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Abstract
There are various methods to estimate the curve number (CN) for flood studies. In the ungauged basins, hydrologists rely on the
use of an NRCS-CN table called (CNdesign). The CNdesign, in this study, is estimated using remote sensing techniques and
geographical information systems based on alluvium-rock-vegetation classification of natural basins. However, in gauged basins,
it is common to use rainfall-runoff data through the application of the least-squares method (LSM) to get the best CN value
(CNobs), or the asymptotic fitting method (AFM) to obtain asymptotic CN (CN∞). A comparison between these methods is made
under the effect of changing both the coefficient of abstraction ratio, λ, and the effect of data sorting techniques to find out the best
estimation of CN for reliable prediction of floods. A methodology has been developed to convert the NRCS-CN table values at
λ = 0.2 to λ = 0.01 for arid basins. The relationship between the observed CN and the NRCS-CN table shows that estimating
runoff using λ = 0.2 is best made by CN of the impervious area (CNimp = 90) instead of 98 (for urban areas) used in the literature.
The highest value of CN between the methods is the CNdesign, then CNobs. CN∞ shows the lowest value. Therefore, for a safe
design of the hydraulic structures, it is recommended to use CNdesign. However, for the simulation of the rainfall (P)-runoff (Q)
process in the natural basins, it is recommended to use CNobs at the natural sorting of data pairs (P:Q). The root mean square error
(RMSE) of CN is reduced from 11 at CNimp = 98 to 7 at CNimp = 90. This value reflects the infiltration process in the rocks due to
the high density of fractures and fissures in the mountains in the area. The developed NRCS-CN table at λ = 0.01 reduces the
RMSE of the estimated runoff depth by 57%.

Keywords Curve number (CN) . Asymptotic fitting method (AFM) . Least-squares method (LSM) . Geographic information
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Introduction

Saudi Arabia is one of the arid regions that lack specific stud-
ies related to the estimation of CN from field data since runoff

stations are absent in most of the basins. Therefore, flood
mitigation studies rely on the soil conservation service curve
number (NRCS-CN) procedure. The NRCS-CN method is an
acceptable procedure for estimating the volume of runoff in
basins for various rainfall-runoff events worldwide USDA-
SCS (1985). This procedure uses tables that are easily acces-
sible and experimental formulas to create representative
values for CN. The tables are based on λ = 0.2 and derived
mainly NRCS-CN for agricultural basins. Therefore, there is a
need to transfer these tables to λ = 0.01 for arid basins (Farran
and Elfeki 2020a). This point is addressed in this paper. There
are various methods to estimate CN value for basins. These
methods are NRCS-CN table USDA-SCS (1985), least square
method (LSM) (e.g., Hawkins et al. 2008; Mishra and Singh
2013; Farran and Elfeki 2020a), and asymptotic fittingmethod
(AFM) (e.g., Hawkins 1993; D’Asaro and Grillone 2012;
Farran and Elfeki 2020b). Hawkins (1975) showed the
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importance of the estimation of an accurate CN. Therefore, the
research question in this study is regarding which of these
methods provides an accurate estimation of CN and conse-
quently a reliable runoff prediction in natural arid basins? To
the best of the authors’ knowledge, there is no answer to this
question in the available literature. In the next paragraphs, a
review of the methods for CN estimation is presented follow-
ed by the main objectives of the research.

To calculate the curve number based on the NRCSmethod,
two main components, namely hydrologic soil group (HSG)
and land use, are needed. Most research on literature uses the
NRCS-CN procedure to evaluate the generation of runoff. For
example, in many river basins in Italy, statistical models have
been used with CN methods to find runoff volumes
(Kottegoda et al. 2000). In addition, Lin et al. (2007) have
used the CN procedure to see how runoff changed due to
land-use changes. The runoff has been significantly affected
by changes in land use. Moreover, Hamdan et al. (2007) and
Hamad et al. (2012) have studied the effect of land-use chang-
es on runoff. Furthermore, Isik et al. (2013) have investigated
how land-use changes impact runoff using the CN procedure
and artificial neural networks. In West Bank, Shadeed and
Almasri (2010) utilized GIS with CN procedure to predict
runoff and CN values. Also, Hamad et al. (2012) have utilized
GIS to assess how land-use change affects the water budget of
the Gaza Strip. Additionally, Al-Juaidi (2018) has assessed the
effect of land-use change on potential runoff volumes in the
Gaza Strip using the NRCS-CN method and GIS with HEC-
GeoHMS. Therefore, the mentioned studies among many
others use the common NRCS-CN table to estimate runoff
from rainfall events for ungagged basins to provide a design
value for CN. However, there are other approaches to deter-
mining CN based on rainfall-runoff measurements. For exam-
ple, one of the methods applied in the literature is the least-
squares method (LSM). Walker (1970) is believed to be the
first to use LSM, where he applied an experience-and error
LSM to the data of runoff from many small basins in the state
of Utah in the USA. Several studies have used LSM to reach
the potential maximum retention values, e.g., (Simanton et al.
1973; Bales and Betson 1981; Cooley and Lane 1982; Curtis
et al. 1983). Hanson et al. (1981) used LSM to find CNs on
twenty-five small basins in Montana, Wyoming, and South
Dakota and reached a general agreement with the NRCS
handbook values. Hawkins et al. (2002 and 2008) used LSM
to determine the maximum retention, S, of the basin, and the
abstraction ratio, λ, of the runoff equation.

Hawkins (1993) used the asymptotic fitting method (AFM)
for the asymptotic estimation of CN values and observed three
different types of CN behaviors resulting fromCN and rainfall
relationship named standard, complacent, and violent behav-
iors. Thereafter, several studies followed Hawkins’s method
of using AFM. Bonta (1997) proposed the development of
Hawkins’ technique for the asymptotic estimation of CN

values from measured data in violent and standard basins
using the derived frequency distributions. He discovered that
the derived distribution method is promising for CN estima-
tion when rainfall-runoff data is limited. Hjelmfelt et al.
(2001) provided complimentary examples of basins that high-
light similar behaviors. Fennessey and Hawkins (2001) have
compared the CN values for 60 catchments in the USA
resulting from three methods and they named them CNbest(
LSM based), CN∞(AFM based), and CNdesign determined
from the CNtable. D’Asaro and Grillone (2012) assessed CN
from rainfall-runoff events of 61 Sicilian basins by three var-
ious methods: the least-squares method, National Engineering
Handbook-4 (NEH4) method, and the asymptotic fitting
method (AFM). The results showed that the value of the initial
abstraction ratio (λ) studied for basins with the standard CN
behavior is well below the original value (λ = 0.2) mentioned
in the USDA-NRCS reports. The NEH4 method was unable
to determine the CN value of the correct basins. As AFM
indicates a significant response to the standard CN behavior
in about 77% of the basins studied versus a complacent be-
havior (18%) and a violent behavior (5%).

The geographic information system (GIS) has turned into a
basic tool in hydrological modeling since it can deal with a
vast measure of spatial information. Also, remote sensing
(RS) can supply estimations of several hydrologic variables
utilized in hydrologic modeling applications. In recent years,
satellite remote sensing and GIS have emerged as powerful
tools for collecting information on land use and land cover of
large areas (Shih 1988; Subudhi et al. 1989). The information
on land use, land cover, and hydrologic soil type can be inte-
grated into a GIS environment for a quick and accurate esti-
mation of runoff curve numbers (Stuebe and Johnston 1990).
In addition, Still and Shih (1991) utilized remote sensing data
to develop the runoff index at the level of the basin and
showed how successfully can the remotely sensed data be
utilized to track changes in surface runoff caused by land-
use changes. Moreover, Saleh, and AI-Hatrushi (2009), and
Youssef et al. (2011) have used remote sensing (RS) and GIS
procedures as effective tools in flood risk evaluation.

In the past few years, several flood assessment studies have
been conducted in Saudi Arabia mainly using GIS and RS
procedures(e.g., Metwaly et al. 2010; Al Saud 2010; Dawod
and Koshak 2011; Dawod et al. 2011; Al-Hasan and Mattar
2014; Abdulrazzak et al. 2017; Abdulrazzak et al. 2018).
Additionally, Al-Subai (1992), and Şen and Al-Suba'i
(2002) have used the traditional NRCS-CN tables for model-
ing rainfall-runoff in the southwestern region of Saudi Arabia.
Furthermore, Dawod et al. (2013) have recommended using
the NRCS-CN method as an ideal method for estimating the
flood in Makkah, Saudi Arabia. Moreover, Mahmoud et al.
(2014) have used GIS-based land use, hydrological soil group,
and slope to estimate runoff in the Al-Baha region, the
Kingdom of Saudi Arabia (KSA). The above studies

121    Page 2 of 23 Arab J Geosci (2021) 14: 121



considered only the traditional NRCS-CN tables (USDA-
SCS, 1985) because they deal with ungauged basins and there
are no runoff measurements.

In recent times, some quantitative studies have been con-
ducted on CN in Saudi Arabia using rainfall-runoff data. For
example, Alagha et al. (2016) studied the CN behavior of the
Yiba basin in KSA, and the results showed a standard behav-
ior with an approached value of fifty-two. Farran and Elfeki
(2020a) used LSM to obtain the optimum range of values for
λ and CN based on three estimation methods. The analysis
showed that the range of CN varies between 45 and 85 at λ =
0.2. They concluded that the initial abstraction ratio λ of 0.01
is more representative to the arid basins. Also, Farran and
Elfeki (2020b) used AFM to estimate the asymptotic CN
(CN∞). The analysis showed that the dominant CN-P relation-
ship is the standard behavior and CN∞ shows high variability
over the studied basins concerning three values of λ (0.01, 0.2
and 0.3) and the two sorting methods.

Therefore, the aims of this study are the following: (1)
estimation of the curve number using the traditional (NRCS-
CN) method based on land use and land cover evaluated by
using GIS and RS techniques, (2) transforming the NRCS-CN
table at λ = 0.2 into CN table at λ = 0.01 and apply the
resulted values on flood predications, and (3) comparison be-
tween the different estimation methods, namely LSM, AFM,
and SCS-CN table methods for flood evaluation. The objec-
tive of this comparison is to see how the values of the tradi-
tional (SCS-CN)method (used in ungauged basins) are related
to the values obtained in both the LSM and the AFM (used in
gauged basins). The results of this research will guide hydrol-
ogists and engineers during the estimation of the CN value of
ungauged basins for flood mitigation studies in KSA.

Study area and data collection

The study has taken place on the eastern cliff of Asir region in
the south western part of Saudi Arabia. The elevation the cliff
of Asir is up to 3000 m and extends west to the Red Sea coast.
Geologically, the study region is located in the Asir escarp-
ment which is part of the Arabian Shield (Farran and Elfeki
2020b). The main geology of the region consists of volcanic
rocks (Precambrian) and sedimentary rocks (Elfeki et al.
2020). The region is characterized as being very arid with
extremist temperature differences, high evaporation rates,
and low annual rainfall and random rainfall events are causing
flash floods (Abdulrazzak et al. 2020). Also, annual rainfall is
closely related to altitude, with total rainfall ranging from 30
to 100 mm on the coastal plain of the Red Sea and up to
450 mm at altitudes over 2000 m (Wheater et al. 1991).

The study included five main basins which are Al-Lith,
Tabalah, Yiba, Liyyah, and Habawnah. It is divided into
sub-basins (19 sub-basins in total: 4 subbasins in Al-Lith, 3

subbasins in Tabalah, 4 subbasins in Yiba, 3 subbasins
in Liyyah, and 5 subbasins in Habawnah). Al-Lith, Yiba,
and Liyyah basins drain to the west towards the Red Sea,
while Habawnah and Tabalah basins drain to the east towards
the Rub al Khali. The study depended on the historical data
from measurements of storms (rainfall and runoff events)
reaching 161 events collected over a 4-years period (1984 to
1987) by Saudi Arabian Dames and Moore (1988). The
historical data was found in a hard copy format, and it
has to be transformed into a soft copy format (digital
format) to be used. Therefore, Get Data Graph Digitizer
software is necessary for this process. Then, the data is
transformed to the Excel program. The Watershed
Modeling System (WMS) is used to extract basin char-
acteristics and the stream network through the delinea-
tion process. Figure 1 shows the general layout of the
basins and the locations of the runoff stations at each
outlet of the sub-basins and the stream networks.

Methodology

The methodology can be summarized in the following steps:

1. Estimation of CN based on the LSM for natural and or-
dered sorting of rainfall-runoff data pairs to get CNobs for
both λ = 0.2 and 0.01,

2. Estimation of CN based on the AFM for natural and or-
dered sorting of rainfall-runoff data pairs to get CN∞ for
both λ = 0.2 and 0.01,

3. Developing a formula to transfer the corresponding
NRCS-CN tables at λ = 0.2 to tables for λ = 0.01,

4. Estimation of CN using NRCS-CN tables for both λ = 0.2
and the developed tables in step 3 for λ = 0.01 using GIS
and RS for land use and land cover classifications. These
values are called CNdesign.

The detailed methodology is explained in the following
sections.

The NRCS-CN method equations which are introduced by
the USDA-SCS (1985) are given by:

Q ¼
P−λSð Þ2

P þ 1−λð ÞS ; P > λS

0; P≤λS

8<
: ð1Þ

Where: P is the rainfall depth,

Q is the direct runoff depth,
λ is the initial abstraction ratio, and
S is the potential maximum retention of the basin (S =

25,400/CN -254), where CN is the curve number.
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From rainfall and runoff measurements of individual storms,
and for a given value of λ, one may calculate CN by combing
Eq. 1 with the equation for S to get the equation of CN as,

CN ¼ 25400

P
λ
þ

1−λð ÞQ−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−λð Þ2Q2 þ 4λPQ

q
2 λ2 þ 254

ð2Þ

In the following sections, the methods used to estimate CN
is reviewed and a brief description of each method is
presented.

The least squares method

The LSM for CN estimation is introduced by Hawkins et al.
(2008). The method determines the parameters λ and CN of
the well-known runoff equation. The LSM is a minimization
of the sum of squared differences between the observed direct

runoff (Q) and the estimated runoff bQ� �
. It gives the best

estimation of the parameters. The estimated runoff bQ is ob-
tained by Mishra and Singh (2013),

Fig. 1 Locations of the study basins in KSA. a General layout of the basins, b AL-Lith basin, c Tabalah basin, d Yiba basin, e Liyyah basin, and f
Habawnah basin
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bQ ¼ P−254λ 100
CN −1

� �� �2
P þ 254 1−λð Þ 100

CN
−1

	 
 ð3Þ

The minimization problem is formulated by the objective
function as given by Hawkins et al. (2008),

f CN;λð Þ ¼ min ∑
n

i¼1
Qi−bQi

� �2
ð4Þ

Where: Qi is the observed runoff of an event i (mm), bQi is
the estimated runoff of the same event i (mm), and n is the no.
of events (observations).

The values of CN and λ obtained by LSM is called
CNbest and λbest. Farran and Elfeki (2020a) have used
the MLS to obtain CNbest and λbest for these basins and
their sub-basins and even for each rainfall-runoff event.
The best value for λ was found to be 0.01. In the
current study, both the value of λ = 0.01 and the com-
mon value of λ = 0.2 (USDA-SCS 1985) are used for
comparison reason. Therefore, the authors use the termi-
nology CNobs instead of CNbest to represent the value of
the curve number obtained by substituting the rainfall
depth, the corresponding runoff depth, and the value
of λ (0.01 or 0.2) at each event in Eq. 2 to get CNobs

at λ = 0.01 and λ = 0.2 respectively in the rest of the
paper.

Asymptotic fitting method

The asymptotic fitting method (AFM) is a technique to
estimate the behavior of the precipitation and the CN
value (the so-called CN-P relationship). As the

precipitation approaches infinity (P→ ∞), the CN ap-
proaches an asymptotic value called CN∞. Hawkins
(1993) showed three different behavior between CN
and P. These behaviors are as follows: (1) the compla-
cent behavior, (2) the standard behavior, and (3) the
v i o l e n t b e h a v i o r . F o r m o r e d e t a i l s a b o u t
these behaviors, a reference is made to Hawkins
(1993). The formula of the complacent behavior which
represents the lower limit of the CN-P relationship is
given by Hawkins (1993),

CNO ¼ 25400
P
λ

	 

þ 254

ð5Þ

Where CNO is the complacent behavior that represents the
curve number at P = Ia (the initial abstraction, Ia = λS), and
therefore, Q = 0 (a reference is made to Eqs. 1 and 2).

The formula of the standard behavior is given by Hawkins
(1993),

CN Pð Þ ¼ CN∞ þ 100−CN∞ð Þ exp −
P
b

	 

ð6Þ

Where CN∞ is the asymptotic value ; and b is a constant .
The formula of violent behavior is not considered in this

context because it is beyond the scope of the study. It does
not show up in the analysis of these basins (Farran and Elfeki
2020b). An extensive study of CN∞ on the same basins is
presented in Farran and Elfeki (2020b). The estimation of the
fitting parameters (CN∞ and b) is made through the minimiza-
tion of the squared difference of CN for the given P, Q, and λ
as,

f CN∞; bð Þ ¼ min ∑
n

i¼1

25400

Pi
λ þ 1−λð ÞQi−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−λð Þ2Qi

2þ4λPQi

p
2 λ2 þ 254

0
@

1
A− CN∞ þ 100−CN∞ð Þ exp −

Pi

b

	 
	 
2
4

3
52

ð7Þ

Where Pi and Qi are the precipitation and the runoff
depths respectively of the event i.

The results of this technique are discussed in the “results
and discussions” section.

Remote sensing and geographical information
system for CN estimation

In this approach, the CN is estimated from land use and
land cover based on the NRCS table at λ = 0.2 (NRCS

2004) and not from rainfall-runoff events as explained
in the previous methods. The procedure to implement
this approach is given in the following steps.

RS-based land cover classification approach

Data collection

Data were collected freely from the open-source of the Earth
Explorer website (https://earthexplorer.usgs.gov/). Images of

Page 5 of 23     121Arab J Geosci (2021) 14: 121

https://earthexplorer.usgs.gov/


Fig. 2 Maps of the study basins. a AL-Lith, b Tabalah, c Habawnah, d Liyyah, and e Yiba
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Operational Land Imager (OLI) were used in the current study.
OLI consists of 11 bands including three bands in the visible
region, one band in the InfraRed, two bands in the Shortwave
Infrared (30-m resolution), one Panchromatic band (15 m reso-
lution), and two bands in the Thermal Infrared (100 m resolu-
tion) in addition to two bands targeting the Ultra blue and Cirrus.

Eight OLI scenes were collected coherently during
November 2017 to minimize the variation of the atmospheric
conditions. The scenes were preprocessed for geometric, ra-
diometric, and atmospheric correction (Itten and Meyer 1993;
Baboo and Devi 2011) then mosaicked to cover the whole
study area.

Image classification process

The classification process is an information extraction proce-
dure that detects these spectral signatures and then assigns
pixels into classes according to the similarity of their spectral
signatures (Briem et al. 2002). Image classification is an es-
sential procedure in the field of remote sensing, digital image
analysis, and pattern recognition (Kloer 1994; Richards and
Jia 1999).

Supervised classification

Supervised classification is a computer-based process where
each pixel is assigned to a category based on a preferable
decision rule (Swain and Davis 1981). Supervised classifica-
tion starts initially with the selection of the training sites for
different terrain categories. Based on previous scholarly work
on classification accuracies (Elhag and Boteva 2016; Elhag
2016), two different supervised classification algorithms are
exercised in the current research study, maximum
likelihood—ML and support vector machine—SVM.
Maximum likelihood classification is achieved according to
the following equation:

gi xð Þ ¼ lnP ωið Þ−1
�
2
ln Σij j− d

2
ln2π− x−mið ÞTΣ−1

i x−mið Þ ð8Þ

Where:

i is the class number,
x is the d-dimensional data (where d is the number of

bands),
P(ωi) is the probability that class ωi occurs in the image and

is assumed the same for all classes,
|Σi| is the determinant of the covariance matrix of the data

in class ωi,
Σi

−1 is the inverse of the covariance matrix, and
mi is the mean vector of class i,

Support vector machine is performed according to the two-
layer neural net using the following inner product kernel,

K xi; x j
� � ¼ tanh αxTi x j þ β

� � ð9Þ

Where:
K(xi, xj) is the inner product kernel function,

α is the gamma term in the kernel function for all kernel
types except linear, and

β is the bias term in the kernel function for the polynomial
and sigmoid kernels.

This approach is employed using Erdas software. With this
technique, three land cover classes were identified that contain
rocks, vegetation, and soil as shown in Fig. 2 and the details of
estimation CN, based on this approach, will be explained in
the next section.

Classification accuracy assessment

Accuracy assessment was realized based on 100 points of
randomly distributed points in each basin collected from
Google Earth, the points representing the major land use land
cover in the designated study area. The points were evenly
distributed in each scene. The points were converted into 50-
m2 polygons under the GIS environment for approachability
reasons.

Validation points were individually assigned to three dif-
ferent land cover categories: rocks, alluvium, and vegetation.
Points were used to compute users, producers, and overall
accuracies.

Producer’s accuracy is calculated as follows:

Producer accuracy% ¼ Cii

C*i
100 ð10Þ

Where,

Cii are the elements at position ith row and ith column.
C∗i is the column sums.

User’s accuracy is calculated using the formula,

User accuracy% ¼ Cii

Ci*
100 ð11Þ

Cii is the element at position ith row and ith column, and
Ci∗ is the row sums.

The overall accuracy is estimated by the following formula,

overall accuracy% ¼
∑
U

j¼1
Cjj

O
100 ð12Þ

Where,

Cjj is the element at position jth row and jth column,
and
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O and U are the total number of pixels and classes
respectively.

Matching of user’s and producer’s accuracies delivers ac-
curateness to the classification and assures a robust liability of
the implemented accuracy assessment (Cohen (1960),
Congalton et al. (1983), and Congalton (1991)).bK statistics is a second measure accuracy agreement. This
measure of agreement is based on Congalton and Mead
(1983) findings. It is defined as the maximum likelihood esti-

mation from the multinomial distribution. bK is calculated
using the following equation:

Κ̂ ¼
∑
r

i¼1
xii− ∑

r

i¼1
xiþ:xþið Þ

N 2− ∑
r

i¼1
xiþ:xþið Þ

ð13Þ

Where

r is the number of rows and columns in the error
matrix,

xii is the number of observations in row i and column i (the
diagonal elements),

xi+ is the marginal total of row i,
x+i is the marginal total of column i, and
N is the total number of observations in the matrix.

To increase the accuracy assessment of the vegetation
land cover class, Normalized Difference Vegetation
Index (NDVI) was exercised according to Pettorelli
et al. (2005) where the NDVI layer was overlaid over
the slope layer under GIS environment to examine the
vegetation cover in steeply areas. NDVI was carried out
as follows:

NDVI ¼ NIR−REDð Þ= NIRþ REDð Þ ð14Þ

Where:
NDVI is the Normalized Difference Vegetation Index.
NIR and RED are the amounts of near-infrared and red

light, respectively, reflected by the vegetation and captured
by the sensor of the satellite.

Figure 2 shows the study basins projected on the base map
to show the land cover in the study area. Since these basins are
natural basins, therefore the only thing one may see is the
rocks and the alluvium. Figure 3 shows the basins based on

�Fig. 3 Land cover (LC) map of the study basins. aAL-Lith, b Tabalah, c
Habawnah, d Liyyah, and e Yiba. Three classifications are identified,
namely rock, alluvium, and vegetation

Table 1 Area of alluvium, vegetation, and rocks and the estimated CN values of sub-basins based on NRCS-CN table at λ = 0.2 (USDA-NRCS 2004)

Basin Stations Code Area alluvium
km2

Area
alluvium %

Area rock
km2

Area
rock%

Area
Vegetation km2

Area
Vegetation%

Hydrologic
conditiona

Hydrologic soil
group

A B C D

Yiba SA401 Y4 32.3 10.6 246.1 80.4 27.5 9.0 Poor 63 77 85 88

SA422 Y5 124.6 27.1 306.8 66.8 27.9 6.1 Poor 63 77 85 88

SA423 Y3 138.3 22.6 403.7 65.9 70.5 11.5 Poor 63 77 85 88

SA424 Y2 240.8 24.8 708.4 73.1 20.4 2.1 Poor 63 77 85 88

AL-Lith J415 A5 3.1 0.3 951.6 97.5 20.9 2.1 Poor 63 77 85 88

J416 A3 3.3 1.1 293.5 98.0 2.8 0.9 Poor 63 77 85 88

J417 A4 18.7 2.5 711.0 96.6 6.4 0.9 Poor 63 77 85 88

J418 A2 36.9 5.1 664.8 91.8 22.5 3.1 Poor 63 77 85 88

Tabalah B405 T3 128.6 27.1 342.7 72.3 2.9 0.6 Poor 63 77 85 88

B412 T2 86.3 15.4 470. 90 84.0 3.2 0.6 Poor 63 77 85 88

B413 T1 43.2 73.9 12.1 20.7 3.2 5.5 Good 49 68 79 84

Liyyah SA421 L4 129.5 17.7 244.3 33.5 356.1 48.8 Poor 63 77 85 88

SA425 L3 44.9 11.7 179.2 46.7 160.0 41.7 Poor 63 77 85 88

SA426 L2 43.2 40.3 56.9 53.1 7.1 6.6 Fair 55 72 81 86

Habawnah N404 H2 119.6 14.8 689.2 85.0 1.8 0.2 Poor 63 77 85 88

N405 H3 174.1 18.5 765.0 81.4 1.3 0.1 Poor 63 77 85 88

N406 H4 278.1 25.9 791.2 73.8 2.8 0.3 Poor 63 77 85 88

N407 H5 253.2 34.0 490.0 65.8 1.0 0.1 Fair 55 72 81 86

N408 H1 302.0 21.5 1102.8 78.3 3.3 0.2 Poor 63 77 85 88

a Poor: < 30% ground cover (litter, grass, and brush overstory), fair: 30 to 70% ground cover, good: > 70% ground cover.

Page 9 of 23     121Arab J Geosci (2021) 14: 121



the above classification, and three different classifications are
distinguished, namely the alluvium, the vegetation, and
the rocks. Since most of the basins contain rock and alluvium,
therefore, these classifications are reduced to alluviums and
rocks to simplify the estimations. Therefore, it has been de-
cided that the vegetation area located in the alluvium is
added to the alluvium area and the vegetation located in
the rock is added to the rock area. Table 1 shows the area
of the vegetation, the rock, and the alluvium and the per-
centage of the vegetation, the rock, and the alluvium for
each sub-basin. According to the NRCS-CN table, the

hydrologic condition is estimated for each sub-basin
based on the percentage of grass in the ground cover to
poor: < 30%, fair: 30 to 70%, and good: > 70%. Based on
this classification, the hydrologic conditions of the sub-
basins are determined. The table shows that most of the
sub-basins have a poor hydrologic condition. Table 1
shows also the hydrologic soil groups A, B, C, and D,
with group A corresponding to high infiltration, while
group D corresponds to low infiltration rate. The values
of CN assigned to these groups are estimated based on the
common landscape of the arid and the semi-arid basins as

Fig. 4 The developed regression
equations to convert NRCS-CN
table values at λ = 0.2 to the de-
veloped CN table values
at λ = 0.01 suited for the
study basins

Table 2 Classification of the observed CN from rainfall-runoff measurements into hydrologic soil groups A, B, C, and D (NRCS-CN table at λ = 0.2,
USDA-NRCS 2004) for the sub-basins

Basin Stations Code Hydrologic
condition

Hydrologic soil group (HSG) CNobs.
at λ = 0.2

Tabulated CN value (HSG) close
to CNobs (λ = 0.2)

Classification of CNobs.
at λ = 0.2 based on HSG

A B C D

Yiba SA401 Y4 Poor 63 77 85 88 84 85 C

SA422 Y5 Poor 63 77 85 88 83 85 C

SA423 Y3 Poor 63 77 85 88 89 88 D

SA424 Y2 Poor 63 77 85 88 91 88 D

AL-Lith J415 A5 Poor 63 77 85 88 82 85 C

J416 A3 Poor 63 77 85 88 84 85 C

J417 A4 Poor 63 77 85 88 86 85 C

J418 A2 Poor 63 77 85 88 89 88 D

Tabalah B405 T3 Poor 63 77 85 88 82 85 C

B412 T2 Poor 63 77 85 88 87 88 D

B413 T1 Good 49 68 79 84 85 84 D

Liyyah SA421 L4 Poor 63 77 85 88 82 85 C

SA425 L3 Poor 63 77 85 88 67 63 A

SA426 L2 Fair 55 72 81 86 77 81 C

Habawnah N404 H2 Poor 63 77 85 88 91 88 D

N405 H3 Poor 63 77 85 88 88 88 D

N406 H4 Poor 63 77 85 88 88 88 D

N407 H5 Fair 55 72 81 86 83 81 C

N408 H1 Poor 63 77 85 88 96 88 D

The bold italic face is the value close to the CNobs
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given in the table of NRCS-CN (NRCS 2004), namely
desert shrub-major plants include saltbush, greasewood,
creosote bush, black bush, bur sage, paloverde, mesquite,
and cactus. Therefore, the values in the tables are obtain-
ed from the NRCS-CN table at λ = 0.2 (NRCS, 2004).

Design CN value based on RS-GIS and NRCS-CN table:
the updated traditional approach

In this section, the traditional approach to estimate CN based
on the NRCS-CN table is reviewed. However, the traditional
approach has been updated by two new aspects. The first
aspect is the use of the RS-GIS techniques, as explained in
the previous section in the classification of the land cover of
the basins into alluvium, rock, and vegetation and estimation
of the proportion of each of these classes in the basins. The
second aspect is that the NRCS-CN table values are estimated
based on the abstraction ratio, λ = 0.2 (USDA-NRCS 2004).
However, in the current study, a value of λ = 0.01 is also
considered in the analysis since it has been shown to best
represent the arid basins in Saudi Arabia (Farran and Elfeki,
2020a and b). Therefore, there is a need to convert the NRCS-
CN table values form λ = 0.2 to λ = 0.01 to test the effect of λ
on the results. Figure 4 shows the regression equations that
have been developed to make such a transformation. The fig-
ure can be expanded as follows. The left image shows the
relationship between CN estimated from the rainfall-runoff
observations at λ = 0.2 based on Eq. 2 (CN values are also

presented in Table 2 under column CNobs) and plotted on the
vertical axis. The CN values from the NRCS-CN table esti-
mated from the values in Table 2 (the bold italic face in the
table under HSG, they are presented in column CN value
(HSG) close to CNobs) and plotted on the horizontal axis. A
best-fit line is made between the percentiles of both CN values
as shown in Fig. 4 (left) to find the relationship between the
observed and tabulated CN at λ = 0.2. The developed relation-
ship is shown in the graph. It is almost a one to one
relationship (linear relation with R2 = 0.83). It is worth men-
tioning that the CNobs at λ = 0.2 can be classified as soil C and
D which indicates relatively low infiltration. However, this
seems to be in the contrary to the actual soil condition in these
basins which normally have high infiltration during the phe-
nomenon of transmission losses. This point will be discussed
later in the “results and discussions” section. Figure 4 (right)
shows a percentile plot between the observed CN at λ = 0.2 on
the vertical axis and the observed CN at λ = 0.01. A best-fit
line is made through the data to find a relationship between
CNobs at λ = 0.2 and at CNobs at λ = 0.01. This relation takes
the form in the figure (linear relation with R2 = 0.91).
Combining the two formulas in Fig. 4 and rearranging, one
may obtain a relationship between NRCS-CN table at λ = 0.2,
CNT(0.2) , and the developed CN table at λ = 0.01, CNT(0.01)

as,

CNT 0:01ð Þ ¼ 2:4CNT 0:2ð Þ−143;CNT 0:2ð Þ > 60 ð15Þ

Table 3 Comparison between runoff curve numbers for arid and semiarid rangelands CNT(0.2) and estimated CNT(0.01) in the current study

Cover description CNT(0.2) (NRCS 2004) CNT(0.01) (current study)

Hydrologic soil group Hydrologic soil group

Cover type Hydrologic conditiona Ab B C D A B C D

Herbaceous—a mixture of grass, weeds, and low-growing
brush, with a brush the minor element

Poor - 80 87 93 - 49 66 80

Fair - 71 81 89 - 27 51 71

Good - 62 74 85 - 6 35 61

Oak-aspen—mountain brush mixture of oak brush, aspen,
mountain mahogany, bitterbrush, maple, and other brush

Poor - 66 74 79 - 15 35 47

Fair - 48 57 63 - - - 8

Good - 30 41 48 - - - -

Pinyon-juniper—pinyon, juniper, or both; grass understory Poor - 75 85 89 - 37 61 71

Fair - 58 73 80 - - 32 49

Good - 41 61 71 - - 3 27

Sage-grass—sage with an understory of grass Poor - 67 80 85 - 18 49 61

Fair - 51 63 70 - - 8 25

Good - 35 47 55 - - - -

Desert shrub—major plants include saltbush, greasewood,
creosote bush, black bush, bursage, paloverde, mesquite, and cactus

Poor 63 77 85 88 8 42 61 68

Fair 55 72 81 86 - 30 51 63

Good 49 68 79 84 - 20 47 59

a Poor: < 30% ground cover (litter, grass, and brush overstory), fair: 30 to 70% ground cover, good: > 70% ground cover
b Curve numbers for group A have been developed only for the desert shrub
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Equation 15 is then used to t constract a table for CN at λ =
0.01. It should be noted that Eq. 15 is only valid for CNT(0.2)

larger than 60. The reason is that CN is directly proportional toλ

(Farran and Elfeki 2020a) and therefore when λ decreases, the
value of CN decreases as well; however, CN cannot be negative,
so the limit is CNT(0.2) = 60, which corresponds to CNT(0.01) = 1.

Fig. 5 Comparison between the
NRCS-CN theory and the ob-
served rainfall-runoff data under
two scenarios, namely the ordered
versus the natural sorting of data
pairs (P: Q): Left column (λ =
0.01) and right column
(λ = 0.2)
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Table 3 shows a comparison between CNT(0.2) and the corre-
sponding CNT(0.01) for different hydrologic conditions and
HSG. It is obvious from the table that the CNT(0.01) is lower than
the CNT(0.2). The low values of CNT(0.01) reflect the effect of
transmission losses in these basins. Both values of CNT(0.2) and
CNT(0.01) are going to be used to estimate design CN values for
the basins as will be explained in the coming section.

The common approach of CN estimation in ungagged ba-
sins is made using the NRCS-CN table (USDA-NRCS 2004).
Hydrologists normally use a weighted average CN (called
the composite CN, and is abbreviated as CNc) over the basin
through the application of the following equation,

CNc ¼
∑
n

i¼1
CNiAi

∑
n

i¼1
Ai

ð16Þ

Where,

CNc is the composite runoff curve number,
Ai is the area of class i,
CNi is the curve number of class i, and
n is the number of classes.

Since the natural basins in the current study are classified as
containing only two classes, namely rock and alluvium, there-
fore, for practical applications point of view, Eq. 16 can be
simplified to read (USDA-NRCS 2004),

CNc ¼ CNp þ Pim

100

	 

CNimp−CNp
� � ð17Þ

where:

CNp is the pervious runoff curve number (in case of
natural basins is the alluvium),

Pim is the percent imperviousness (in the case of the
natural basins in the rock), and

CNimp

is the curve number of the impervious area (rock)
which is equal to 98 based on (USDA-NRCS 2004).

Equation 16 is mainly used in the literature to study the
runoff in urban areas with CNimp used to describe the runoff
curve number in paved regions with a value of 98. This equa-
tion is considered to estimate the design CN (which is called
CNdesign = CNc) based on the traditional approach used by
hydrologists and engineers to estimate the CN of a basin.

The aforementioned methodologies will lead to three
values of CN for each λ, namely CNobs which is estimated
from the observation, CN∞ which is the asymptotic CN, and
the estimated CN from the NRCS-CN table (CNdesign). The
results are discussed in the following section.

Results and discussions

Analysis of the results based on LSM

Figure 5 shows a comparison between the NRCS-CN theory
and the observed rainfall-runoff data under two scenarios,
namely the natural versus the ordered sorting of rainfall-
runoff data pairs (P: Q). The natural sorting of data is used
in the literature by, e.g., D’Asaro and Grillone (2012). The
pairs of rainfall and the corresponding runoff are combined to
estimate CN. This method is consistent since the generated
runoff is coming from the same rainfall that caused it.
However, in the ordered data sorting method (Hjelmfelt
1980), the rainfall and runoff data are independent and are
rearranged by ranking as one may do in frequency analysis
of rainfall. This ordered method is also called the frequency
matching technique since a new group of pairs of P: Q is
generated (in this case, Q is not associated with its causative
P). Both techniques are considered in the analysis. The left
column of Fig. 5 displays the results for both techniques at
λ = 0.01 and the right column displays the results at λ = 0.2.
The natural data appeared scattered in the figure with the red
circles. However, the ordered data are less scattered and pre-
sented in the blue triangles. The NRCS-CN theory given byTable 4 R2 and RMSE of the runoff, Q, estimated by the LSM at the

two values of λ under both natural and ordered sorting of data

Basins Natural sorting Ordered sorting

CN (λ = 0.01) CN (λ = 0.2) CN (λ = 0.01) CN (λ = 0.2)

R2 RMSE
mm

R2 RMSE
mm

R2 RMSE
mm

R2 RMSE
mm

AL-Lith 0.98 0.42 0.79 4.31 0.98 0.29 0.79 4.35

Tabalah 0.25 0.81 0.04 1.19 0.88 0.40 0.23 1.10

Habawnah 0.04 0.91 0.00 1.07 0.94 0.20 0.66 0.63

Liyyah 0.14 4.56 0.02 6.31 0.92 1.30 0.72 2.81

Yiba 0.92 1.07 0.83 2.79 0.98 0.51 0.83 2.80

Table 5 Summary of the results of CN based on LSM (CNobs) at the
two values of λ under both natural and ordered sorting of data

Basins Natural sorting Ordered sorting

CN (λ = 0.01) CN (λ = 0.2) CN (λ = 0.01) CN (λ = 0.2)

AL-Lith 32 64 32 64

Tabalah 38 75 43 76

Habawnah 51 81 63 85

Liyyah 25 56 32 60

Yiba 43 69 44 69
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Eq.1 is plotted through the data for both cases (i.e., natural and
ordered) at both values of λ. Visual inspection of the figure
shows that the theory fits better the ordered data rather than the
natural data. The reason is that the ranking process leads to
less scatted data and therefore most of the literature studies use

ordered data. Another important observation is that at λ =
0.01, the data is better represented by the NRCS-CN theory
in comparison with λ = 0.2 (the common value). This con-
firms that in the Saudi arid environment, it is recommended
to use λ = 0.01 rather than 0.2. Table 4 presents a quantitative
analysis of the results presented in Fig. 5. Both the coefficient
of determination, R2, and the root mean square error (RMSE)
of the fitting are estimated for both cases at both values of λ.
The table shows that R2 is the highest at λ = 0.01 under or-
dered sorting of data and provides the minimum RMSE. This

�Fig. 6 Mapping CNobs values over the basins based on λ = 0.2 (right
column) and λ = 0.01(left column). Zones with gray color have no
values because there are no runoff stations at the outlet of these basins
to estimate CN

Fig. 7 AFM applied to the
rainfall data under the two values
of λ = 0.01 and 0.2 respectively,
and the natural (left column) and
ordered (right column) sorting
of data pairs (P: Q)

Page 15 of 23     121Arab J Geosci (2021) 14: 121



result is previously supported by Farran and Elfeki
(2020a). Table 5 displays the results of CN based on
LSM. The table shows that the values of CN are lower
at λ = 0.01 when compared with λ = 0.2. This is due to
the significance of the transmission losses in these ba-
sins which is a common phenomenon in arid regions.
Also, one may notice that the CN values in the case of
the natural data are relatively lower than the case of
ordered data. The reason is that in the natural data,
the runoff is generated from its rainfall; therefore, the
obtained CN is a real representation of the event. It
accounts for the actual transmission losses from that
specific event. However, in the ordered data, it is not
the case. The rainfall and runoff are not from the same
event and therefore the CN does not reflect the actual
transmission losses.

Figure 6 shows the mapping of the CNobs values
over the basins based on λ = 0.2 (right column) and
λ = 0.01(left column). The figure displays the magnitude
of CN for each subbasin with different colors noticing
that the subbasin with gray color has no data since there
are no measurements of runoff at the outlet of such
subbasin (see Table 1 and Fig. 1 for each runoff
station for each subbasin). It is quite obvious that the
values of CN are varying between each subbasin ac-
cording to the rainfall-runoff measurement at the outlet
station. The values of CN for λ = 0.2 is relativity higher
than the values of CN for λ = 0.01. This observation is
because there is a direct proportion between the CN and
λ as explained by Farran and Elfeki (2020a). However,
the values of CN at λ = 0.01 seem more realistic to
represent these basins since it accounts for the transmis-
sion losses which is a significant phenomenon in these
mountainous arid basins (Farran and Elfeki, 2020a and
c). The values of CN in these maps are useful to study
the rainfall-runoff simulations in these basins for flood
studies.

Analysis of the results of the AFM

Figure 7 shows the results of the application of the AFM to the
rainfall data under the two values of λ = 0.01 and 0.2 and
under the natural (left column) and ordered (right column)
sorting of data pairs (P:Q). The standard behavior is the dom-
inant pattern in the basins. The figure shows a relatively higher
scatter for the natural sorting of data when compared with the
ordered sorting data. Another observation is that the scatter is
relatively high for λ = 0.01 when compared with λ = 0.2;
however, the asymptotic value, CN∞, is reached for most of
the basins within the size of the rainfall data for λ = 0.01and
not reached for λ = 0.2.

The developed CN-P relationship for the basins is
displayed in Table 6. The fitting parameters (CN∞ and b) of
the CN-P equations are given in the table. The CN∞ varies
from 12.1 to 32.6 in the case of λ = 0.01and from 9.5 to 56.1
for λ = 0.2 under the natural sorting of data. The decay coef-
ficient, b, varies between 7.5 and 20.3 mm in the case of λ =
0.01and from 32.2 to 98.4 mm for λ = 0.2 under the natural
sorting of data. This means that low CN∞ is reached for λ =
0.01 with a fast decay when compared with λ = 0.2 which
again reflects the high transmission losses in these basins.
The high transmission losses have been supported by an ear-
lier study on the Yiba basin (Elfeki et al. 2015). They showed
that the transmission losses, in some reaches in the Yiba basin,
can reach up to 84% of the inflow hydrograph.

On the other hand, the CN∞ varies between 29.2 and 63.6
in the case of λ = 0.01and from 49.9 to 80 for λ = 0.2 under
the ordered sorting of data. The decay coefficient, b, varies
between 1.7 and 18.7mm in the case of λ = 0.01and from 12.7
to 44.6 mm for λ = 0.2 under the ordered sorting of data. In
this case, the CN∞ and b have the same features as the natural
case; however, the CN∞ is somewhat higher due to the order-
ing of the data and also the scatter is reduced. The decay is
faster to reach CN∞ in the sorting case while the decay at λ =
0.01 is faster than at λ = 0.2.

Table 6 Summary of the developed equations for the standard behavior under both natural and ordered sorting of data pairs with both values of λ

Basins Standard (λ = 0.01) R2 Standard (λ = 0.2) R2

AL-Lith Natural CN(P) = 30.3 + 69.7exp(-P/7.5) 0.71 CN(P) = 53.3 + 46.7exp(-P/32.2) 0.95

Ordered CN(P) = 36.8 + 63.2exp(-P/5.2) 0.96 CN(P) = 54.5 + 45.5exp(-P/32.2) 0.99

Tabalah Natural CN(P) = 23.7 + 76.3exp(-P/16.1) 0.66 CN(P) = 37.5 + 62.5exp(-P/54.8) 0.91

Ordered CN(P) = 41.5 + 58.5exp(-P/9.9) 0.72 CN(P) = 53.4 + 46.6exp(-P/40) 0.99

Habawnah Natural CN(P) = 12.1 + 87.9exp(-P/17.5) 0.47 CN(P) = 9.5 + 90.5exp(-P/80.2) 0.78

Ordered CN(P) = 63.6 + 36.4exp(-P/1.7) 0.36 CN(P) = 80.5 + 19.5exp(-P/12.7) 0.95

Liyyah Natural CN(P) = 29.1 + 70.9exp(-P/20.3) 0.67 CN(P) = 19.7 + 80.3exp(-P/98.4) 0.89

Ordered CN(P) = 29.2 + 70.8exp(-P/18.7) 0.91 CN(P) = 49.9 + 50.1exp(-P/44.6) 0.97

Yiba Natural CN(P) = 32.6 + 67.4exp(-P/14.1) 0.63 CN(P) = 56.1 + 43.9exp(-P/36.8) 0.91

Ordered CN(P) = 42.7 + 57.3exp(-P/12.1) 0.77 CN(P) = 57.9 + 42.1exp(-P/38) 0.96
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A quantitative measure of the discrepancies between
the cases is displayed in Table 6. The coefficient of
determination, R2, is relatively higher in the case of
λ = 0.2 than in the case of λ = 0.01. However, this does
not mean that λ = 0.2 is better to represent the data than
λ = 0.01 because the NRCS-CN theory has proven that
λ = 0.01 is the best to fit the data (see the results in
Table 4). Therefore, AFM seems to be elusive in testing
the validity of the NRCS-CN theory. Since the results
of AFM is on the contrary of the LSM in the previous
section. Therefore, it is not recommended to be used to
represent CN for these natural arid basins.

Comparison of the CNc (CNdesgin) estimated
from NRCS table and CN estimated
from the observation (CNobs)

Figure 8 shows a scatter plot between the composite CN (CNc)
obtained from Eq. 17 and observed CN (CNobs) at various
values of λ for different values of CNimp at different HSG
(A, B, C, and D) as shown in Table 1. The average value of
CN of the various values of HSG (A, B, C, and D) is also
plotted. In this figure, a tuning with the parameter CNimp is
made to get the scattered data points around line 1:1. In Fig. 8a
at λ = 0.2, and CNimp = 98 (it represents impervious pave-
ments in urban areas), the scatter points are mostly located
above the line of perfect fit (1:1 line). This means that the
tabulated NRCS-CN values (Table 3 CNT(0.2), obtained from
the reference NRCS 2004) overestimate the observations at
λ = 0.2 by using CNimp= 98. However, by tuning the CNimp to
a value of 90 at the same λ = 0.2, the line of perfect fit is
somewhat located in the middle of the scattered data
(Fig. 8b). This implies that when analyzing runoff in these
basins at λ = 0.2, the best value for CNimp should be 90 instead
of 98. Table 7 shows the estimation of the RMSE for both
cases at λ = 0.2. It shows that the RMSE in the CN is reduced

Fig. 8 Comparison between
composite CN (CNc) obtained
from Eq. (17) and observed CN
(CNobs) at various values of λ and
CNimp at different HSG (A, B, C,
and D) and the average value of
CN. a λ = 0.2 and CNimp = 98, b
λ = 0.2 and CNimp = 90, c
λ = 0.01 and CNimp = 98, and d
λ = 0.01 and CNimp = 72

Table 7 Comparison between RMSE of CN observed (CNobs) and
composite runoff CN (CNc) at different values of CNimp and λ

λ RMSE between CNobs and CNc

CNimp = 98 CNimp = 90 CNimp = 72

0.2 11 7 –

0.01 34 – 18
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from 11at CNimp = 98 to 7 at CNimp = 90. The interpretation of
these results is that the mountainous rocks in the study area
contain a relatively high density of fractures and fissures, due
to weathering conditions, that contribute to the infiltration
process and consequently lead to lower CNimp. Figure 8c
shows the same relationship between the composite CN
(CNc) obtained from Eq. 17 and the observed CN (CNobs) at
λ = 0.01 and CNimp = 98. The figure shows the overestimation
of the CNc when compared with CNobs. The CNc is estimated

based on the results in Table 3 under the column of CNT(0.01),
based on the developed equation (Eq. 15). However, CNc, in
this case, is relatively much more scattered in the vertical
direction than that of Fig. 8a. This scatter is reduced by tuning
the CNimp to a value equal to 72 as shown in Fig. 8d. Table 7
shows a reduction in RMSE of CN from 34 to 18 for CNimp =
98 to CNimp = 72 respectively. Again, this reflects the infiltra-
tion from these rocks due to fissures and cracks in these rocks.
Therefore, it is recommended to use λ = 0.2 with CNimp = 90

Fig. 9 Comparison between
CNc obtained from Eq. 17 CNc

from the data as a function of the
percentage of the impervious area
(Pim) at various values of λ
and CNimp. a λ = 0.2 and
CNimp = 98, b λ = 0.2 and
CNimp = 90, c λ = 0.01 and
CNimp = 98, and d λ = 0.01
and CNimp = 72

Table 8 Summary of the percentage of pervious (alluvium) and impervious (rocks) and the corresponding CN (CNp) for alluvium, CNimp for rocks,
and the composite CN (CNc) at different values of λ

Basin P % Pim % λ = 0.2 λ = 0.01

CNp CNimp CNc CNimp CNc CNp CNimp CNc CNimp CNc

AL-Lith 27.39 72.61 70 98 92 90 86 40 98 82 72 63

Tabalah 17.76 82.24 70 98 93 90 87 40 98 85 72 65

Habawnah 21.26 78.74 70 98 94 90 88 40 98 86 72 66

Liyyah 18.87 81.13 70 98 93 90 87 40 98 85 72 65

Yiba 24.47 75.53 70 98 94 90 87 40 98 86 72 66
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or λ = 0.01 with CNimp = 72 in analyzing runoff in such ba-
sins. In both cases, the error in runoff estimation will be
minimal.

Relationship between CNc from Eq. (17) and CNc

from the data as a function of the percentage
of the impervious area (Pim)

Figure 9 displays the theoretical relationship between CNc

obtained from Eq. 17 and the CNc from the data as a function
of the percentage of the impervious area (Pim) at various
values of λ and CNimp. The figure shows four scenarios.
The first scenario is when λ = 0.2 and CNimp = 98; this case
is presented in Fig. 9a. It shows that the data for the basins are
located at the line of CNp = 70 which means that the alluvium

area has CN = 70 which seems relatively high. The same ob-
servation can be noticed in the second scenario when λ = 0.2
and CNimp = 90; the CN data for the alluvium is also located at
the line with CNp = 70. The third scenario is presented in Fig.
7c where λ = 0.01 and CNimp = 98. In this scenario, the data is
located on the line with CNp = 40. This leads to an estimation
of the CN of the alluvium in these basins to be about 40. This
seems more realistic for these basins since it would account
for the transmission losses in the alluvium. The last scenario
that appeared in Fig. 9d is similar to the previous scenario with
λ = 0.01, while with CNimp = 72. Table 8 summarizes the pa-
rameters (P%, Imp%, CNp, CNimp, and CNc) used for fitting
the data for all scenarios for these basins. These parameters
can be used for future studies of rainfall-runoff simulations in
these basins.

Fig. 10 Comparison between various methods for CN estimation (CNobs,
CN∞, and CNdesign) at λ = 0.01 and λ = 0.2. aNatural sorting of data pairs
(P: Q) at λ = 0.01, b natural sorting of data pairs (P: Q) at λ = 0.2, c

ordered sorting of data pairs (P: Q) at λ = 0.01, and d ordered sorting of
data pairs (P: Q) at λ = 0.2
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Comparison of various methods of CN estimation

Figure 10 summarizes a comparison between the various es-
timation methods of CN. namely CNobs, CN∞, and CNdesign,
for the basins under ordered and natural sorting of P: Q pairs
and at λ = 0.01 and λ = 0.2. Figure 10a and b are for the
natural sorting of data at λ = 0.01 and 0.2 respectively, while
Figs. 10b and c are for ordered sorting of data at λ = 0.01 and
0.2 respectively. The figures showthat CNdesign is the highest
for all basins for both values of λ and at both types of data
sorting. The second highest value is CNobs (that is based on

LSM), while the lowest value is for CN∞ (based on AFM).
The design CN is made through the NRCS-CN table for λ =
0.2 which is commonly used by hydrologists and engineers
worldwide. However, the design CN for λ = 0.01 is somewhat
lower than the CN at λ = 0.2. The low values of CNdesign for
these arid basins are obtained from the developed equation
(Eq. 15) which accounts for the transmission losses in these
basins. It is also obvious that the values based on ordered
sorting of data are relatively higher than the natural sorting
of data for both values of λ and for both CNobs and CN∞.
However, CNdesign does not depend on the order because it

Fig. 11 Validation of the various
methods for CN estimation
(CNobs, CN∞, and CNdesign) at
λ = 0.01 and λ = 0.2. a Natural
sorting of data pairs (P: Q)
at λ = 0.01, b ordered sorting of
data pairs (P: Q) at λ = 0.01, c
natural sorting of data pairs (P:Q)
at λ = 0.2, and d ordered sorting
of data pairs (P: Q) at λ = 0.2

Table 9 Summary of the
validation of the CN estimation
methods. Comparison between
estimated and observed runoff
depth (mm)

CN type Natural sorting Ordered sorting

λ = 0.01 λ = 0.2 λ = 0.01 λ = 0.2

R2 RMSE (mm) R2 RMSE (mm) R2 RMSE (mm) R2 RMSE (mm)

CNobs. 0.83 1.47 0.63 3.33 0.81 1.55 0.64 3.37

CN∞ 0.78 1.76 0.00 32.54 0.81 1.55 0.16 5.08

CNdisegn 0.74 5.89 0.72 10.42 0.74 5.89 0.72 10.42
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is based on the NRCS table. These results show high variabil-
ity between the various methods. However, the variability
is relatively reduced in the case of ordered sorting of
P: Q data pairs, since ordering provides a relatively
higher correlation between the P: Q pairs. The ordered
sorting is commonly used in consideration for design
purposes, while the natural sorting of data is mainly
used for natural simulation of the rainfall-runoff process
in the basins.

Validation of various methods of CN estimation

Figure 11 shows a comparison between the observed and the
estimated runoff depths (mm) using the values of CN estimat-
ed from the various methods (CNobs, CN∞, and CNdesign) at
both λ = 0.2 and 0.01 under the case of ordered and sorted data
pairs (P:Q). The figure shows that CNdesign overestimated the
observed values for all cases. This indicates that the use of the
NRCS-CN table (Table 3 at CN(0.2)) at λ = 0.2 or the modified
NRCS-CN table (Table 3 at CN(0.01)) at λ = 0.01 produces
high values for CN estimation that in turn leads to a safer
design of the flood mitigation structures. However, CNobs

and CN∞ are around the line of perfect fit (1:1 line) for the
case of λ = 0.01 under both sorted and ordered data points (see
Figs. 11 a and b). This result suggests the use of both CNobs

and CN∞ for the simulation of the hydrological processes in
the basins since it matches the observed runoff values. The
case of λ = 0.01, in Figs. 11 c and d, shows however a highly
scatter data especially at the natural sorting of data pairs (P:
Q). This confirms that λ = 0.2 is not suitable to be used in the
Saudi arid environment (Farran and Elfeki 2020c). Table 9
summarizes a quantification of Fig. 11. Both R2 and RMSE
are estimated for the aforementioned cases and the results are
tabulated. The table indicated that the highest R2 = 0.83 and
minimum RMSE = 1.47 mm at CNobs with λ = 0.01 at the
natural sorting of data. While the lowest R2 = 0.0 and a max-
imum RMSE = 32.54 mm at CN∞ with λ = 0.2 at the natural
sorting of data. This result shows that CN∞ is not a good
estimation of the CN in these arid basins which is also con-
firmed by Farran and Elfeki (2020b). The CNdesign for both
λ = 0.2 and λ = 0.01 shows relatively the same R2 = 0.72 and
0.74 respectively; however, the RMSE is minimal at λ = 0.01
(5.98 mm) in comparison with λ = 0.2 (10.42 mm). CNdesign

does not depend on data sorting or ordering. This last result
concludes that the NRCS-CN table at λ = 0.01 should be used
in the design of mitigation structures rather than the NRCS-
CN at λ = 0.2 since it reduces the RMSE.

Summary and conclusions

A comparison between various methods for CN estimation
has been carried out. These methods are the NRCS-CN table

(CNdesign), the least-squares method (LSM) which leads to the
so-called CNobs, and the asymptotic fitting method (AFM)
which leads to obtaining the so-called asymptotic CN, CN∞.
A comparison between these methods is carried out under the
effect of changing the coefficient of abstraction ratio, λ, and
under the effect of sorting the data pairs (P: Q). Moreover,
a methodology has also been developed to convert the NRCS-
CN table values from λ = 0.2 to λ = 0.01 for arid basins. The
following conclusion can be drawn from the study:

1. The values of CNdesign, CNobs, and CN∞ are relatively
lower in the case of λ = 0.01 when compared with λ =
0.2. This reflects the transmission losses occurring in
these basins.

2. The highest CN value obtained is the CNdesign, then
CNobs, while CN∞ shows the lowest value. Therefore,
for a safe design of the hydraulic structures, it is recom-
mended to use CNdesign. However, for the simulation of
the rainfall-runoff process in the natural basins, it is rec-
ommended to use CNobs at the natural sorting of data pairs
(P: Q). CN∞ is not a good estimation of CN in the Saudi
arid environment since the asymptotic value is not
reached within the rainfall record in most of the basins.

3. The relationship between the observed CN and the
NRCS-CN table shows that estimating runoff using λ =
0.2 is best made by CN of the impervious areas (CNimp =
90) instead of CNimp = 98 used in the literature. The
RMSE of CN is reduced from 11 at CNimp = 98 to 7 at
CNimp = 90. This value reflects the infiltration process in
the rocks of the mountains (impervious region of the ba-
sin) due to the high density of fractures and fissures in
these mountains.

4. The developed NRCS-CN table at λ = 0.01 should be
used in the design of mitigation structures in the natural
basins in the Saudi arid environment rather than the
NRCS-CN at λ = 0.2 since the developed table reduces
the RMSE in the estimated runoff by 57%.

The results of this research recommend the use of λ = 0.01
for flood studies in the Saudi arid environment for nat-
ural arid basins together with the developed NRCS-CN
table at λ = 0.01.
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