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Abstract
Basin perspective hydrology and hydraulic water-related queries often demanding an accurate estimation of flood exceedance
probabilities or return periods for assessing hydrologic risk. The research on the advancements of flood probability modelling
contributed to reduction of flood risk, damage property and human life losses associated with the occurrence of flood events.
Higher degree of uncertainty and complex flood dependence structure did not facilitate for their accurate prediction through
deterministic approaches, which often demand a probability distribution framework. Unreliability of univariate frequency anal-
ysis under parametric or non-parametric framework would be an attribute for underestimation or overestimation of flood risk.
Multivariate distribution framework facilitating a comprehensive understanding of flood structure for various possible occurrence
combinations among the flood-related random vectors (i.e. flood peak flow, volume and duration). In this literature, copula
function is recognized as a highly flexible tool for establishing multivariate joint dependency and their associated return periods
in comparison with traditional multivariate functions. The incorporation of vine or pair-copula constructions (or PCC) further
exaggerated the efforts of higher dimension copula construction, in terms of precision level in their estimated quantiles, under the
minimum information concept. This review explored the efficacy of copula-based methodology for tackling multivariate design
problems and can be used as a guideline for water practioner and hydrologist.

Keywords Flood frequencyanalysis (or FFA) .Copulas . Joint distribution .Conditional distribution .Returnperiod . Pair-copula
constructions (or PCC)

Introduction

Risk-based hydrology and hydraulic water-related queries, i.e.
engineering-based flood defence infrastructure designs or the
non-structural assessments (i.e. flood control pressure or flood
diversion practices) often demanding an accurate estimation
of flood exceedance probability or flow quantiles through ex-
trapolating long-term catchments, have streamflow character-
istics in the light of probability distribution framework (Bobee
1975; Rao 1980; Singh and Singh 1988; Chow et al. 1988;
Bobee and Ashkar 1989; Adamowski, 1989; Adamowski and
Feluch 1990; Cunnane 1987, 1988, 1989; Adamowski and

Feluch 1990; Choulakian et al. 1990; Bras 1990; Yue et al.
1999; Yue 1999, 2000; Rao and Hameed 2000; Shiau 2003;
Salvadori 2004; Sraj et al. 2014; Serinaldi 2015; Sarhadi et al.
2016). In actuality, the higher degree of uncertainty and com-
plexness usually distributed over the hydrological or flood
characteristics did not facilitate for their exact or accurate pre-
diction in the light of any physical or deterministic framework
but could be demanding to establish a probabilistic framework
(Sen 1999; Requena et al. 2016). Therefore, several mathe-
matical or statistical strategies are often motivated from past
decades towards the incorporations of probability distribution
framework of the hydroclimatic or flood observations series
(i.e. Hosking et al. 1985; Adamowski 1985; Silverman 1986;
Bardsley 1988; Adamowski and Labatiuk 1987; Bobee and
Rasmussen 1994; Goel et al. 1998; Yue et al. 2001; Yue
2001a, 2001b; Coles 2001; Kartz et al. 2002 and references
therein). Flood signifies for an inundation attributed through
an overflowing of river water from their banks, due to an
abnormality in hydrometeorological consequences, such as
intensive precipitation structure (Reddy and Ganguli 2012a).
Flood frequency analysis or FFA statistically defines the inter-
association between extreme event quantiles and their non-
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exceedance probabilities by fitting a probability distribution
functions or pdf (i.e. either flood peak or volume as functions
with their non-exceedance probabilities) (Yue 1999; Yue
2001a; Yue and Rasmussen 2002; Yue and Wang 2004; Xu
et al. 2015).

Hydrometeorological stimulations either via the extension
of historical rainfall samples, in order to recognize catchments
profile, or through joint probability simulations in conjunction
with univariate or multivariate statistical framework over the
variables of interest are the two distinct ways to address the
risk assessments for an extreme flood scenario. Numerous
attempts, i.e. Calver and Lamb (1995), Boughton et al.
(2002), Blazkova and Beven (2004) and Lawrence et al.
(2014), retrieved flood frequency curve through integrating
hydrological models in conjunction with probabilistic rainfall
models for demonstrating the catchment’s rainfall-runoff pro-
file. Such incorporation usually adapted conventional based
lumped and distributed models or via continuous or event-
based hydroclimatic simulations. But the requirement of lon-
ger computational analysis due to demands of high spatial and
temporal resolutions, in order to reveal a satisfactory demon-
stration of flood stimulation procedure, would attribute for an
ineffective characterization of catchments behaviour
(Requena et al. 2016). Similarly, few other approaches in
flood analysis, which is based on data-driven method of flood
predictions using stochastic or time series model, i.e. AR (or
autoregressive), ARMA (or autoregressive moving average)
and ARIMA (or autoregressive integrated moving average),
such as generation of synthetic flow series and their forecast-
ing using ARMA model (O'Connel 1977), time series model-
ling of annual maximum observation using ARIMA model
(Shakeel et al. 1993), forecasting of rainfall and runoff using
stochastic time series modelling using AR model (Sherring
et al. 2009), generation and forecasting of annual inflow ob-
servations using ARMA model (Vijayakumar and Vennila
2016) demonstrate the efficacy of ARIMA model for flood
forecasting using the annual streamflow (i.e. peak and maxi-
mum discharge) observations for Karkheh River basin in the
west of Iran (Machekposhti et al. 2017). Besides this litera-
ture, few other studies, such as Ghanbarpour et al. (2010),
Tian et al. (2011), Huang et al. (2016) and references therein,
explored the efficacy of stochastic time series modelling ap-
proaches for solving several water resources problems.
‘Development of few ML algorithms in the flood prediction’
discussed over the developments of few other machine learn-
ing (ML) algorithms in the field of flood modelling and their
forecasting. Overall, in the above demonstrations, their con-
cern is only limited to target single flood vector, i.e. annual
peak or maximum discharge values. Flood is a trivariate sto-
chastic consequences, usually characterized completely
through its intercorrelated random vectors, i.e. flood peak dis-
charge, volume and duration of flood hydrograph (Zhang and
Singh 2007b; Veronika and Halmova 2014). Thus, it could

limit the reliability of univariate design estimations or return
periods, which would be insignificant to providing full screen
of flood hydrograph and might be attributes for the underesti-
mations (i.e. low design value might increase the risk of fail-
ure) or overestimations (i.e. increasing hydraulic construction
cost) of hydrologic risk (Grimaldi and Serinaldi 2006;
Serinaldi and Grimaldi 2007; Genest et al. 2007; Grimaldi
et al. 2013; Fan and Zheng 2016). Such that, flood events with
a peak flow of 100-year recursion interval could be less inten-
sive and damaging than the same events described based on
the joint occurrence between multiple flood vectors, i.e. be-
tween peak-volumes or peak-durations or volume-durations.
In actuality, the potential damage that could likely be a func-
tion of several associated random variables as well as igno-
rance of spatial dependency among multiple flood vectors
might be attributes for underestimation of uncertainty distrib-
uted over the estimated design quantiles and thus often de-
mand more flood variables through the joint distributional
assessments for revealing much insightful understanding of
flood structure (Renard and Lang 2007; Graler et al. 2013;
Vernieuwe et al. 2015). Especially, from the prospects of hy-
draulic designing procedures where an accountability of mul-
tivariate design parameters could be a feasible desire based on
their multivariate exceedance probabilities (Brunner et al.
2016; Reddy and Ganguli 2013).

In multivariate risk statistics, return periods are usually as-
sociated with certain exceedance probabilities that will dem-
onstrate the risk of extreme scenario through multiple aspects,
i.e. based on the joint, conditional or Kendall’s distribution
relation (Shiau 2003; Salvadori 2004; Zhang and Singh
2006; Kao and Govindaraju 2008; Salvadori et al. 2011;
Salvadori et al. 2015; Serinaldi 2015; Tosunoglu and Kisi
2016). According to Salvadori et al. (2011), under the hydrau-
lic design facilities, selection of appropriate concurrence prob-
abilities is a function of undertaken structure and conse-
quences of its failure. The selection of return period is not an
arbitrary process which solely based on the nature of work
assessments that will further decide the importance of design
vectors into considerations (Salvadori 2004; Serinaldi 2015;
Brunner et al. 2016). Multivariate constructions usually com-
prise a combination of the joint probability density functions
or pdfs and joint cumulative distribution functions or cdfs,
where cdf statistically defines the probability of event ‘X’ less
than their pre-defined critical or threshold values ‘x’, i.e.
P(X ≤ x) (Yue and Rasmussen 2002; Veronika and Halmova,
2013). This literature intended towards overviewing the prac-
tices of copula-based stochastically synthetizations of flood
consequences in the light of multivariate probability distribu-
tion framework. In this review, different methodological at-
tempts in the light of bivariate and trivariate copula distribu-
tion analysis are pointed for tackling multivariate design prob-
lems or estimating design variable quantiles under different
notations of return periods. Second section pointed the
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different attempts and strategies towards the incorporations of
univariate frequency analysis or defining the marginal distri-
bution structure which often is a mandatory pre-requisite de-
sire in copula distribution framework. Figure 1 illustrates re-
search methodological flowchart of the literature review.
Distinguished varieties of the one-dimensional parametric
functions and also efficacy of non-parametric distributions
for the treatment of hydroclimatic samples are reviewed in
‘Flood frequency analysis via one-dimensional probability
distribution framework or approximation of marginal distribu-
tions’ under two different sub-sections. The necessity of es-
tablishing multivariate joint distribution of flood samples is
pointed in the third section which are further divided into
different sub-sections such that the applicability and flexibility
of copula distribution for establishing bivariate joint relation-
ship over the traditional multivariate functions, desire towards
capturing flood design hydrograph by introducing all the rel-
evant flood vectors simultaneously in the light of trivariate or
3-dimensional copulas construction, discussion over the dis-
tinguish varieties of some standard trivariate copulas and their
efficacy for establishing joint distribution are reviewed. This
section also pointed the flexibility of vine or PCC methodol-
ogies as well as minimum information PCC model for reveal-
ing many comprehensive attempts in the uncertainty analysis

of flood episodes in comparison with traditional trivariate cop-
ula functions. ‘Return periods under multivariate settings’
reviewed the importance of different notations of return peri-
od, i.e. joint return period, conditional return period, Kendall’s
return or survival return period which solely depends upon the
nature of work assessments in the water-related issues.
Development of few machine learning (or ML) algorithm in
the field of flood prediction and forecasting is discussed sep-
arately in ‘Development of few ML algorithms in the flood
prediction’. ‘Research discussion’ and ‘Research conclusion’
comprise the research discussions and conclusions. Lastly,
few ideas to strengthen the current attempts of multivariate
practices in the light of time-varying copula framework are
discussed in the last section of this literature.

Flood frequency analysis via one-dimensional
probability distribution framework
or approximation of marginal distributions

An approach via parametric distribution function

Hydrological episodes can be characterized through rare and
extreme consequences according to prospects of time and
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Fig. 1 Methodological flowchart of the literature review
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magnitude scale. Three different approaches of floodmodelling
are usually motivated over the works of literature, i.e. regional-
based analysis, stream-based and time-series analysis in which
flood frequency estimations via annual peak discharge series
could be effective for longer data length availability (Rao and
Hameed 2000). Regional based hydrological modelling, which
is also called pooling group analysis, targeted the data from
multiple gauge site to derive a regional distribution of multivar-
iate extreme which might reduce the chance of sampling vari-
ations in model parameters and, thus, would be effective for un-
gauge stream in comparison with the at-site frequency analysis
(Burn 1990; Hosking and Wallis 1997; Viglione et al. 2007;
Kyselý et al. 2011). Region-of-influence or ROI technique, i.e.
based on the unique flexible pooling group for each targeted
site (i.e. Burn 1990), and Hosking-Wallis or HW, i.e. based on
delineating fixed regions andwhere each site characterizedwith
sameweight within the targeted region (i.e. Hosking andWallis
1997) are the two-distinct variants or approaches of the regional
based frequency analysis.

Conventional flood frequency practices frequently moti-
vated either through block (annual) maxima (i.e. high flood
peak) or peak over threshold on the partial series of data with
an assumption of stationary, independent and identically (or
i.i.d) distributions of historical samples (Hosking et al. 1985;
Bras 1990; Coles 2001; Kartz et al. 2002). Annual maxima
records often signify a justifiable basis of design problems
such that the expected structural design life establishes a sim-
ple relation of its magnitude as well as their distributional
structure and thus forms a basis to estimates the design
quantiles or event exceedance by selecting an appropriate dis-
tributional structure of the given targeted maxima (Bardsley
and Manly 1987). An interactive sets of univariate parametric
families functions often targeted for univariate density model-
ling or defining marginal distributions of extreme random
vectors such as 3-parameter generalized extreme value distri-
bution (GEV) (i.e. Jenkinson 1955; Ouarda et al. 2001; Yue
and Wang 2004), 2-parameter gamma distribution (i.e.
Yevjevich 1972; Yue 2001a), 2-parameter with light tailed
Gumbel distribution or extreme value type-1 distribution (or
EV-1) (i.e. Adamowski, 1989; Yue et al. 1999), 2-parameter
with bounded upper tailed or Weibull distribution (i.e.
Johnson 1994; Zhang et al. 2016), 1-parameter exponential
distribution (i.e. Choulakian et al. 1990; Bacchi et al. 1994;
Karmakar and Simonovic 2008), 2-parameter log-normal dis-
tribution (i.e. Yue 2000; Xu et al. 2015), normal or Gaussian
distribution (Goel et al. 1998; Yue 1999), log-logistic distri-
bution (Bobee and Ashkar 1989), generalized logistic (or
GLO) distribution (i.e. Requena et al. 2016), 3-parameter with
heavy tailed Freshet distribution (i.e. Graler et al. 2013; Reddy
and Ganguli 2013), 3-parameter general Pareto (or GP) distri-
bution (i.e. Johnson 1994; Zhang et al. 2016), 3-parameter
log-gamma distribution (i.e. Veronika and Halmova 2014)
and log-Pearson type-3 distribution (i.e. Bobee 1975).

Generalized extreme value or GEV distribution exhibited a
significant relation with hydrologist during extreme value
practices which is further encompassed into three distinct
functions such as Gumbel, the (Reversed) Weibull and
Frechet distributions (i.e. Jenkinson 1955; Coles 2001;
Khaliq et al. 2006). Each function attributed for the different
tail behaviour based on their shape parameter ‘ξ’, i.e. Gumbel
characterized with light tail behaviour, Frechet with heavy tail
and bounded upper tail for the Weibull distribution (Graler
et al. 2013). If the shape parameter ‘α’ is equal to 0 and
correspond to thin upper and unbounded tail for GEV distri-
bution then, it signifies for the Gumbel function and for α > 0
termed for Frechet distribution, which signifies for the long
and heavy tailed due to unbounded with decreasing behaviour,
polynomially (Khaliq et al. 2006; Graler et al. 2013; Reddy
and Ganguli 2013). The flexibility of available univariate
models exhibited a control to justify an appropriate fit with
distribution samples such that it depends upon its associated
vectors of unknown statistical parameters or model parame-
ters, i.e. 3-parameter log-gamma distribution extensively
employed in flood modelling over many regions due to its
capability of adjustments in their shape in accordance with
the flood series (Veronika and Halmova 2014). Also, different
density structures attribute different estimation of design
quantiles, especially in the distribution tail structure
(Karmakar and Simonovic 2008, 2009). Readers are advised
to follow Coles (2001), Kartz et al. (2002) and Khaliq et al.
(2006) for the extended details of the varieties of univariate
models for hydrological observations.

An approach via non-parametric distribution
framework

The above-cited literatures are frequently adapted the para-
metric distribution functions to approximating probability
density or marginal distribution of flood characteristics.
Simulations via the parametric functions often imposed an
assumption that random samples are drawn from the popula-
tion whose density structure is pre-defined, i.e. the marginal
distribution of flood characteristics is assumed to follow some
specific family of parametric density functions (Silverman
1986; Adamowski 1985, 1990, 1996; Botev et al. 2010). In
actuality, no specific models are categorized and opted univer-
sally for any specific hydrologic variables, which would fol-
low different distributions or, in other words, the best-fitted
marginal distributions were not from the same probability dis-
tribution family (Adamowski 1985; Kim and Heo 2002;
Karmakar and Simonovic 2008; Santhosh and Srinivas
2013). Dooge (1986) already pointed out that no amount of
statistical refinement can overcome the consequences due to
lack of prior probability distribution information of the ob-
served random samples. Also, approximation of any distribu-
tion tail beyond the largest value under parameter distribution
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framework would be difficult (Bardsley 1988; Bardsley and
Manly 1987). More especially, in case of multimodal or
skewed distributions where parametric functions might be in-
compatible and attribute for inconsistencies in the estimated
quantiles. Therefore, from the last few decades, few demon-
strations such as Schwartz (1967), Duins (1976), Singh
(1977), Bowman (1984), Silverman (1986), Scott (1992),
Lall et al. (1993), Lall (1995), Wand and Jones (1995);
Jones and Foster (1996), Lall et al. (1996), Adamowski
(1996, 2000), Bowman and Azzalini (1997), Efromovich
(1999), Duong and Hazelton (2003), Kim et al. (2003),
2006), Ghosh and Mujumdar (2007) and Santhosh and
Srinivas (2013) pointed the flexibility of non-parametric prob-
ability concept in the light of Kernel density estimations or
kde. Kernel estimator is recognized as a much stable data
smoothing procedure in the field of hydrologic or flood fre-
quency analysis and which yields a bonafide density.
Enumerations of the alternate theoretical overview for non-
parametric setting are conducted in the earlier literature such
as Rosenblatt (1956), Parzen (1962) and Bartlett (1963).
Actually, the non-parametric framework does not require
any prior distribution assumptions and will be directly re-
trieved from the distribution series with higher extent of flex-
ibility as compared with parametric density estimators
(Adamowski 1989 and Moon and Lall 1994).

Unless, the univariate approach defines the general con-
cept of non-exceedance probability or return period via
cumulative distribution function or cdf, but it might be
unsatisfactory when the requirement demands the consid-
eration of multivariate design parameters, which often re-
veals an essential concern in the water-related queries.
Flood is a multidimensional phenomenon which often
characterizes comprehensively by accounting its triplet
intercorrelated random vectors and thus could demand
the necessity of multivariate constructions for estimating
the design hydrograph instead of just estimating design
quantiles by targeting single flood vectors, i.e. univariate
frequency analysis or return period (Choulakian et al.
1990; Bacchi et al. 1994; Goel et al. 1998; Yue 1999,
Yue 2001a; Nadarajah and Shiau 2005). Actually, the se-
lection of suitable recursion interval depends upon the se-
lected design variable quantiles (Brunner et al. 2016) or, in
other words, the importance of different notations of return
periods, i.e. joint, conditional, Kendall’s or survival func-
tions solely depend upon the nature of assessments going
to tackle in the water-related issues (Salvadori 2004;
Serinaldi 2015). For examples, in the non-structural wa-
ter-related queries, i.e. flood control and mitigation prac-
tices, demonstrating the mutual concurrency of flood peak
with their volume extents would be a defensive approach
in flood diversion practices or the joint dependency be-
tween flood peak and duration of events for flood control-
ling pressure practical (Fan et al. 2015; Xu et al. 2015).

Bivariate joint distribution framework
of flood characteristics

Limitation of traditional multivariate distribution
framework

Actually, capturing of correlation structure among the multiple
hydrologic or flood vectors under classical statistical formu-
lations such as Pearson correlation coefficient (‘ρ’) or
Kendall’s tau (‘τ’) would be ineffective to characterize co-
movements tendencies of extreme vectors (Poulin et al.
2007). The unreliability and impractical consequences of uni-
variate frequency analysis motivated numerous demonstra-
tions towards multivariate joint probability constructions to
investigate the mutual concurrency among flood vectors
(Sackl and Bergmann 1987; Krstanovic and Singh 1987;
Singh and Singh 1991; Raynal-Villasenor and Salas 1987;
Cuadras 1992; Bacchi et al. 1994; Goel et al. 1998;
Choulakian et al. 1990; Yue et al. 1999; Yue 1999, 2000,
2001a, 2001b; Yue and Rasmussen 2002; Durrans et al.,
2003; Yue and Wang 2004; Nadarajah and Shiau 2005;
Escalante 2007 and references therein). Distinguished varie-
ties of traditional multivariate functions are incorporated for
establishing bivariate joint relations and frequencies between
flood peak-volume, volume-durations or peak-durations such
as bivariate normal, lognormal and gamma functions (i.e. Yue
1999, 2000 and 2001), bivariate exponential distributional
(i.e. Singh and Singh 1991; Choulakian et al. 1990), general-
ized extreme value distributions (i.e. Yue et al. 1999; Yue
2001b; Nadarajah and Shiau 2005), Pearson type III distribu-
tion (i.e. Durrans 1992), Gumbel mixed and Gumbel logistic
functions (i.e. Yue and Wang 2004).

Multivariate practices via traditional probability functions
often attribute several statistical constraints and shortcomings
during the joint dependency measure, such that each individ-
ual hydrological entities or flood vectors will have an identical
marginal structure or assumed to have Gaussian or normal
distributions or either transformed or forced to have normal
distribution through the data transformation procedure, which
might be following the different marginal structures and
would desire to model separately (Zhang 2005; Zhang and
Singh 2006, 2007a; Reddy and Ganguli 2012a). Also, statis-
tical parameters of the marginal structure are employed to
model joint association, which often desire for separate
modelling of their marginal and joint structure (Schmidt
2007). Limited space is usually available to justify the joint
structure under conventional multivariate functions, thus often
revealing a tough challenge (Song and Singh 2010). Besides
this, conventional models attribute for the heavy dependency
of flood exceedance on the right tail and thus might result for
complexity during the demonstrations of observed samples
and thus could demand for the separate modelling of margins
from their joint dependence structure for securing their joint
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association significantly (Zhang and Singh 2006; Reddy and
Ganguli 2013). Actually, separate modelling of univariate
marginal and their joint structure could optimize the reliability
of the modelling outcomes (Ane and Kharoubi 2003 and
Reddy and Ganguli 2012a).

After encountering the above limitations it motivated first-
ly, De Michele and Salvadori (2003) and Favre et al. (2004)
introduce the concept of copula function as a model risk for
hydrological observations. After that, a series of literature in-
corporated copula function, i.e. for flood samples (Salvadori
and De Michele 2004; De Michele et al. 2005; Grimaldi and
Serinaldi 2006; Zhang and Singh 2006; Zhang and Singh
2007b; Renard and Lang 2007; Genest et al. 2007; Salvadori
et al. 2011; Grimaldi et al. 2013; Graler et al. 2013; Sraj et al.
2014; Daneshkhan et al. 2015; Bedford et al. 2015; Fan and
Zheng 2016 and references therein), for rainfall characteristics
(Salvadori and De Michele 2006; Zhang and Singh 2007a;
Kao and Govindaraju 2008; Vernieuwe et al. 2015) and for
drought episodes (Shiau 2006; Shiau and Modarres 2009;
Song and Singh 2010; Ma et al. 2013; Saghafian and
Mehdikhani 2014; Rauf and Zeephongsekul 2014; Zhang
et al. 2016). Besides their extended applicability in extreme
event modelling, copulas were significantly applied in the
ground water modelling (Reddy and Ganguli, 2012) and also
modelling of hydroclimatic samples (Maity and Kumar 2008
and Cong and Brady 2011). Actually, copulas segregate
modelling of individual univariate vectors and their joint
structure separately into two distinct stages, which attribute
higher flexibility in selecting most appropriate and justifiable
marginal and their joint structure among the peer family mem-
bers to capture a wider extent of dependency, along with pres-
ervation in their joint association (Saklar 1959; De Michele
and Salvadori 2003; Salvadori and De Michele 2004; and
Nelsen 2006). The essential mathematical terminologies and
theorems associatedwith copula function reader are advised to
follow Saklar (1959) and Nelsen (2006) and also
‘International Association of Hydrological Sciences (or
IAHS)’ for extended details and lists of their applicability in
the field of hydroclimatological observations.

Copula-based bivariate probability distributions

In extreme hydrological modelling, the copula-based method-
ology can be classified as parametric, semiparametric and
non-parametric estimation procedures depending upon the
way of estimating its univariate marginals and joint depen-
dence structure (Choros et al. 2010; Santhosh and Srinivas
2013). Current copula attempt in the recent decades (i.e.
Favre et al. 2004; Grimaldi and Serinaldi 2006; Zhang 2005;
Sraj et al. 2014 and references therein) frequently incorporated
parametric settings for establishing multivariate flood distri-
butions analysis using standard parametric distribution ap-
proach. On the other side, few demonstrations (i.e.

Karmakar and Simonovic 2008, 2009; Reddy and Ganguli
2012a) incorporated semiparametric copulas, also called het-
erogeneous or mixed marginal environment, where flood mar-
ginals are approximated using non-parametric distribution ap-
proach (i.e. kernel density estimators or orthonormal series)
but still, parametric copula functions are introduced to
modelled their joint dependencies. Besides this, few attempts
(i.e. Dupuis 2007) pointed few limitations of the copula func-
tion in the context of finding best-fitted copula among their
peer classes which is not a simple and consistent procedure
and also limitation in the context of different extents of depen-
dence measuring capabilities of each copula functions (Nelsen
2006). Therefore, literature (i.e. Santhosh and Srinivas 2013)
incorporated the non-parametric approach for multivariate
flood frequency analysis using the diffusion kernel functions
which is earlier motivated by Botev et al. (2010).

Among the interactive sets of frequently incorporated cop-
ulas such as the extreme value class (i.e. Gumbel-Hougaard,
Galambos and Husler-Reiss), elliptical class (i.e. Gaussian
family), unclassified Plackett and Farlie-Gumbel-
Morgenstern (or FGM) parametric functions and three-
parametric Twan family (i.e. belong to extreme value class),
the Archimedean class (i.e. Ali-Mikhail or A-M-H family,
Frank family, Clayton or Cook-Johnson (C-J) family and
Gumbel-Hougaard family) copulas are frequently accepted
due to large varieties of families and its capability to capture
joint dependencies for a wider extent also, exhibiting several
desirable properties which attributes much flexibility during
joint probability simulations (DeMichele and Salvadori 2003;
Salvadori and De Michele 2004; Favre et al. 2004; Nelsen
2006; Grimaldi and Serinaldi 2006; Zhang and Singh 2006;
Salvadori and De Michele 2007; Corbella and Stretch 2013;
Madadgar and Moradkhani 2013; Chebana et al. 2013; Rauf
and Zeephongsekul 2014; Bender et al. 2014; Jiang et al.
2015; Papaioannou et al. 2016; Galiatsatou and Prinos 2016;
Requena et al. 2016).Mathematically, the copula function (i.e.
[C : [0, 1]2 ⟶ [0, 1]]) approximates the bivariate
Archimedean class copula, if it justifies the representation
(i.e. [C(u, v) =∅−1(∅(u) + ∅ (v)) for u, v ∈ [0, 1]]), where
∅(.) and ∅−1 signify the generator function of the specified
Archimedean copulas and their inverse such that the generator
φ : I⟶Rþ� �

signifies for the positive, convex and decreas-
ing function and could be approximated for ∅(1) = 0 and
∅ (1) =∞ (Nelsen 2006). Each family of Archimedean class
is characterized by a specific extent of dependency capturing
capability, which is constrained by the degree of intersection
between random vectors and will be investigated based on the
dependency measure. As such, AMH family could model for
both positive and negative associations but the dependence
parameter is restricted for Kendall’s tau τθ ∈ [−0.181, 0.333]
and could be insignificant for outside this range, similarly for
C-J and GH family the Kendall’s tau τθ ≥ 0 and only
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significant to capture the positive dependency (Salvadori and
De Michele 2004; Nelsen 2006; Xu et al. 2015). Frank family
functions exhibited higher versatility due to its capability in
accommodating and capturing the entire range of dependen-
cies (i.e. τθ ∈ [1, −1]) and only member that justified radial
symmetry as well (i.e. symmetric to u + v = 1) (De Michele
and Salvadori 2003; Favre et al. 2004; Nelsen 2006;
Grimaldi and Serinaldi 2006; Zhang and Singh 2007a). All
the Archimedean copulas except the Frank family exhibited
non-symmetrical behaviour with respect to secondary diago-
nals such as the GH copula that is much suitable to model the
dependence structure between vectors with upper-tail depen-
dence; similarly, Clayton copula exhibited strong capability to
model with lower tail dependency while Frank has no tail
dependency (Poulin et al. 2007). Besides the above families,
the extreme-value (or EV) copula is also incorporated for es-
tablishing bivariate joint relation, that can be formulated as
[C(u, v) = uvA(log(u)/ log(uv))], for u, v ∈ [0, 1] which can be
uniquely defined through Pickands dependence function (i.e.
[A : [0, 1]⟶ [1/2, 1]) and having non-symmetrical behav-
iour over the secondary diagonals (Twan 1988; Papaioannou
et al. 2016). Nelsen (2006) demonstrated the extended exam-
ples for the Archimedean class functions; also see Twan
(1988) for the extreme value functions.

Trivariate joint dependency constructions via
3-dimensional copulas

Unless extended efforts are often motivated towards establish-
ing the copula-based methodology for estimating bivariate
design variable quantiles under different notations of return
periods, but such attempts still might be insufficient for reveal-
ing justifiable and comprehensive studies of flood probability
analysis. Actually, dealing with multiple design variables, i.e.
flood peak, volume and durations, would limit the applicabil-
ity of analysing only through bivariate joint concurrency for
the flood episodes but, due to its triplet distribution behaviour,
could be demanding for simultaneous accountability of its all
intercorrelated vectors (Salvadori et al. 2011; Graler et al.
2013; Fan and Zheng 2016; Reddy and Ganguli 2013;
Daneshkhan et al. 2016). Actually, potential damage could
likely be a function of multiple relevant vectors of specified
hydrological episodes such that ignorance of spatial depen-
dency among these uncertain vectors might be attributed for
the underestimation of uncertainty, which frequently encoun-
tered during risk evaluation (Renard and Lang 2007; Graler
et al. 2013; Vernieuwe et al. 2015). Few literatures incorpo-
rated copula-based methodology for establishing trivariate
joint distribution and defining the concept of trivariate return
periods by introducing an interactive class of 3-dimensional
copula functions, but still, such computational strategies are
quite limited over the literature.

Grimaldi and Serinaldi (2006) performed flood probability
analysis through adapting three distinct forms of trivariate
functions such as the mono-parametric and asymmetric or
fully nested structure of Frank functions along with the
Gumbel logistic distributions and pointed the significance of
Frank function under FNA structure. Similarly, Serinaldi and
Grimaldi (2007) fitted the same fully nested structure for de-
riving trivariate flood structure. Genest et al. (2007) adopted
meta-elliptical copulas for annual spring flood analysis over
Romaine River in Canada and revealed that it could be an
effective tool for multidimensional hydrological data by
preserving the pairwise dependencies among the random
vectors through the correlation matrix but exhibited some
modelling limitation such as might be ineffective under the
low probabilities, unless the asymptotic properties of data will
be justified through the strong arguments. Reddy and Ganguli
(2013) examined the significance of multidimensional designs
events by comparing univariate, bivariate and trivariate return
periods for the flood episodes via fully nested Archimedean or
FNA class copula and Student’s t copula (Elliptical class cop-
ula) and revealed that it could be an essential effort to demon-
strate joint and conditional flood occurrence in the light of
trivariate return periods. Fan and Zheng (2016) adopted entro-
py copula structure in conjunction with Gibbs sampling along
with the Gaussian and the Archimedean copula for simulation
of trivariate flood episodes and revealed that entropy copula
could be easily projected into higher dimensional frame di-
rectly just like as the Gaussian copula.

Similarly, Kao and Govindaraju (2008) applied the non-
Archimedean copula function for simulating the trivariate
structure of extreme rainfall episodes. This demonstration
pointed out the modelling flexibility of Plackett family of
copulas which concluded for faithful preservation of lower-
level dependencies among relevantly associated vectors,
which often reveal crucial strategies under trivariate or higher
dimension dependency simulations. Madadgar and
Moradkhani (2013) captured the joint behaviour of drought
episodes under the climate change scenario using trivariate
copula structure. This study integrated the significant drought
vectors like severity, duration and its intensity using trivariate
Gumbel copula (i.e. Archimedean family function) and t cop-
ula (i.e. elliptical family) framework for capturing joint and
conditional probabilities. Also, the stress of dynamic
environmental arising over the occurrence of future drought
risk was also addressed through integrating GCM output
under A 1 B scenario. Few other methodological efforts are
of Song and Singh (2010) (i.e. drought frequency analysis
under meta-elliptical copula structure), Wong et al. (2010)
(i.e. modelling of trivariate drought characteristics) and so on.

The n-dimensional Archimedean copula can be formulated
by extending two-dimensional form into ‘n’ order series,
which can be as expressed by [C(x1, x2 , … . .xn) =
∅−1(∅(x1) + ∅ (x2)…….∅ (xn))] where consistency of this
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equation will be preserved as long as the generator function
∅(.) is fully monotonic; otherwise, it might be inconsistent for
hydrological samples due to hypothesis in terms of homoge-
nous dependency across the variables; also, ‘∅’ tends to the
strict generator if pseudo-inverse function ∅−1(.) becomes as
ordinary inverse function when ∅(0) tends to infinity
(Grimaldi and Serinaldi 2006; Nelsen 2006; Reddy and
Ganguli 2013). From the perspective of lower dimension,
i.e. bivariate copulas modelling, the symmetric Archimedean
copulas frequently motivated over the literature and often jus-
tified significant outcomes through the inferential testing (i.e.
good-of-fit test) measures but would be sounded for inconsis-
tency when projecting into higher dimension distributional
frame (i.e. n≥3). In actuality, it approximates the dependencies
between multiple vectors pairs by employing single depen-
dence parameters due to its mono-parametric behaviour, but
it would be incapable to preserve all pairwise dependency at
the lower stages (Renard and Lang 2007; Genest et al. 2007;
Kao and Govindaraju 2008; Madadgar and Moradkhani
2013). Therefore, it could desire to approximate each random
pair individually through multiple parametric joint asymmet-
ric functions (Serinaldi and Grimaldi 2007; Savu and Trede
2010; Reddy and Ganguli 2013). Whelan (2004) pointed a
flexible structure that permit for the heterogeneous dependen-
cy across vectors in the context of fully nested Archimedean
or FNA copulas which solely based on the joint integration of
two or multiple bivariate or any dimensional Archimedean
copulas structure through another Archimedean structure
and can be formulated by [C(x1, x2, x3) = ∅2(∅2

−1 ∘
∅1[∅1

−1(x1) +∅2
−1(x2)] +∅2

−1(x3)) = C2[C1(x1, x2), x3]]
where: ∅1 and ∅2 signify Laplace transformation for first
derivatives [∅2

−1 ∘ ∅1] will be monotonic; the symbol ‘∘’
indicates the composite of functions. The formulated copula
C(x1, x2, x3) signifies the joint simulation of two bivariate
structure through trivariate asymmetric Archimedean func-
tions, but its applicability could be significantly justified only,
if the dependency strength among the two variables i.e. (x1, x2)
will dominate over the correlation structure between these
variables and the third variables i.e. (x1, x3) and (x2, x3)
(Savu and Trede 2010; Reddy and Ganguli 2013). Some lit-
eratures such as Grimaldi and Serinaldi (2006), Serinaldi and
Grimaldi (2007), Madadgar and Moradkhani (2013) and
Reddy and Ganguli (2013) demonstrated the flexibility of
FNA structure for the hydrological observations. But some
literature still pointed the issue of faithful preservations of
lower stages dependency via the FNA structure and their
modelling limitation which is only limited for positive range
and thus pointed the applicability of few other standard class
of trivariate copulas (i.e. Renard and Lang 2007; Genest et al.
2007; Kao and Govindaraju 2008; Fan and Zheng 2016).
Such that Renard and Lang (2007) pointed Gaussian function
(Elliptical class copula) for hydrological observations which
can be significantly projected into any higher dimensional

frame directly due to the symmetric and definite positive
matrix which can demonstrate the dependence between
various attributes pairs. Genest et al. (2007) pointed the
meta-elliptical copulas which could preserve pairwise depen-
dencies via correlation matrix but exhibited some modelling
limitation under low probabilities unless the asymptotic prop-
erties of data will be justified through strong arguments.
Similarly, Kao and Govindaraju (2008) pointed the non-
Archimedean Plackett families, which are based on the prin-
ciple of the constant cross product, are another alternative to
justify the preservations issue at lower-level dependencies.
Ma et al. (2013) modelled trivariate drought characteristics
via Gaussian and Student’s t copula structure. Fan and
Zheng (2016) highlighted the significance of maximum entro-
py theory in conjunction with entropy copula as a dynamic
modelling strategy for higher dimensional space without im-
posing any assumption of copula family, more especially in
conjunction with Gibbs sampling technique which could jus-
tified much comprehensive demonstration but surrounded
with computational complexity due to the lack of analytical
based parameter estimation. Justifiable preservation of all the
lower-level dependencies often seems a challenging effort in
the higher dimensional copula-based methodology especially,
if complex pattern of dependency exhibited over the multidi-
mensional data structure (Joe 1997; Kurowicka and Cooke
2006; Aas et al. 2009).

Vine copulas or PCC framework for trivariate joint
distributions

The previous section highlighted different efforts and motiva-
tion towards simultaneous accountability of multiple design
vectors via higher dimensional (i. e. n ≥ 3) copula-based joint
probability simulations for the hydrological characteristics,
but still, such incorporations are quite limited. In actuality,
the above-undertaken copulas encountered several statistical
issues or queries such as complexity during the approximation
of justifiable parametric distributions for higher dimensional
hydrological attributes (Aas et al. 2009) and also might be
quite ineffective to capture and reflect all the possible mutual
concurrency among multidimensional vectors (Daneshkhan
et al. 2016). In actuality, due to the higher degree of uncertain-
ty and complexity, resolving the dependence structure of mul-
tivariate extreme via conventional copula formulation is quite
complex, which often demands a flexible methodology
through precise estimation of tail dependence coefficient un-
der various tail dependency (Aas et al. 2009; Daneshkhan
et al. 2016). Therefore, literature such as Kurowicka and
Cooke (2006), Joe (1997), Aas et al. (2009) and Bedford
and Cooke (2001); Bedford and Cook (2002) was directed
towards a comprehensive way of uncertainty characterization
for higher dimensional hydrological entities using the vine or
pair-copula constructions (or PCC). Applicability of PCC
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simulations seems much popular in finance and risk manage-
ment (i.e. Aas et al. 2009; Czado and Min 2010;
Nikoloulopoulos et al. 2012; Zhang 2014), but in the past
few years, such incorporations were significantly recognized
for the hydroclimatic observations such as frequency analysis
for drought episodes (i.e. Song and Singh 2010; Saghafian
and Mehdikhani 2014), for flood characteristics (i.e. Song
and Kang 2011; Graler et al. 2013; Daneshkhan et al. 2016)
and for storm or rainfall modelling (i.e. Gyasi-Agyei and
Melching 2012; Vernieuwe et al. 2015).

Actually, vine copula construction are solely based on the
principle of decomposition of full multivariate density into a
cascade or simple local building blocks via conditional inde-
pendence or pair-copula (Aas and Berg 2009; Bedford and
Cook 2002; Graler et al. 2013). Due to conditional mixing
via the stage-wise hierarchical nesting procedure, the pair-
copula concept exhibited much effective and flexible
modelling environments. Such multivariate simulation
ignited from the works which is earlier demonstrated by Joe
(1997) and after their underlying structural theory extended by
Bedford and Cooke (2001); Bedford and Cook (2002) and
Aas et al. (2009) and also Hobaek et al. (2010) demonstrated
the different aspects in their structural and computational
framework. Such incorporation usually comprises through
the interactive sets of multiple bivariate or 2-dimensional cop-
ulas to cascade in fitting a copula to the random vectors and
their conditional and unconditional distribution functions in-
stead of introducing a fixed multidimensional structure to all
the characteristics which might be attributed for ineffective
over the data exhibited complex dependence structure in the
tail and which often a stringent challenges in hydrological
modelling (Joe 1997; Bedford and Cooke 2001; Bedford
and Cook 2002). Distinct varieties of pair-copula decomposi-
tion are attributed under the regular vine structure such as
canonical or C-vine and D-vine distribution is the two special
modes of parametric regular vine construction (Kurowicka
and Cooke 2006; Czado and Min 2010; Czado et al. 2013).
Applicability of the D-vine structure is frequently sounded
from the existed literature due to their higher flexibility than
the C-vine structure and that would be effective when the
existence of any particular vectors that regulate the level of
mutual interactions within distributed observations are
predefined or known (Aas et al. 2009; Daneshkhan et al.
2016). In actuality, the degree of mutual concurrency among
multiple targeted vectors comprises the basis to adopt a justi-
fiable vine tree structure (Graler et al. 2013). Let us suppose,
for trivariate flood characteristics, if stronger association ex-
hibited between the flood peak (P) and volume (V) and vol-
ume (V) and durations (D), that means it will be point to select
D-vine structure by placing ‘V’ in between peak and
durations. Czado et al. (2013) explored the extended details
over the selection procedure of the regular vine constructions.
The approximation capabil i ty of vine copula for

multidimensional structure depends upon the manner of their
decomposition and which further reveals that the choice of
conditioning is not fixed or unique in vine or PCC (Hobaek
et al. 2010; Graler et al. 2013). For further details of the C- and
D-vine structure, readers are advised to followKurowicka and
Cooke (2006), Aas et al. (2009) and Aas and Berg (2009).

Figure 2 illustrates the general computational flow of vine
copula framework (i.e. Bedford and Cook 2002; Aas and Berg
2009; Aas et al. 2009; Czado et al. 2013; Graler et al. 2013;
Daneshkhan et al. 2016). Computational strategies are usually
initiated by selecting a significant vine structure, which solely
depends upon the degree of mutual concurrency and having
the following stages as reviewed from the above-mentioned
literature,

& First stage of modelling
& Capturing correlation structure or pairwise dependency by

selecting a justifiable bivariate parametric copula function
for each flood pairs.

& Estimating conditional cumulative functions or ‘h-
functions’ through conditioning each of the joint
structure through variables, which share with both
the other flood vectors, e.g. flood volume or V (from
the above Fig. 2).

& Mathematically, conditioning structure can be deriving
through the partial differentiation of each bivariate struc-
ture as formulated from the Eq. (1):

FPjV pjvð Þ ¼ ∂CPV p; vð Þ
∂V

and FDjV djvð Þ ¼ ∂VD v; dð Þ
∂V

ð1Þ

where CP, V and CV, D signifies for bivariate copula struc-
ture; FP ∣ V and FD ∣ V defines conditional cumulative
functions

& Second stage of modelling
& Synthesizing full density structure of 3-dimensional cop-

ula function using conditional CDFs of Eq. (1), for inves-
tigating the conditional CDFs using Eqs. (2) and (3) as the
following

CPVD p; v; dð Þ
¼ CPDjV FPjV pjvð Þ; FDjV djvð Þ� �

:CPV p; vð Þ:CVD v; dð Þ ð2Þ

also,

f PVD p; v; dð Þ ¼ CPVD p; v; dð Þ: fX xð Þ: fY yð Þ: f Z zð Þ
¼ CPDjV FPjV pjvð Þ; FDjV djvð Þ� �

:CPV p; vð Þ:
CVD v; dð Þ: f P pð Þ: fV vð Þ: fD dð Þ

ð3Þ
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An approach via minimum information PCC

Hydrological samples often surrounded with a higher degree
of randomness and complexity in their multivariate depen-
dence structure, which often attributes a stringent challenge
to justify a precise approximation of multidimensional joint
density structure. Also, justifiable accuracy in the estimated
exceedance probability of river flow response often demands
a longer duration of historical time series. The efficacy and
modelling potential of vine copula construction for trivariate
distributions are already reviewed from the above-cited liter-
ature but still have some modelling issues, i.e. complexity
during the selection and synthesis of justifiable copulas struc-
ture under parametric density concept for vine constructions
(Bedford et al. 2015). Therefore, a newmethodological frame-
work is pointed through introducing the concept of minimum
information based vine framework. Such non-informative
vine methodology facilitates a basis to further exaggerate the
modelling potential of traditional PCC (i.e. which is defined
via parametric copula framework) by approximating any un-
dertaken copulas density to desire degree of approximations
which is already demonstrated by Daneshkhan et al. 2016 for
the trivariate flood distribution analysis. Minimum informa-
tion PCC captures the complex multivariate structure for var-
ious tail dependencies through the precise estimation of tail
coefficient for a given selected copula and also facilitates to
model multivariate extreme in the presence of limited data
length (Daneshkhan et al. 2016).

The fundamental concept of building the minimum infor-
mation PCC for any bivariate joint densities structure say D1

and D2 can be demonstrated through establishing the relative
information between undertaken densities which can be fur-
ther minimized to 0 under identical bivariate densities (i.e.
D1 =D2) as pointed from Eq. (4) (Bedford and Meenuwissen
1997 and Daneshkhan et al. 2016).

I D1;D2ð Þ ¼ ∬ln
D1

�
x1; x2

D2 x1; x2ð Þ

0
@

1
AD1 x1; x2ð Þdx1dx2 ð4Þ

The generalized algorithmic explanation for establishing
minimum information structure between any adjacent arbi-
trary pair of targeted extreme vectors, say between ‘P’ and
‘V’ under vine model, can be formulated by integrating the
concept of moments constraint using Eq. (5) (i.e. Bedford
et al. 2015; Daneshkhan et al. 2015, 2016)

ϕi P;Vð Þ ¼ ϕ
0
I F−11 Pð Þ; F−12 Vð Þ� �

; for i ¼ 1; 2;…:; k ð5Þ

where F−11 Pð Þ and F−12 Vð Þ represent the univariate cumula-
tive functions of the targeted vectors. Selection of appropriate
basis functions (i.e. ϕi for i = 1, 2 …k) controls the fitness
level of copula structure for each random pair (Daneshkhan
et al. 2016). Also, selecting appropriate number of grid size
has also influence over their approximation level such that
larger value would attribute for longer computational period
(Bedford et al. 2015). Therefore, it often demands a perfect
synchronization or balancing between analysis duration and
the accuracy level (Daneshkhan et al. (2016). Readers are
advised to follow Bedford et al. (2015) and Daneshkhan
et al. (2015, 2016) for extended details of this non-
informative copula framework.

Return periods under multivariate settings

This section overviewed the statistical significance of return
periods under multidimensional design concept for tackling
different hydrologic problems. In actuality, selection of return
periods is depending upon the importance of undertaken struc-
ture as well as its consequences of failure where their appro-
priate selection often attributed an impact over the strength of

Fig. 2 Stage-wise hierarchy of bivariate copulas density under 3-dimensional pair-copulas construction (or PCC)
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design variables quantiles (Brunner et al. 2016). Hydrology
and hydraulic applications mostly interested in the evaluation
of the mean inter-arrival period between two design events
which usually defined in a year called the return period
(Shiau 2003; Salvadori 2004). Especially, the design quantiles
define a higher return period often seems a feasible practice in
the hydraulic structure designs (Requena et al. 2016). In mul-
tidimensional risk framework, return periods can be derived
from the exceedance probabilities of flood attributes pair, such
that joint return period retrieves from the joint exceedance
probabilities. Estimating multivariate design variable
quantiles under different notations of return periods, i.e. based
on joint and conditional probability distribution functions or
via Kendall’s distribution or survival functions, is often a jus-
tifiable and essential concern in the hydrologic risk assess-
ments (Salvadori 2004; Graler et al. 2013; Salvadori et al.
2013; Brunner et al. 2016). Shiau (2003), Salvadori (2004),
Salvadori and De Michele (2004, 2007), Salvadori et al.
(2011) and Serinaldi (2015) pointed an extended mathemati-
cal framework towards the deriving of different notations of
return periods under copula-based methodology.

Primary return periods

The return periods can be segregated into two distinct groups,
i.e. primary return period comprise via the inclusive probabil-
ity such as ‘AND and ‘OR’ return period and the secondary or
‘Kendall’ return period, which can be define based on the
Kendall’s probability distribution or survival function
(Salvadori 2004; Salvadori et al. 2011; Salvadori et al.
2013). Concurrence probability usually define the probability
that any extreme happening, i.e. flood episodes, which char-
acterize through either univariate (say flood peak discharge or
‘X’) or multivariate variable (say ‘X’, ‘Y’…) exceeding certain
a threshold level say ‘x’ (or ‘x’, ‘y’… for the multivariate
structure) (Yue and Rasmussen 2002; Shiau 2003; Salvadori
2004). Under the one-dimensional probability framework, the
return periods of hydrological or flood events exceeding a
threshold value say {X ≥ x} can be defined through fitting
univariate cumulative distribution functions or cdfs using
Eq. (6), as given below:

T ¼ μ
total no of flood per year

¼ μ
P X ≥xð Þ

¼ 1

1−univariate cdf or F xð Þ ð6Þ

where μ = mean inter-arrival duration between two consecu-
tive episodes = 1, for annual maxima based extreme model-
ling (Yue and Rasmussen 2002).

In actuality, notation of return period under univariate con-
cept might be useful only if the concentration of single hydro-
logical attribute will justify the requirements of the design

process and, in another way, it will also indicate the existence
of no significant inter-association exhibited between multiple
relevant vectors (Veronika andHalmova, 2014). Each separate
approach of return periods has their own significance, and that
will be solely based on the nature of the undertaking problem,
which cannot be interchanged and also impossible to decide
for the most consistent ways (Serinaldi 2015). Therefore, the
return periods which demonstrate the undertaken assessments
have requirements in a much better way, only the things that
create a sharp distinct through selecting most consistency and
justifiable return period (Tosunoglu and Kisi 2016). Reddy
and Ganguli (2013) demonstration revealed that the assess-
ments of both primary (i.e. ‘OR and ‘AND) and secondary
(i.e. Kendall’s) return periods could be an effective practice
more especially from hydraulic or flood defence infrastructure
designing prospects, such that concentrating over only the
return period in either ‘OR’ case or ‘AND’ might reveal
under-dimensioned or over-dimensioned. Actually, the joint
return period facilitates different possible ways to capture joint
relationship between the targeted vectors such as under the
bivariate distribution between flood vectors say ‘X’ and ‘Y’;
some alternative probability relations are given below (Yue
and Rasmussen 2002; Salvadori 2004; Brunner et al. 2016).

•when both targeted vectors say ‘X’ and ‘Y’ simultaneously
exceeds certain value say ‘x’ and‘y’, i.e. {X > x, Y > y},

•when only vector ‘Y’ exceeds the threshold say ‘y’,
i.e. {X ≤ x, Y > y},

•when neither ‘X’ or ‘Y’ vector exceeds threshold, i.e. {X ≤
x, Y ≤ y},

•when only vector ‘X’ exceeds threshold say ‘x’{X > x,
Y ≤ y}.

Let us suppose, if ′X ≥ x′and ′ Y ≥ y′ are two potential flood
vector, representing peak and volume series exceeding certain
a threshold value say, ‘x’ and ‘y’, then according to statistics of
return periods for the joint probability under ‘OR’ and ‘AND’
case (i.e. Yue and Rasmussen 2002; Salvadori 2004; Salvadori
and De Michele 2004; Zhang and Singh 2006, 2007a) can be
formulated using Eqs. (7) and (8):

For ‘OR’ case

TXY ¼ μ=P X ≥x OR T ≥yð Þ ¼ μ=1−C F xð Þ; F yð Þ½ � ð7Þ
similarly, and for ‘AND’ case

T
0
XY ¼ μ=P X ≥x AND T ≥yð Þ

¼ μ=1−F xð Þ−F yð Þ þ C F xð Þ; F yð Þ½ � ð8Þ

where C[F(x), F(y)] signifies for copula joint density of flood
margins F(x) and F(y) of the undertaken vectors and μ=mean
inter-arrival duration of two successive episodes = 1, for an-
nual maxima based extreme generations.

In most of the hydrological design requirements, it could be
demanding to define events through highlighting the
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significance or priority of one design variables over another
design vectors and thus literature pointed out the necessity of
conditional distributional framework for defining the concept
of conditional return periods, i.e. Salvadori and De Michele
(2004), Shiau (2006), Zhang and Singh (2006, 2007a), Kao
and Govindaraju (2008), Salvadori and De Michele (2010),
Salvadori et al. (2011), Vandenberghe et al. (2011), Rauf and
Zeephongsekul (2014), Veronika and Halmova (2014),
Salvadori et al. (2014), Saghafian and Mehdikhani (2014),
Zhang et al. (2016), Brunner et al. (2016) and Tosunoglu
and Kisi (2016). For example, probability of flood peak con-
ditional to volume or durations or either flood volume condi-
tional to peak or durations or flood durations conditional to
flood peak or volume information would be benefited from
the hydraulic design prospects. Let us consider if ‘X’ and ‘Y’
are the flood vectors then the conditional distribution of ‘X’
given various percentile value of ‘Y’ or vice-versa can be
formulated using Eqs. (9) and (10):

PX=Y ¼ 1−
�
P xð Þ−H x; yð Þ=1−P yð Þ ð9Þ

PY=X ¼ 1− P yð Þ−H x; yð Þ=1−P Xð Þð Þ ð10Þ

Formulation of conditional probability framework under
bivariate distributions between any pair of targeted flood vec-
tors say ‘X’ and ‘Y’ can be formulated using Eqs. (11) and
(12), for the various possible combinations in accordance with
suitability or nature of the undertaken problem, as given be-
low (Shiau 2003; Reddy and Ganguli 2012a; Veronika and
Halmova, 2013).

P X ≤x∖Y ≤yð Þ ¼ P X ≤x; Y ≤yð Þ=P Y ≤yð Þ
¼ H X ; Yð Þ or C X ; Yð Þ=F Yð Þ ð11Þ

P X ≤x∖Y ≥yð Þ ¼ P X ≤x; Y ≥yð Þ=P Y ≥yð Þ
¼ F Xð Þ−C X ; Yð Þ=1−F Yð Þ ð12Þ

Similarly, Eqs. (13) and (14) represented the conditional cu-
mulative function of Y given X ≥ x,which can be expressed as

P Y ≤y∖X ≤xð Þ ¼ P Y ≤y;X ≤xð Þ=P X ≤xð Þ
¼ C X ; Yð Þ=F Xð Þ ð13Þ

P Y ≤y∖X ≥xð Þ ¼ P Y ≤y;X ≥xð Þ=P X ≥xð Þ
¼ F Yð Þ−C X ; Yð Þ=1−F Xð Þ ð14Þ

where H(X, Y) and C(X, Y) signify the joint cumulative distri-
butions, estimated using conventional and copula density
structure of the univariate margins F(X) and F(Y) of targeted
vectors ‘X’ and ‘Y’. Therefore, the cumulative structure H(X,
Y) can be expressed in the context of bivariate copula density
structure, say ′C(X, Y)′ for the representation of conditional
return period, as expressed from the Eqs. (15) and (16):

TX nY ≥ y ¼ 1=
�
1− F yð Þð Þ

�
1−F xð Þ−F yð Þ

þ H X ; Yð Þ or C X ; Yð Þð Þ ð15Þ

TynX ≤ x ¼ 1=
�
1− F xð Þð Þ

�
1−F xð Þ−F yð Þ

þ H X ; Yð Þ or C X ; Yð Þ ð16Þ

Really, it is very difficult and tough challenge under the
design process to point out that which definition of return
contours perform better and consistence measure of design
event for attributing a justifiable and significant risk expecta-
tion for the undertaken water related problems.

Demonstrating the risk of supercritical extreme via
the Kendall’s distribution and survival functions (or
secondary return periods)

Actually, utilizing the standard definition of return period
solely in the light of inclusion probability or primary returns
might be problematic and attributed for underestimation of
correct value (Salvadori and De Michele 2010). In actuality,
hydrologic consequences, i.e. flood, drought or rainfall, ex-
hibited either the critical, sub-critical or super-critical behav-
iour. Primary return periods (i.e. joint and conditional distri-
butions) for the annual flood analysis often attributing towards
capturing of mean forecasting and would not facilitate to dem-
onstrate the risk of supercritical or dangerous scenario which
are rare and could be outlined by investigating mean time
lapse between the occurrence of supercritical episodes
(Salvadori and De Michele 2010; Salvadori et al. 2011;
Vandenberghe et al., 2011; Mirabbasi et al. 2012).
Appropriate reliability of hydraulic design system often
intended towards the definition of exceedance probabilities
for rare episodes (Sarhadi et al. 2016). Actually, the super-
critical scenario of hydrological extremes often reveals a seri-
ous potential threat for designing facilities due to its rare hap-
pening risk in comparison with given design return periods
(Graler et al. 2013; Reddy and Ganguli 2013). Therefore, it
often demands to make a sharp distinction through the segre-
gation of probability distribution space into a non-critical and
super-critical region based on critical cumulative probability
level through Kendall distribution functions or ′KC′ (Graler
et al. 2013; Brunner et al. 2016). Thus, literature, i.e.
Salvadori (2004), Salvadori and De Michele (2004) and
Salvadori and De Michele (2007), demonstrated the efforts
towards recognizing the concept of return period under super-
critical extreme scenario for defining design events from the
Kendall distribution functions also called secondary return
period. Kendall return is usually demonstrated through an
appropriate discrimination between the non-critical and super-
critical episodes using critical cumulative probability levels
and that will be further extended into the multidimensional
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frame in the context of Kendall distribution function 0KCθ :ð Þ0
(Graler et al. 2013). Under copula framework, Kendall joint
return period can be derived fromKendall probability function
under two different computational way, i.e. via analytically
efforts or ether numerically, based on the simulation algorithm
(Salvadori and De Michele 2007; Vandenberghe et al. 2010;
Salvadori et al. 2011). According to Salvadori and DeMichele
(2010) and Salvadori et al. (2011), algorithmic expression for
Kendall distribution can be pointed using Eq. (17):

KC tð Þ ¼ Pr W ≤ t½ � ¼ Pr C U ; Vð Þ≤ t½ �½ �; ð17Þ
where W =C(U, V) signifies for univariate random variables
and KC(t) only depends on C(U, V) or copula function in
which, copula level curves called isolines make a separation
of distribution space into super-critical and a non-critical seg-
ments. Also, for the given probability level ‘t’, Kendall’s
quantile can be demonstrated through an inverse of Kendall
distribution (i.e. qt ¼ K−1

C tð Þ ) (Brunner et al. 2016). Actually,
the above Kendall’s equation facilitates to investigate the
chance that random point in the unit square exhibited either
larger or smaller copula value than a given critical probability
level through the representation of multidimensional informa-
tion via univariate form based on the cumulative function of
copula’s level curve (Salvadori et al. 2011; Graler et al. 2013).
Efforts over the statistical evaluation of analytical expression
for Kendall function are motivated by Ghoudi et al. (1998)
and Salvadori and De Michele (2007) for the extreme value
and Archimedean based bivariate copula distributions. On the
other side, Salvadori et al. (2011) focused over the tackling of
simulation algorithmic efforts (via numerical analysis) for de-
fining′KC′, in the absence of analytical expression. Salvadori
et al. (2013) tackle some critical issues over standard
Kendall’s return estimation, which are actually pointed by
Graler et al. (2013), through introducing the concept of sur-
vival function in conjunction with Kendall’s return periods.
According to Graler et al. (2013), it might be possible that few
non-critical events reveal for larger value over any undertaken
design value, but the conventional definition of Kendall’s
function attributes for longer joint concurrence probabilities
for all the super-critical scenarios over the design value.
Therefore, such computational challenges can be undertaken
in the light of survival Kendall’s structure by replacing
Kendall’s function by survival Kendall’s function under cop-
ulas structure as demonstrated mathematically by Eq. (18)
(Salvadori et al., 2013).

TKendall0s survivval ¼
μ

1−KC tð Þ0
and KC tð Þ0

¼ Pr C 1−U ; 1−Vð Þ≥ t½ � ð18Þ

where C(1 −U, 1 − V)= survival function of bivariate random

vectors; 1−KC tð Þ0 signifies the chance of multivariate extreme

occurrence in the super-critical region at a critical probability
level ‘t’ (Salvadori et al. 2014). On the other side, survival
Kendall quantile can be derived by replacing inverse of

Kendall function through survival Kendall’s distribution as qt
¼ KC

−1
tð Þ (Salvadori et al. 2014). Volpin and Fiori (2014)

demonstrated structure-based concurrence probability estima-
tions which could be an essential concern in the hydraulic
designing facility. Such efforts hypothetically establish an
interlinking between hydrological variables with their design
parameters via strictly monotonic structure function as a sta-
tistically formulated equation and which can be facilitated for
structural failure return period as demonstrated using Eqs. (19)
and (20) (i.e. Volpin and Fiori 2014).

Z ¼ g X ; Yð Þ ð19Þ
TZ ¼ μ

1−FZ zð Þ0 ð20Þ

where FZ is the distribution structure of a random variables
say, Z.

Themost interesting desire just after the recognition of return
periods is the characterisation of the most appropriate design.
Multivariate nature of design problem often demands to select
multiple design events for a given estimated return periods and
that will be further parameterizing during the hydraulic design-
ing procedure (Salvadori et al. 2011; Graler et al. 2013). In
actuality, an infinite number of possible combinations among
targeted or flood vectors corresponding to each concurrence
probabilities under multidimensional framework often reveal
a tough challenge during selecting the most promising and
effective design process. Salvadori et al. (2011) pointed an ef-
forts to justify the above requirements under the two different
perspectives such that one approach concentrated through
‘component-wise excess design realization’ while other one
focused ‘most-likely design realization’. Selection of design
under the later practices can be justified through targeting a
point with the largest probability distributions (Salvadori et al.
2011; Graler et al. 2013). Besides this approach, Salvadori et al.
(2014) focused another alternative, i.e. design realization via H-
conditional approach which can be defined in the presence of
ruling variable. As pointed by Brunner et al. (2016), multivar-
iate simulation often yielded large outcomes; thus, the selection
of just one design realization often reveals for flexibility. On the
other side, many practitioners desire for much design informa-
tion through selecting one design event via opting a sub-set of
design process, which can be tackled through splitting a return
curve into two distinct parts called naive and a proper part as
demonstrated by Chebana and Ouarda (2009) or via across
sampling of return contour plot according to likelihood func-
tion, called ensembles of design events (Graler et al. 2013). Few
statistical significances of ensemble-based strategies are also
pointed in the literature, i.e. Vandenberghe et al. (2010) and
Salvadori et al. (2011).
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For 2-D joint probability structure, it can be formulated
using Eq. (21);

U1;U2ð Þ ¼ argmaxTX1 ;X2
f XY f −11 u1ð Þ; f −12 u2ð Þ� � ð21Þ

Similarly, for 3-D probability frame, using Eq. (22);

U1;U2;U3ð Þ
¼ argmaxTX1 ;X2 ; X 3

f XYZ f −11 u1ð Þ; f −12 u2ð Þ; f −13 u3ð Þ� � ð22Þ

Development of few ML algorithms
in the flood prediction

Flood is often considered as the most destructive natural disas-
ter and thus, often, motivated hydrologist and water practioner
towards discovering the more efficient and accurate flood fore-
casting model or machine learning algorithm (or MLA) for the
appropriate assessment extreme hazards. This section pointed
the distinguish varieties of MLA, which are frequently and
widely accepted among researchers in the treatment of
hydroclimatic samples, also listed in the Table 1. ANNs or
artificial neural networks is considered as one of the most in-
teractive and efficient MLA in terms of more accurate approx-
imations, higher modelling speed and could be able in model-
ling of complex flood structure (i.e. Mosavi et al. 2018; Li et al.
2010; Wu and Chau 2010; Jain and Prasad Indurthy 2004).
Frequently applied for the modelling of river flow characteris-
tics is rainfall-runoff modelling or prediction or extrapolation of
streamflow characteristics, as revealed from Table 1. But, be-
sides their several advantages, ANNs exhibited some

modelling issues in flood modelling such as complexity in data
handling and network architecture (Deo and Sahin 2015).
Besides this algorithm, the SVM or support vector machine, a
supervised machine learning algorithm which works on the
principal of statistical learning theory as well as rule of struc-
tural risk minimizations, is recognized as the most efficient and
robust approach, especially in solving non-linear regression
issues in the flood predictions and modelling (i.e. Ortiz-
García et al. 2014; Gizaw and Gan 2016; Gong et al. 2016;
Jajarmizadeh et al. 2015; Tehrany et al. 2015). Based on train-
ing from the historical observations, SVM can extrapolate the
data for the future time frame; also in few literature, it is incor-
porated as a regression tools called Support vector regression
(or SVR) (i.e. Li et al. 2016; Tehrany et al. 2015). TheWNN or
wavelet neural network is another most interactive machine
learning approach in the time series extrapolations of flood
characteristics, which is based on the principal of decomposi-
tion of initial observation sets into individual resolution levels.
It is widely applied in the modelling of daily streamflow char-
acteristics, rainfall-runoff as well as reservoir inflow modelling
(i.e. Supratid et al. 2017; and Ravansalar et al. 2017). On the
other side, the ANFIS or adaptive neuro-fuzzy inference system
algorithm often poses quick and easy implementation as well as
accurate and higher abilities in the learning procedure and thus
often poses a good choice in the forecasting of flood episodes
(i.e. Choubin et al. 2014; Lafdani et al. 2013; Shu and Ouarda
2008). Besides this, the decision tree (or DT) algorithm, which
is based on the technique of tree of decision-making, is widely
applicable in the prediction of flood events (Tehrany et al.,
2014; Liaw and Wiener 2002), which further classified as fast
algorithm (Tehrany et al. 2013), classification and regression
tree (or CART) (i.e. Dehghani et al. 2017), random forest

Table 1 Machine learning algorithm (MLA) in the treatment of hydrologic samples

Algorithm Applicability in the treatment of hydroclimatic samples References

ANNs (artificial neural networks) 1. Forecasting of streamflow characteristics Kisi (2007)

2. River flow modelling Badrzadeh et al. (2013)

3. Rainfall-runoff modelling Smith and Eli (1995)

WNN (wavelet neural network) 1. Rain-fall runoff modelling Ravansalar et al. (2017)

2. Reservoir inflow modelling Supratid et al. (2017)

3. Modelling of daily basis streamflow observations Guimarães Santos and da Silva (2014)

SVM (Support Vector Machine) 1. Streamflow modelling Jajarmizadeh et al. (2015)

2. Estimation of Flood quantiles Gizaw and Gan (2016)

3. Precipitation modelling Ortiz-García et al. (2014)

ANFIS (adaptive neuro-fuzzy inference system) 1. Modelling of short-term rainfall characteristics Lafdani et al. (2013)

DT (decision tree) 1. Fast algorithm—flood prediction and modelling Tehrany et al. (2013)

2. The classification and regression tree (or CART)—flood
simulation procedure

Dehghani et al. (2017)

3. Random forests (RF) method—flood prediction Liaw and Wiener (2002)

4. M5 decision-tree algorithm—flood modelling Etemad-Shahidi and Mahjoobi (2009)
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method (or RFM) (i.e. Liaw andWiener 2002) andM5 decision
tree algorithm (i.e. Etemad-Shahidi and Mahjoobi 2009). All
the above-mentioned ML algorithms are classified into two
groups depending upon the length of samples or prediction
lead-time under considerations such as short term and long term
and which are further categorized as single and hybrid method.

Research discussion

Statistical inferencing of extreme hydroclimatic samples, for
retrieving flow exceedance probabilities or return period, is
often revealing an insightful concern for assessing hydrologic
risk in the basin perspective water resources planning, man-
agement, and designing facilities. Actually, the hydrometeo-
rological stimulations either via the extension of historical
rainfalls samples or through joint distribution framework over
the variables of interest are the two distinct ways to address the
risk assessments for an extreme flood scenario. Few attempts
extracted flood frequency curve via integrating hydrological
models in conjunction with probabilistic rainfall models, i.e.
either via the conventional based lumped and distributed
models or via continuous or event-based hydroclimatic simu-
lations. But due to the longer computational analysis, as it is
demanding high spatial and temporal resolutions, it would be
attributed for an ineffective characterization of catchments
behaviour. Due to the higher degree of uncertainty and com-
plex flood characteristics, it often demanding to establish a
probability distributions framework instead of any determin-
istic procedure (Sen 1999 and Hosking et al. 1985).
Multidimensional behaviour often demands the necessity of
multivariate constructions for retrieving design variable
quantiles under the different notations of return periods
through accounting its multiple design vectors instead of just
examining the univariate frequency relationship or return pe-
riods. In actuality, univariate frequency analysis would be in-
capable to recognize the full screen of flood or inflow
hydrograph and thus could be demanding to introduced mul-
tiple intercorrelated flood vectors, i.e. flood peak, volume and
its duration to establish joint probability density functions or
pdf and joint cumulative distribution functions cdf, especially
from the prospects of hydraulic designing procedures where
accountability of multivariate design parameters could be a
feasible desire based on their multivariate exceedance proba-
bilities. In other words, selection of return period depends
upon the importance of undertaken structure as well as its
consequences of failure where their appropriate selection of-
ten attributed an impact over the strength of design variables
quantiles (Brunner et al. 2016). Therefore, unreliability and
impractical consequences of the univariate flood modelling
motivated numerous demonstrations towards the development
of a multivariate distribution framework via introducing dis-
tinguished varieties of traditional probability functions for

establishing bivariate joint relations between flood peak-vol-
ume, volume-durations or peak-duration, i.e. Choulakian
et al., 1990; Yue et al. 1999; Yue 1999, 2000, and references
therein), but due to several statistical shortcomings which of-
ten limited the applicability of traditional multivariate func-
tions and thus motivated extended demonstrations in the light
of bivariate copulas simulations under the parametric or
semiparametric distribution settings (De Michele and
Salvadori 2003; Salvadori and De Michele 2004; Salvadori
2004; Nelsen 2006; Karmakar and Simonovic 2009 and
references therein). In multivariate risk statistics, return period
usually associated with certain exceedance probabilities and
their selection is not an arbitrary process which solely based
on the nature of work assessments that will further decide the
importance of design vectors into considerations.

During copula constructions, the approximations of the
marginal distribution of univariate random vectors via the
parametric functions would be problematic due to unsymmet-
rical or skewed distribution behaviour of hydrologic samples.
Also, the parametric functions often imposed an assumption
that random samples are drawn from the population whose
density structure is pre-defined, i.e. the marginal distribution
of flood characteristics is assumed to follow some specific
family of parametric density functions, but in actuality, no
universally accepted models are fixed or assigned to any of
hydrologic vector. Thus, many literature pointed the flexibility
of non-parametric probability concept in the light of Kernel
density estimations or kde which is recognized as a much
stable data smoothing procedure in the field of hydrologic or
flood frequency analysis and yielding a bonafide density (i.e.
Adamowski 1996, 2000; Ghosh and Mujumdar 2007;
Santhosh and Srinivas 2013 and references therein).
Distinguished varieties of copulas are incorporated such as
the extreme value class (i.e. Gumbel-Hougaard, Galambos
and Husler-Reiss), elliptical class (i.e. Gaussian family), un-
classified Plackett and Farlie-Gumbel-Morgenstern (or FGM)
parametric functions and three-parametric Twan family (i.e.
belong to extreme value class) for establishing bivariate de-
pendencies of hydroclimatic samples and among which the
Archimedean class (i.e. Ali-Mikhail or A-M-H family, Frank
family, Clayton or Cook-Johnson (C-J) family and Gumbel-
Hougaard family) copulas are frequently accepted due to large
varieties of families and its capability to capture joint depen-
dencies for a wider extent also, exhibiting several desirable
properties which attribute much flexibility during joint prob-
ability simulations (i.e. De Michele and Salvadori 2003;
Salvadori and De Michele 2004; Favre et al. 2004; Nelsen
2006; Grimaldi and Serinaldi 2006; Papaioannou et al. 2016;
Galiatsatou and Prinos 2016; Requena et al. 2016 and
references therein). Each family of Archimedean class is char-
acterized by a specific extent of dependency capturing capa-
bility, which is constrained by the degree of intersection be-
tween random vectors and will be investigated based on the
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dependency measure. Unless extended, efforts are motivated
towards establishing copula-based bivariate design estima-
tions but such attempts still might be insufficient for revealing
comprehensive studies of flood probability analysis due to its
triplet distribution behaviour and could be demanding for the
simultaneous accountability of its all intercorrelated vectors.
The potential damage could be depending upon the multiple
relevant vectors of specified hydrological episodes such that
ignorance of spatial dependency among these random vectors
might be attributed for underestimation of uncertainty (Renard
and Lang 2007; Graler et al. 2013; Vernieuwe et al. 2015).
Thus, a limited number of literature appeared in the context of
3-dimensional copula distribution analysis for establishing the
trivariate joint relationship and their associated return periods
(i.e. Reddy and Ganguli 2013; Graler et al. 2013; Daneshkhan
et al. 2016 and references therein). Distinguished varieties of
standard trivariate copulas are incorporated, i.e. Grimaldi and
Serinaldi (2006) (mono-parametric and asymmetric or FNA
structure of frank function), Serinaldi and Grimaldi (2007)
(FNA structure), Genest et al. (2007) (meta-elliptical copulas),
Reddy and Ganguli (2013) (FNA and Student’s t copulas
which belong to elliptical class) and Fan and Zheng (2016)
(entropy copulas). Genest et al. (2007) revealed that the meta-
elliptical copulas could be effective incorporation for preserv-
ing the pairwise dependencies among the random vectors
through the correlation matrix but might be ineffective under
the low probabilities unless the asymptotic properties of data
will be justified through the strong arguments. Similarly, the
flexibility of Plackett family of copulas which concluded for
faithful preservation of lower-level dependencies during
higher dimension modelling is pointed by Kao and
Govindaraju (2008) for rainfall samples. Madadgar and
Moradkhani (2013) captured the joint behaviour of drought
episodes using trivariate Gumbel copula (i.e. Archimedean
family function) and t copula (i.e. elliptical family). Some
literature still pointed the issue of faithful preservations of
lower stages dependency via the FNA structure and their
modelling limitation which is only limited for positive range
and thus pointed the applicability of few other standard class
of trivariate copulas. Actually, justifiable preservation of all
the lower-level dependencies often seems a challenging effort
in the higher dimensional copula-based methodology espe-
cially, if the complex pattern of dependency exhibited over
the multidimensional data structure. Also, it often demands a
flexible methodology through precise estimation of tail depen-
dence coefficient under various tail dependency. Therefore,
literature such as Kurowicka and Cooke (2006), Joe (1997),
Aas et al. (2009) and Bedford and Cooke (2001); Bedford and
Cook (2002) directed towards a comprehensive way of uncer-
tainty characterization for higher dimensional hydrological
entities using the vine or pair-copula construction (or PCC).
Actually, vine copula construction is solely based on the prin-
ciple of the decomposition of full multivariate density into a

cascade or simple local building blocks via conditional inde-
pendence or pair-copulae (Aas and Berg 2009; Bedford and
Cook 2002). Due to conditional mixing via the stage-wise
hierarchical nesting procedure, the pair-copula concept exhib-
ited much effective and flexible modelling environments. In
PCC construction, interactive sets of multiple bivariate cop-
ulas in cascade form are often employed in fitting a copula to
random vectors and their conditional and unconditional distri-
bution, instead of just introducing a fixed multidimensional
structure to all the characteristics and which might be attrib-
uted for ineffective over the data exhibited complex depen-
dence structure in the tail and which often a stringent chal-
lenges in hydrological modelling (Joe 1997; Bedford and
Cooke 2001; Bedford and Cook 2002). Distinct varieties of
pair-copula decomposition are attributed under the regular
vine structure such as canonical or C-vine and D-vine distri-
bution in which the applicability of D-vine structure is fre-
quently sounded from the existed literature due to their higher
flexibility than the C-vine structure. In actuality, the degree of
mutual concurrency among multiple targeted vectors com-
prises the basis to adopt a justifiable vine tree structure
(Graler et al. 2013). The approximation capability of vine
copula for multidimensional structure depends upon the man-
ner of their decomposition, unless the modelling efficacy of
PCC structure is reviewed from the above-cited literature but
still having some modelling issues, i.e. complexity during the
selection and synthesis of justifiable copula structure under
parametric density concept for vine constructions (Bedford
et al. 2015). Therefore, the concept of minimal information
based vine structure is discussed such that this non-
informative vine concept could further exaggerate the flexibil-
ity of conventional PCC structure (Daneshkhan et al. 2016).
Actually, minimum information PCC captures the complex
multidimensional flood structure for various tail dependency
by the precise estimation of their tail coefficient for given
selected copulas and also facilitates to the model multivariate
extreme in the presence of limited data length (Daneshkhan
et al. 2016).

The statistical significance of return periods under multidi-
mensional design concept for tackling different hydrologic
problems is reviewed in the separate section. Estimating mul-
tivariate design quantiles under different notations of return
periods, i.e. based on joint and conditional probability distri-
bution functions or via Kendall’s distribution or survival func-
tions, is often an essential concern in the hydrologic risk as-
sessments (Salvadori 2004; Graler et al. 2013; Salvadori et al.
2013). Brunner et al. (2016), Shiau (2003), Salvadori (2004),
Salvadori and De Michele (2004, 2007), Salvadori et al.
(2011) and Serinaldi (2015) pointed the extended mathemati-
cal formulation of defining the different notations of return
periods using copula-based methodology. In actuality, univar-
iate return period might be useful only, if the concentration of
single hydrological vector will justify the requirements of the
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design process where each of the separate return period ap-
proach has their own significance and will be solely based on
the nature of the undertaking problem, and also, it is much
difficult task to decide for the most consistent ways (Veronika
and Halmova, 2013; Serinaldi 2015). Therefore, the return
periods demonstrate the undertaken assessment requirements
in a much better way, only the things that create a sharp dis-
tinct through selecting most consistency and justifiable return
period. According to Reddy and Ganguli (2013), considering
both the primary as well secondary return period could be an
effective practice more especially from the prospect of flood
defence infrastructure designs. Such that concentrating over
only the return period in either ‘OR’ case or ‘AND’ might
reveal for under-dimensioned or over-dimensioned. Actually,
the joint return period facilitates different possible ways to
capture joint relationship for various possible combinations
among the multiple flood vectors. In other words, for a given
return period, various possible design combinations can be
possible or vice versa. Besides the importance of joint return
contour, most of the hydrological design requirements often
demand to define events through highlighting the significance
or priority of one design variables over another design vectors,
i.e. conditional distribution or conditional return periods (i.e.
Salvadori and De Michele 2004, Shiau 2006, Zhang and
Singh 2006, 2007a, Kao and Govindaraju 2008, Salvadori
and De Michele 2010, Salvadori et al. 2011). Such that prob-
ability of flood peak conditional to volume or durations or
either the flood volume conditional to peak or durations or
flood durations conditional to flood peak or volume informa-
tion would be benefited from the hydraulic design prospects.

Hydrological consequences, i.e. flood, drought or rainfall,
exhibited either the critical, sub-critical or super-critical be-
haviour; thus, in such circumstances, only the accountability
of primary return period might be problematic or attributed for
underestimation of correct value (Salvadori and De Michele
2010). Capturing of onlymean forecasting would not facilitate
to demonstrate the risk of supercritical or dangerous episodes
which are rare. Appropriate reliability in hydraulic design fa-
cilities often intended towards defining the exceedance prob-
abilities of rare episodes (Sarhadi et al. 2016). Therefore, it
could be demanding to make a sharp distinction through seg-
regating probability distribution space into a non-critical and
super-critical region based on the critical cumulative probabil-
ity level and will be further extended into the multidimension-

al frame in the context of Kendall distribution function 0KCθ

:ð Þ0 (i.e. Salvadori 2004; Salvadori and De Michele 2004;
Salvadori and De Michele 2007 and Graler et al. 2013). The
analytical efforts or ether through numerical approach based
on simulation algorithm are the two different computational
ways to estimate the Kendall joint return period, derived from
Kendall probability function under the copula distribution
framework (Salvadori et al., 2007; Vandenberghe et al.

2010; Salvadori et al. 2011). The analytical expression for
Kendall function are motivated by Ghoudi et al. (1998) and
Salvadori and De Michele (2007) for the bivariate extreme
value and Archimedean copula distributions while, Salvadori
et al. (2011) focused, tackling of simulation algorithmic ef-
forts (via numerical analysis) for defining′KC′ in the absence
of analytical expression. It might be possible that few non-
critical events reveal for larger value over any undertaken
design value, where the Kendall’s function attributes for lon-
ger joint concurrence probabilities for all the super-critical
scenario over the design value thus can be undertaken in the
light of survival Kendall’s function (Salvadori et al. 2013).
This structure-based concurrence probability estimations es-
tablishing an inter-association between hydrological charac-
teristics and design parameters via the strictly monotonic
structure function as a statistically formulated equation and
which can be facilitated for structural failure return period
(i.e. Volpin and Fiori 2014). Due to multivariate nature of
the design problems, it often demands the characterization of
most justifiable design for a given estimated return period
requirement under the two different perspectives, i.e. one ap-
proaches concentrated through ‘component-wise excess de-
sign realization’ while the other one focused ‘the most-likely
design realization’ (Salvadori et al. 2011). The design realiza-
tion via H-conditional approach is another alternative which
can be defined in the presence of ruling variable (Salvadori
et al. 2014).

Research conclusions

Basin perspective water resources operational planning, man-
agements or the hydraulic structural designs often demand an
accurate estimation of flow exceedance probability for
assessing the flood risk. Due to higher degree of uncertainty
and complex flood dependence structure, it often demands a
probabilistic approach for the treatment of historical
streamflow observations within the catchments region based
on several mathematical and statistical frameworks. The flood
frequency analysis or FFA statistically defines an inter-
association between flood design quantiles and their recursion
interval by fitting a univariate or multivariate probability dis-
tribution functions or pdfs. Multivariate flood distribution
analysis often provides a comprehensive understanding in
the flood generating probability which usually comprises a
combination of the joint probability density functions or pdfs
and joint cumulative distribution functions or cdfs. In actual-
ity, flood is a multivariate complex and stochastic hydrologic
consequence usually characterized completely through its
multiple intercorrelated random vectors, i.e. flood peak dis-
charge, volume and duration of flood hydrograph. Therefore,
the reliability of univariate flood frequency analysis or return
periods often stands for several queries which would be
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attributed for underestimation and overestimations of hydro-
logic risk and thus often demanding the establishment of mul-
tivariate joint distribution of flood characteristics by account-
ing its multiple intercorrelated flood vectors. Actually, univar-
iate flood probability constructions would be incapable to rec-
ognize the full screen of flood or inflow hydrograph and re-
duce uncertainty in the estimated design quantiles.

In this literature, the efficacy of copula-based method-
ologies is reviewed for establishing multivariate distribu-
tions of flood episodes, which is recognized as highly
flexible tool for establishing multivariate joint dependen-
cy and their associated return periods in comparison with
traditional multivariate functions that are discussed in the
context of a theoretical and mathematical simulation for
the flood characteristics. In this study, different methodo-
logical attempts in the light of bivariate and trivariate
copula distribution analysis are pointed for tackling mul-
tivariate design problems and estimating design variable
quantiles under different notations of return periods. The
section ‘Flood frequency analysis via one-dimensional
probability distribution framework or approximation of
marginal distributions’ pointed a distinguish variety of
one-dimensional mono-parametric, bi-parametric or tri-
parametric based parametric distribution family functions,
which are often employed for establishing univariate mar-
ginal distributions and which often a mandatory pre-
requisite desires before introducing individual hydrologic
or flood vectors into multivariate or copula framework. It
is also revealed that the different density structures attri-
bute different estimations of design quantiles, especially
in the tail of the distributions; also, flexibility of available
univariate functions exhibited a control to justify an ap-
propriate fit with the given samples such that it depends
upon its associated vectors of unknown statistical or mod-
el parameters. But, simulations via parametric functions
often imposed an assumption that random samples are
drawn from the population whose density structure is
pre-defined. In actuality, no specific models are catego-
rized and opted universally for any specific hydrologic
variables, which would follow different distributions.
Therefore, flexibility of non-parametric based kernel den-
sity estimator is recognized as a much stable data smooth-
ing procedure in the field of hydrologic or flood model-
ling and which yielding a bonafide density as revealed
from section ‘An approach via non-parametric distribution
framework’. The non-parametric framework does not re-
quire any prior distribution assumptions and will be di-
rectly derived from distribution series with higher extent
of flexibility as compared with parametric density estima-
tors. Unless the univariate frequency analysis defines the
general concept of return period via the estimated cumu-
lative distribution function, it might be unsatisfactory
when the requirement demands the consideration of

multivariate design parameters, which often reveals an
essential concern in the water-related queries.

Multivariate practices via the traditional probability distri-
bution functions often attribute for the several statistical short-
comings and limitations, as revealed from section ‘Limitation
of traditional multivariate distribution framework’. Actually,
the classical statistical approaches of estimating degree of as-
sociation would be incapable for characterizing the co-
movements tendencies of hydrologic or flood vectors. In such
aspects, the copula function appeared as a most effective mul-
tivariate tool which segregates modelling of individual univar-
iate vectors and their joint structure separately into two distinct
stages, which thus attribute higher flexibility in selecting most
appropriate and justifiable marginal distributions and their
joint structure to capture a wider extent of dependency along
with preservation in their joint structure, as revealed from
section ‘Copula-based bivariate probability distributions’.
The copula-based methodology can be classified as paramet-
ric, semiparametric and non-parametric estimation procedures
depending upon the way of estimating its univariate marginals
and joint dependence structure. An interactive set of copula
family function such as the extreme value class (i.e. Gumbel-
Hougaard, Galambos and Husler-Reiss), elliptical class (i.e.
Gaussian family), unclassified Plackett and Farlie-Gumbel-
Morgenstern (or FGM) parametric functions and three-
parametric Twan family (i.e. belong to extreme value class)
is often incorporated for establishing bivariate joint depen-
dence structure, in which the Archimedean class (i.e. Ali-
Mikhail or A-M-H family, Frank family, Clayton or Cook-
Johnson (C-J) family and Gumbel-Hougaard family) copulas
are frequently accepted due to large varieties of families and
its capability to capture joint dependencies for a wider extent
also, exhibiting several desirable properties which attributes
much flexibility during joint probability simulations, as re-
vealed from same section. Unless an extended efforts are often
motivated towards establishing copula-based bivariate simu-
lations and estimation of bivariate design variable quantiles
under the different notations of return periods but, such at-
tempts still might be insufficient for revealing a justifiable
and comprehensive studies of flood probability analysis, due
to its trivariate behaviour. Actually, potential damage could
likely be a function of multiple relevant vectors of specified
hydrological episodes such that an ignorance of spatial depen-
dency among these uncertain vectors might be attributed for
the underestimation of uncertainty, which frequently encoun-
tered during risk evaluation. Therefore, section ‘Trivariate
joint dependency constructions via 3-dimensional copulas’
discussed the applicability of 3-dimensional copula function
for establishing trivariate joint simulation of flood character-
istics and their associated return periods but whose computa-
tional strategies are quite limited over the existing literature.
The above conventional trivariate copula simulation often en-
countered some statistical issues such as complexity during
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the approximation of justifiable parametric distributions for
higher dimensional hydrological attributes and also might be
quite ineffective to capture and reflect all the possible mutual
concurrency among multidimensional flood vectors, as re-
vealed from section ‘Vine copulas or PCC framework for
trivariate joint distributions’. Due to higher degree of uncer-
tainty and complex flood dependence structure, resolving the
dependence structure of multivariate extreme via conventional
copula formulation is quite complex and often demands a
flexible methodology through precise estimation of tail depen-
dence coefficient under various tail dependency. For solving
such issues, the vine or pair-copula construction (PCC) pro-
vides a comprehensive way of uncertainty characterization for
the higher dimensional hydrological entities which is solely
based on the principle of the decomposition of full multivar-
iate density into a cascade or simple local building blocks via
conditional independence or pair-copulas. In actuality, due to
conditional mixing via the stage-wise hierarchical nesting pro-
cedure, the pair-copula concept exhibited much effective and
flexible modelling environments. The PCC structure also ex-
hibited some modelling issues as revealed from ‘Vine copulas
or PCC framework for trivariate joint distributions’ and thus
motivated towards the minimum information PCCwhich cap-
ture complex multidimensional flood structure for various tail
dependencies by the precise estimation of their tail coefficient
for given selected copulas and also facilitate to the model
multivariate extreme in the presence of limited data length.

The statistical significance of return periods under mul-
tidimensional design concept for tackling different hydro-
logic problems is discussed in the section ‘Return periods
under multivariate settings’. Return periods can be derived
from the exceedance probabilities of flood attributes pair in
the multidimensional risk framework, such that joint return
period retrieves from the joint exceedance probabilities and
segregated into two distinct groups, i.e. primary return pe-
riod comprise via the inclusive probability such as ‘AND
and ‘OR’ return period and the secondary or ‘Kendall’
return period, which can be define based on the Kendall’s
probability distribution or survival function. Utilizing the
standard definition of return period based on inclusion
probability or primary returns might be attributed for un-
derestimation of correct value. Actually, primary return
periods captured the mean forecasting which would be in-
capable to demonstrate the risk of supercritical or danger-
ous scenario. Appropriate reliability of hydraulic design
system often intended towards the definition of exceedance
probabilities for rare episodes and thus pointed the mathe-
matical significance and derivation of the secondary return
periods derived from the Kendall’s distribution and surviv-
al function called the Kendall’s return period, as discussed
in section ‘Demonstrating the risk of supercritical extreme
via the Kendall’s distribution and survival functions (or
secondary return periods)’.

Some ideas to strengthen the current attempts
of multivariate practices via incorporating
time-varying copula framework

Unless extended efforts are motivated via the multivariate
stochastic generations of flood characteristics in the context
of bivariate or trivariate copulas simulations for retrieving the
flood exceedance probabilities or design quantiles under dif-
ferent notations of return periods, how one could appropriate-
ly justify the desire of defensive task without addressing dy-
namic environmental arising (Climate change and/or LULCC)
often poses an isolation behaviour or independence with such
phenomenon (Kartz et al. 2002; Strupczewski and
Kaczmarski 2001; Khaliq et al. 2006; El Adlouni et al.
2007; Villarini et al. 2009; Wigley 2009; Lopez-Paz et al.
2013; Condon et al. 2015). Consistencies and accuracy in
the estimated design quantiles under stationary risk frame-
work might be doubted due to the ignorance of the account-
ability of changing phenomenon either over univariate struc-
ture (i.e. temporal variability in their mean and variance) of
individuals flood vectors or in their joint correlation structure
(Zhang 2005; Bender et al. 2014; Galiatsatou and Prinos
2016; Sarhadi et al. 2016). The existence of the non-station-
arity, due to external controlling factors, usually tries to inter-
rupt the hydrological behaviour within catchment region and
which might be further altered the expectation of such extrem-
ity happening under time-invariant hydrologic risk assessment
efforts. Actually, traditional flood modelling is often designed
with the hypothesis of independent and identically distributed
(or i.i.d) behaviour of hydrologic samples and such assump-
tion often adapted as a standard design procedure for tackling
water-related issues but, due to the time-varying conse-
quences, it would interrupt the statistical characteristics of
hydrological samples and might lead to non-stationarity
(Gilroy and Macuen 2012; Lima et al. 2015). Time-varying
controlling covariates would pose their stress over the hydro-
logical characteristics differently from the future prospects as
compared to what their impact surrounded in the past or pres-
ent scenario (Khaliq et al. 2006; Chebana et al. 2013; Jiang
et al. 2015), such that the chance of the future occurrence of
flood episodes would be likely changed over the time func-
tions such as like goodness of 100-year flood in a given year
would change (Gilroy and Macuen 2012; Du et al. 2015).
Thus, stress of the time-varying consequences over flood ex-
ceedance probabilities might resulted that the actual associat-
ed risk either greater or smaller than the hazards statistics
accounted under stationary risk concept and might reveal for
under-dimensioned or over-dimensioned in the designing
strategies (Lima et al. 2015). More especially from the pros-
pect of engineering based hydraulic structural designing pro-
cedure where, it could be an essential desire to outline the
expectation of potential for future changing over their design
value to justify the anticipated structural design life
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appropriately both from the present and from the future pros-
pects (Bender et al. 2014; Sarhadi et al. 2016). Numerous
efforts often motivated to addressed the dynamic conse-
quences over univariate hydrological characteristics through
the implementation of univariate extreme value modelling
frame via covariate analysis (i.e. Strupczewski and
Kaczmarski 2001; Coles 2001; Kartz et al. 2002; Zhang
2005; Wong et al. 2006; Clarke 2007; El Adlouni et al.
2007; Villarini et al. 2010; Gilroy and Macuen 2012; Lopez
and Frances 2013; Lima et al. 2015). But the multidimension-
al behaviour of flood episodes often demands a multivariate
stochastic framework in conjunction with addressing of dy-
namic consequences over their design quantile framework. In
the traditional copula-based methodology, both the marginal
distribution and the copula-based joint dependence parameters
will not allow varying over time in order to adjoin the stress of
covariates over the flood characteristics (Corbella and Stretch
2013; Jiang et al. 2015; Galiatsatou and Prinos 2016). With
my best knowledge, very limited attempts adapted the multi-
variate modelling strategies for hydrological characteristics in
the light of dynamic copula frameworks, i.e. Corbella and
Stretch (2013), Bender et al. (2014), Jiang et al. (2015),
Sarhadi et al. (2016), and Galiatsatou and Prinos (2016).
These computational strategies are usually segregated into
two distinct stages such as modelling the non-stationarity con-
sequences over the univariate flood attributes through time-
varying marginal distribution structure while modelling the
dynamic scenario over the joint probability structure of mul-
tiple random vectors in conjunction with copulas structure
with dynamic parameters under time-varying joint frame
structure. As concluded from above literature that dynamic
copula simulation often incorporated via demonstrating the
temporal variation within bivariate joint relationship and their
return periods, also the importance of trivariate joint distribu-
tions and their return periods is already pointed in the above
section (i.e. Graler et al. 2013; Reddy and Ganguli 2013 and
references therein). On another side, the flexibility of PCC and
minimum information PCC structure for constructing the
higher dimensional copulas are already pointed from the
above cited literature (i.e. Daneshkhan et al. 2015, 2016).
Thus, the overall conclusion could point the ideas towards
an attempt via integrating dynamic concept for capturing the
effect of temporal influence in the trivariate joint distribution
or design quantiles.
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