015).

The computation formula was calculated as follows
(Sandholt et al. 2002):

TVDI ¼ LST−LSTmin

LSTmax−LSTmin
ð9Þ

where the LSTmax and LSTmin represent the maximum and
minimum LST values when the NDVI equals a particular
value, whereas LST represents the surface temperature of
any random pixel.

After the LST_NDVI eigenspace has been simplified to a
triangle, LSTmax and LSTmin were concurrently subjected to
linear regression:

LSTmin ¼ a1 þ b1 � NDVI ð10Þ
LSTmax ¼ a2 þ b2 � NDVI ð11Þ
where a1,a2 and b1,b2 are the intercepts and slopes of the dry
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and wet edges, respectively, and the coefficients of the a1,a2
and b1,b2 can be determined by a least squares fit to the actual
data, respectively.

Results and discussion

NDVI patterns

The NDVI values for the study area range from 0.00244 to
0.80481, and the overall spatial pattern shows a reduced
NDVI from the TZ to plain region. The main land use type
in the northwestern TZ region is woodlands, and the vegeta-
tion coverage is high. The NDVI values of the forest land and
grassland in the mountain area are high. Some of the areas are
affected by human activities. The main land use types are
construction land, bare land, and water, where vegetation cov-
erage is low. The NDVI values in the eastern plains are low.
Hosseini and Saradjian (2011) studied four different soil water

content estimation models, NDVI_LST, enhanced vegetation
i n d e x ( E V I ) _ L S T, NDV I _ L S T _NDW I , a n d
EVI_LST_NDWI; statistically, it was proven that when the
EVI was replaced with the NDVI in the model, the accuracy
of the soil moisture estimation increased (Fig. 3).

LST patterns

In summary, there was a significant decline in the LST from
the plains to the mountainous areas (Fig. 4). The former is
affected by the lower altitude and human activities, which
caused higher temperatures. In that regard, a higher altitude
may be an important factor for reducing LST, which, when
combined with the reduced human activities in the mountain-
ous areas and higher vegetation coverage, resulted in a rela-
tively lower LST. There were abnormal inversion results ow-
ing to thick cloud covers.

The north western region of the study area is located in
the TZ, and parts of the areas in the north western region

Fig. 3 Distribution of NDVI in
study area
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are covered by clouds. As a result, temperatures in these
areas are below 5 °C. For areas not affected by cloud
cover, a temperature range of 5~10 °C in the mountainous
areas from Apri l to May is considered normal .
Temperatures in the central mountainous area, at
10~20 °C, are generally higher than those in the north-
western mountainous areas. The main land use type is
woodlands, and the vegetation coverage is high. Some
of the areas are affected by human activities or a slope
direction/gradient, resulting in temperatures above 20 °C.

In the eastern plains, which are predominantly arable lands,
the LST values are mostly near 20~30 °C. The central area of
the plains is the main urban area, consisting mostly of lands
for construction, the LST values there are 30~35 °C.
According to the principle of the urban heat island effect, the
LST values in cities are higher than those in surrounding
areas. The LST even reached 35 °C and above in the middle
of the urban area in study area. Field observations indicated

the distribution of factories at these areas, and the higher LST
values resulted from the industrial developments, emissions,
and dense population distribution.

Analysis of the LST_NDVI eigen space

After setting the step size of the NDVI to 0.01, the EXCEL
software and function calculations were used to extract the
LSTmax and LSTmin values corresponding to the same NDVI
value. The spatial scatter diagram of the LST_NDVI eigen
space approximated a triangle (Fig. 5), which was similar to
that in the description by Sandholt et al. (2002). The relation-
ship between the NDVI and LST is near-linear. According to
Fig. 5, the scatter tendency of the LSTmax and LSTmin can be
divided into three segments:

When NDVI ≤ 0.15, the scatters for LSTmax did not have a
corresponding maximum value, whereas those for LSTmin

formed a straight line with a positive gradient;

Fig. 4 Distribution of the average
LST in study area
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When 0.15 < NDVI ≤0.6, the scatters for both LSTmax and
LSTmin approximated horizontal straight lines with near-zero
gradients; and,

When 0.6 < NDVI ≤0.8, the LSTmax and LSTmin lines were
both straight, but with negative and positive gradients,
respectively.

The plots of LSTmin and LSTmax as a function of NDVI are
shown in Fig. 6. There was a strong correlation between the
LST and NDVI. The y-axis represents the LST, and the x-axis
shows NDVI (Fig. 5). The LST and NDVI relationship slope
could be effectively determined during the growing season
with a certain level of the NDVI. The derived LST/NDVI
slope from the image windows was significantly correlated
to the in situ soil moisture (Xin et al. 2006). With the increase
in NDVI values, the LST values decreased, and vice versa.

The general trend of the dry and wet edges decreases and
increases as with the NDVI value, respectively. Thus, LSTmax

decreases, but LSTmin increases. To determine the parameters
describing the dry and wet edges, the LSTmin and LSTmax

values observed for small intervals of the NDVI are extracted
in the LST_NDVI eigen space. The equations for the dry and
wet edge for the three scenes are shown in Fig. 6.

Spatial variation of TVDI

The TVDIs of the TZ from the plain region to moun-
tains were calculated, as shown in Fig. 7. According to

Fig. 7, the spatial pattern variation of TVDI values has
a significant reduction from the northwestern mountain-
ous regions to southeastern plains area. The northwest-
ern mountainous region has a high TVDI value, whereas
the plain region has a low TVDI value owing to the
different FVC values and human activities.

Comparison of TVDI with in situ measurements

The effectiveness of the TVDI as an index for assessing
soil moisture was validated by systematically designed
in situ soil moisture measurements for each grid. The
obtained TVDI value was compared with the measured
soil moisture. Fifty-eight points were randomly selected
for in situ soil moisture measurement to ensure that
each land cover type had at least five observation
points. There is a significant negative correlation be-
tween the TVDI and the in situ measured soil moisture
(R = 0.710). Linear relationships exist between the soil
moisture and the TVDI, NDVI, and LST (Table 2).

According to Table 2, all P values in the regression
model were much less than 0.05. Therefore, the TVDI
can reflect the soil moisture status better than the NDVI
and LST. Patel et al. (2009) also revealed that a signif-
icantly strong and negative relationship exists between
the TVDI and in situ soil moisture, particularly when
the vegetation cover is sparse.

To verify the regressionmodel accuracy, 38 points of in situ
soil moisture measurement that were not involved in the mod-
el construction were used. The results show that the TVDI can
reflect the soil moisture status. The root-mean-square error
(RMSE) was 0.04897, and the P values were far less than
0.01. This proved that the accuracy of the soil moisture inver-
sion was relatively high. The TVDI was also found to be
satisfactory in capturing the temporal variation in the soil sur-
face moisture status.

Researchers in China studies have used the TVDI to
estimate soil moisture from different RS data and have
produced different R2 values (Chen et al. 2015; Bai et
al. 2017). For example, in these different RS data, for
NOAA-AVHRR images, R2 = 0.23–0.81 (Goward et al.
2002; Wang et al. 2004); for Terra/Aqua MODIS im-
ages, R2 = 0.12–0.83 Chen et al. (2012), and for
LANDSAT TM images, calculated R2 values is R2 =
0.15–0.80 (Chen et al. 2015) etc. The R2 values be-
tween the TVDI and soil moisture are still low in some
studies (Chen et al. 2011; Chen et al. 2012). This is
owing to scaling effects in the TVDI values retrieved
from RS images. In that regard, each pixel in the
LANDSAT TM image represents a grid of 30 m ×
30 m, but each observation point of the in situ soil
moisture measurement represents only a point on the
soil surface. Thus, the in situ measured soil moisture

Dry  edge: y = -16.651x + 39.35
R² = 0.7644

Wet  edge: y = 16.64x + 2.3945
R² = 0.6797
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cannot ensure a perfect match with the corresponding
pixel in the image (Chen et al. 2015).

Spatial distribution of soil moisture

The spatial distribution of the soil moisture content within
the study area based on the inversion results is shown in
Fig. 8.

In terms of the overall distribution of the soil moisture
content, the levels were relatively high in the northwestern
and central mountainous areas but were relatively low in the

southeastern plains. For areas within the TZ, a gradual decline
in soil moisture levels was apparent from the plains towards
the mountainous areas. This resulted from the general varia-
tion in soil moisture levels with altitudinal changes
(535~3506 m), as well as the fact that the southeastern region
of the study area sits on the plains of Chengdu and comprises
predominantly arable lands and lands for construction, mak-
ing it more affected by human activities. Second, although the
northwestern and central regions of the study area are located
in the mountainous areas and are subjected to less human
impact, they are located on the Longmenshan seismic belt.
Consequently, there are frequent mountain hazards, land-
slides, and debris flows. In addition, the 2008 earthquake
had a major impact on the mountainous areas, making it dif-
ficult to restore the damaged vegetation cover. Nevertheless,
gradual changes in the TZ’s soil moisture levels may still be
seen. Finally, the soil moisture content in localised areas was
also affected by other factors such as the slope direction and
land use type.

Fig. 7 Spatial distribution of
TDVI in study area

Table 2 Regression model of soil moisture

Regression model Correlation coefficient R2 P

y = − 1.1249TVDI+1.1509 0.710 0.5043 0.000

y = 0.021 NDVI+0.1988 0.061 0.0037 0.000

y = 0.0011LST+0.1809 0.065 0.0029 0.019
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Conclusions

In this study, we examined how much of the soil moisture
variability was associated with TVDI variability within and
across the study area regions. A triangulation method was
used to estimate the surface soil moisture. This method com-
bines visible, infrared, and thermal data. The LST and NDVI
values were obtained to derive TVDI values for the assess-
ment of surface soil moisture through remotely sensed data
and for the establishment of the results with field-measured
soil moisture data. The method interpreted the pixel distribu-
tion in the LST_NDVI space. A triangle formed because the
LST decreased as the vegetation cover increased. The scatter
plot between the NDVI and LST is termed as the LST_NDVI
space and is closely associated with surface evapotranspira-
tion and moisture.

Our study is valuable in providing a spatially detailed ac-
count of where and by howmuch soil moisture varies and how
much of this was driven by TVDI variability in the TZ. To a

certain extent, this study supplements existing soil moisture
research in a region with unique topographies, i.e. ranging
from 535 to 3506 m. The soil moisture inversion of the study
area contributes to the observation of changes in moisture
levels as the plains transition towards the mountainous areas,
and as arable lands transition towards woodlands. The results
are of great significance for the monitoring of moisture con-
tent in arable lands and in the overall ecological environment.

We found a significant relationship between the TVDI and
soil moisture at the observation points. Correlation and regres-
sion analyses were conducted to relate the TVDI to the in situ
calculated soil moisture. The spatial pattern of the TVDI gen-
erally shows a lowmoisture distribution over the study area. A
significant (P < 0.05) negative correlation of r = 0.710 was
found between the TVDI and in situ soil moisture. The larger
the TVDI value, the drier the soil; conversely, the higher the
soil moisture levels, the smaller the TVDI values.

We found that the TVDI was adequate for the temporal
variation of surface soil moistures. The TVDI provides a

Fig. 8 Spatial distribution of soil
moisture in study area
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consistent appraisal of the moisture situation. Consequently, it
can be used to evaluate wet conditions. The accuracy of the
soil water inversion in this study was high. For the study area,
this proved the feasibility of using the TVDI for the soil mois-
ture inversion. The soil moisture inversion was carried out at a
depth of 20 cm over large areas throughout the study area. In
the process, the calculation of the vegetation coverage was of
vital importance. For the plains of Chengdu in particular, and
the Sichuan Province in general, there have been very few
studies with moisture inversions conducted based on the
TVDI, nor have results been verified using measured data
from field samples.

We thought that the effects of scaling might also have
an impact on the accuracy of soil moisture and found that
the appraisal of soil moisture using the TVDI was possi-
ble at medium spatial resolutions, as the relationship of
soil moisture with LST and NDVI leads to an adequate
number of representative pixels for developing a triangu-
lar scatter plot. The study area consisted predominantly of
woodlands and arable lands, leading to high vegetation
coverage. The LANDSAT 8 OLI/TIRS data selected for
the study not only facilitated the calculation of the TVDI
but also fully met the accuracy requirements for the soil
moisture inversion. Our approach of using LANDSAT 8
OLI/TIRS data for temperature inversions based on the
NDVI proved to be reliable and had a high resolution.
However, cloud cover seriously influences the LST re-
trieval and often limits the applicability of the TVDI for
estimating soil moisture on a regional scale.
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