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Abstract
Rock-Eval pyrolysis, total organic carbon (TOC) determination and gas chromatography-mass spectrometry (GC-MS) analysis
were performed on samples from outcrop sections of the upper Barremian (M’Cherga Formation), Albian (Fahdene Formation)
and Cenomanian–Turonian (Bahloul Formation) in the Oued Bazina area located in the NE of the diapiric structure of Thibar,
northern Tunisia. The upper Barremian and Cenomanian–Turonian organic-rich strata display high TOC values with a mean of
3.39% and 2.82%, respectively, while the Albian succession deposits exhibit TOC values lesser than 2%. The half-graben
structures developed at these epochs have acted as restricted mini-basins favouring the water stagnation, the accumulation and
the preservation of the organic matter and consequently the development of locally euxinic conditions in the bottom waters. The
generative petroleum potential (S1 + S2) of the upper Barremian and Cenomanian–Turonian studied organic-rich strata is good to
very good and appears to be moderate for the Albian organic-rich deposits. The n-alkane distributions of the Cretaceous source
rocks are typical for a marine planktonic origin. The Pristane/Phytane ratio indicates a sub-oxic depositional environment for the
upper Barremian and Albian successions and a sub-oxic to anoxic environment for the Cenomanian–Turonian organic-rich strata.
Regarding the maturity degree of the three studied organic-rich strata, only the upper Barremian source rock presents a high
maturity level with Tmax values ranging from 441 °C to 448 °C, which indicates that the deposits have been deeply buried and
consequently have generated hydrocarbons that have been recognized in the studied oil seep. The integration of our results with
available data of Tmax values on other outcrops in the salt dome zone allowed drafting a maturity trend of the studied source rocks.
A general northeast–southwest trend of maturity increase is observed with Tmax values varying from 436 to 446 °C.
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Introduction

The Cretaceous period (upper Barremian, Albian and
Cenomanian–Turonian time intervals) (Fig. 1a) is manifested
by a greenhouse climate state as a consequence of the manifes-
tation of large igneous provinces (Barron and Washington
1985; Arthur et al. 1985; Leckie et al. 2002; Bodin et al.
2015). It is also characterized by a decrease in the tectonic
activity and registered high sea level (e.g. Jenkyns 1980;
Skelton et al. 2003). The high temperature recorded during this
period and the acceleration of the hydrological cycle (Menegatti
et al. 1998) have increased the primary productivity and led to
euxinic conditions (Föllmi et al. 1994; Föllmi 2012) with the
occurrence of distinctive episodes of organic-rich deposit accu-
mulations called oceanic anoxic events (OAEs; Jenkyns 1980).
The Cretaceous oceanic anoxic events are well identified and
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studied in the northern Tethys Margin (Jenkyns 1980; Cecca
and Pallini 1994; Leckie et al. 2002; Jenkyns 2010). The
OAE1a event known as “Selli Level” was of the first identified
and the most widely studied one (Arthur et al. 1990; Baudin
et al. 1998). It is represented by 1 to 3 m thick prominent
regional black shales in the Umbria–Marche Basin where total
organic carbon (TOC) values achieve 18% (Coccioni et al.
1987). OAE1b event is marked by the deposition of laminated
organic-rich strata that were recognized in several locations in
France, Germany and Austria. Also, this event (OAE1b) was
recognized later across several regions of the Tethyan–Atlantic
domains (Leckie et al. 2002). OAE1d has been recorded in the
Umbria–Marche Basin and is composed of black shale layers
interbedded with limestones exhibiting TOC values more than
5%. The OAE2 is widespread across and outside the Tethyan
margin. It corresponds to Actinocamax plenus marls from the
south of England (Jefferies 1963; Gale et al. 1993; Paul et al.
1999); to the “Thomel Level” of the Vocontian basin (Crumiere
et al. 1990; Grosheny et al. 2006); and to the “Bonarelli Level”
in central Italy (Arthur and Premoli-Silva 1982). In northern
Tunisia, the OAE1a event occurs among the succession of

M’Cherga Formation (Fig. 1b), while the OAE1b, c and d
events of the Albian period are represented by the Fahdene
Formation (Fig. 1c), and finally, the OAE2 event of
Cenomanian–Turonian transition age (Fig. 1d) corresponds to
the Bahloul Formation (Memmi 1989; Ben Ferjani et al. 1990;
Layeb 1990; Saidi 1993; Talbi 1993; Lüning et al. 2004;
Zagrarni et al. 2008; Elkhazri et al. 2009; Heldt et al. 2010;
Soua 2010, 2011; Ben Fadhel et al. 2011; Affouri et al. 2013;
Layeb et al. 2013; Ben Fadhel et al. 2014; Soua 2016; Touati
2017). The Bahloul Formation represents the main Cretaceous
source rock in onshore and offshore Tunisia and records high
TOC values reaching 10.45% (Layeb 1990; Soua 2011; Affouri
et al. 2013; Soua 2013, 2016; Ayari 2015; Touati 2017). In
northern Tunisia, the Albian oceanic anoxic events OAE1b
and OAE1c present TOC values ranging between 0.17 and
3.43% and contain mixed type II/III organic matter (Saidi
1993; Khalifa et al. 2018; Hallek 2019; Hallek et al. 2020).
On the contrary to the OAEs 1b, c, d and 2, the early Aptian
OAE1a event is marked by low to moderate TOC values
(Elkhazri et al. 2009; Talbi et al. 2019). It is worth noting that
a few stratigraphic and geochemical researches have been

Fig. 1 a Aptian–Cenomanian paleogeography of western Tethys
(Dercourt et al. 1993). b Facies distribution during the early Aptian age
(modified from Zghal and Arnaud-Vanneau 2005). c Facies distribution

during the Albian age (Chihaoui et al. 2010). d Facies distribution during
the Cenomanian–Turonian age (modified from Zagrarni et al. 2008; Soua
et al. 2009)
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carried out on the upper Barremian level which is considered as
a potential source rock in Tunisia, and some recent biostrati-
graphic works consider it as of Bedoulian age (Elkhazri et al.
2009).

We emphasize that in the NE of the Thibar salt dome area,
few bulk geochemical studies (Layeb 1990; Affouri et al.
2013; Touati 2017; Khalifa et al. 2018) have interested the
Cretaceous oceanic anoxic sub-events comparatively with
their analogues in central Tunisia (Soua 2016) and in the
Dorsal domain (Elkhazri et al. 2009; Soua 2016; Talbi et al.
2019). In this contribution, we aim to (1) study and evaluate
the organic-rich deposits of the upper Barremian to the lower
Turonian time intervals; (2) to determine the genetic link be-
tween the Cretaceous source rocks and the oil seep recorded in
the NE of the Thibar salt dome structure; and (3) to better
understand the depositional conditions and the maturity evo-
lution by studying the vertical distribution of the upper
Barremian, Albian and Cenomanian–Turonian organic-rich
facies. The bulk geochemical characterization of the main
Cretaceous source rocks and the oil seep/ source rock correla-
tion may help to reconsider the petroleum system of the study
area. Furthermore, our data will be integrated with previous
studies in order to make a comparison with other localities
situated in the salt dome zone. This comparison is of major
interest to understand the role played by local factors (i.e.
tilted block basin architecture and Triassic halokinetic activi-
ties) in the installation of anoxic conditions and the thermal
maturity variation.

Geological and stratigraphic setting

During the Cretaceous time, an extensional tectonic regime
prevailed in the main sedimentary basins of the southern
Tethyan margin. Such extensional tectonic experienced a
strong phase during the Jurassic to the Hauterivian, followed,
during the Barremian, by an interval of moderate tectonic
movements (Rabhi and Ben Ayed 1990) but with larger sub-
sidence rates, which favoured the development of wide and
thick shales and carbonate rocks. In northern Tunisia, it is
thought that the basin was segmented into NE–SW tilted
blocks that controlled the organic-rich strata deposition
(Chaari 2002; Melki et al. 2012; Belayouni et al. 2013). At
least four major NE–SW master faults have controlled the
sedimentation and the architecture of the basin (Fig. 2a) cor-
responding to Cap–Serrat–Ghardilaou fault (CSGF), Ras
Korane–Thibar fault (RKTF), El Alia–Teborsouk fault
(ETF), Tunis–Ellès Fault (TEF) and Zaghouan fault (ZF)
(Zargouni 1978; Burollet and Ellouz 1986; Martinez et al.
1991; Bouaziz et al. 2002; Melki et al. 2012; Belayouni
et al. 2013). These major faults controlled differential subsi-
dence and sedimentation patterns at least during Barremian–
Albian epochs and have been reactivated later for several

times until the late Eocene and during the Miocene Alpine
phase (e.g. Perthuisot 1978; Rabhi and Ben Ayed 1990;
Masrouhi et al. 2008; Khomsi et al. 2009). The Cretaceous
deposits studied here are involved in the half anticline of Oued
Bazina which lies in the NE of the Thibar salt dome structure
(Fig. 2b). Nevertheless, the studied outcrop sections appear to
be slightly different to those of the salt dome succession and
show more affinity to deposits of the “Medjerda valley zone”.

Lithological succession of the studied sections

Upper Barremian organic-rich strata of Douar
Mraouna section

In the area of Douar Mraouna, the early Cretaceous succession
(upper Barremian) is well exposed and represented by 11.5 m
thick succession made up of black laminated limestones and
marls. The section base is dominated by dark grey marls over-
lain by laminated black marly–limetones and laminated lime-
stones plates. The uppermost part of the section is represented
by massive black limestones rich in ammonites (Fig. 3).
Stratigraphically, this section appears to be time-equivalent of
the upper Barremian aged succession studied by Talbi et al.
(2019) and Soua (2016) which thought to be deposited in the
collapsed areas of the basin due to tilting by normal E–Wfaults.

Albian organic-rich strata: Fahdene Formation of Oum
Stoud section

In the Oum Stoud section, the Albian succession is mainly
dominated by thick series of black marls and shales with sub-
ordinate dark grey carbonate beds. The sedimentation begin
with dark grey–black limestones and argillaceous limestones,
overlapped by levels of nodular black limestones of massive
aspect (8–15 m thick) with thin marls parting intervals which
in turn capped by dark grey marls with intercalation of mas-
sive black limestones and marly limestones. The middle part
of the section is 130 m thick and includes mainly grey marls.
The upper part (upper Albian) includes black marly intervals
interbedded with limestones and massive marly limestones
that locally contain glauconite (Fig. 3). This section displays
difference with the Albian succession in the Tajerouine sec-
tion which is considered to have more basinal characteristics
(Chihaoui et al. 2010).

Cenomanian–Turonian organic-rich strata: Bahloul
Formation

The Cenomanian–Turonian organic-rich strata of the Bahloul
Formation are well exposed in the Oued Bazina area and
subdivided into three lithological units (U1, U2 and U3). The
lower unit (U1) is dominated by black laminated limestone
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plates with thin marls and laminated marly limestone partings.
The medium unit (U2) is composed of black marls enclosing
subordinate black limestone beds. The uppermost unit (U3)
tends to be dominated by laminated and massive limestones.

Materials and methods

Rock-Eval pyrolysis

Total rock geochemistry analysis was conducted on 52 sam-
ples (Table 1) that were collected from three outcrop sections
represented by Douar Mraouna section (upper Barremian suc-
cession: ten samples), Oum Stoud section (Albian succession:
13 samples) and Oued Bazina section (Cenomanian–Turonian

succession: 29 samples). They were collected from different
lithologies including marlstones, limestone beds and black
laminated limestones plates. Samples from Oued Bazina
(OBZ) and Douar Mraouna (DM) sections were collected
and analysed using Rock-Eval-6 method (Espitalié et al.
1985; Espitalié et al. 1977; Tissot and Welte 1984; Lafargue
et al. 1998; Behar et al. 2001), while samples fromOum Stoud
(OS) section were provided by Tunisian Oil Company
(ETAP) from internal report (Belayouni 1994). The adopted
sampling is 1–3 m intervals spacing with a high-resolution
sampling in the black shale interval 0.3–0.7 m thick. Several
parameters were determined from Rock-Eval-6 pyrolysis
method such as total organic carbon (TOC) contents, S1 (free
hydrocarbons fraction), S2 (fraction of hydrocarbons released
by thermal cracking) and maximum pyrolysis temperature
(Tmax, corresponding to maximum kerogen cracking mea-
sured at the top of the S2 peak which indicates the maturity
level or stage of source rocks). Other parameters have been
determined by Rock-Eval-6 such as hydrogen index (HI) and
oxygen index (OI). Units and formula of the mentioned pa-
rameters above are represented in Table 2. These parameters

�Fig. 2 aGeological maps of northern Tunisia showing the major faults of
northern Tunisia, the position of the studied sections and the recorded oil
seep sample outcropping in the NE of Thibar salt dome structure
(modified from Melki et al. 2012). b Detailed geological map of the
studied area boxed in Fig. 2a (Biely et al. 1982)

Fig. 3 Lithological succession of upper Barremian, middle to upper Albian and Cenomanian–Turonian organic-rich strata
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are given throughout an applied cycle where pyrolysis started
at 300 °C allowing getting S1 peak, and then the sample was
heated to 650 °C obtaining the so-called S2 peak. The cycle is
completed by combustion of the residual rock recovered after
pyrolysis, and the sample was heated up to 850 °C, and the S3

peak (CO2 released) is determined. The oxidation
(combustion) started isothermally at 400 °C (Espitalié et al.
1985; Behar et al. 2001). TOC is determined by the CO and
CO2 during pyrolysis and oxidation stages, and it is expressed
in weight percentage (wt%).

Table 1 Rock-Eval-6 (Espitalié et al. 1985) analysis of upper Barremian, Albian andCenomanian–Turonian samples fromDouarMraouna, Jebel Oum
Stoud and Oued Bazina, respectively

Section S1 (mg HC/g R) S2 (mg HC/g R) PP (mg HC/g R) TOC (wt%) Tmax (°C) HI (mg HC/g TOC) OI (mg CO2/g TOC)

Upper Barremian succession: Douar Mraouna section
DM18 0.15 3.28 3.43 1.22 447 269 16
DM15 1.98 10.47 12.45 3.8 448 276 8
DM13 0.24 5.36 5.6 3.28 442 163 38
DM12 1.17 9.76 10.93 3.88 445 252 19
DM11 0.32 6.08 6.4 3.65 441 167 41
DM10 0.1 2.52 2.62 1.72 444 147 42
DM9 1.14 12.02 13.16 4.92 445 244 18
DM8 0.35 4.94 5.29 2.63 445 188 34
DM7 0.7 7.97 8.67 3.24 443 246 15
DM1 0.05 0.83 0.88 0.58 444 143 55

Albian succession: Oum Stoud section
OS13 0.33 3.71 4.04 0.78 434 424 –
OS12 0.12 5.02 5.14 0.95 436 528 –
OS11 0.14 5.22 5.36 1.15 436 454 –
OS10 0.03 1.3 1.33 0.64 434 203 –
OS9 0.01 0.4 0.41 0.6 440 67 –
OS8 0.11 7 7.11 2.03 436 345 –
OS7 0.02 0.97 0.99 0.49 442 198 –
OS6 0.02 2.5 2.52 0.8 438 313 –
OS5 0.01 0.3 0.31 0.35 436 86 –
OS4 0.03 0.77 0.8 0.25 438 308 –
OS3 0.02 0.52 0.54 0.22 432 236 –
OS2 0.02 0.92 0.94 0.41 440 224 –
OS1 0.43 0.4 0.83 0.24 436 167 –

Cenomanian–Turonian succession: Oued Bazina
OBZ29 0.08 5.06 5.14 1.23 433 411 51
OBZ28 0.04 3.68 3.72 0.92 431 400 36
OBZ27 0.11 6.79 6.9 1.25 429 543 28
OBZ26 0.01 0.27 0.28 0.11 443 245 145
OBZ25 0.02 1.51 1.53 0.7 434 216 69
OBZ24 0.02 0.87 0.89 0.35 434 249 57
OBZ23 0.11 5.62 5.73 1.74 432 323 50
OBZ22 0.76 20.04 20.8 3.03 428 661 12
OBZ21 0.31 11.76 12.07 1.93 429 609 24
OBZ20 0.48 15.28 15.76 2.23 429 685 23
OBZ19 0.34 11.43 11.77 1.78 430 642 30
OBZ18 0.9 22.05 22.95 2.98 429 740 21
OBZ17 0.38 14.47 14.85 2.03 430 713 27
OBZ16 1.6 44.06 45.66 6.3 427 699 16
OBZ15 0.24 12.07 12.31 2.39 431 505 41
OBZ14 1.85 38.76 40.61 5.24 427 740 17
OBZ13 0.47 17.92 18.39 2.51 432 714 18
OBZ12 1.26 32.24 33.5 4.16 430 775 10
OBZ11 2.38 51.46 53.84 6.76 430 761 9
OBZ10 1.56 40.74 42.3 4.24 429 961 4
OBZ9 1.26 32.38 33.64 4.01 430 807 8
OBZ8 1.13 26.37 27.5 3.49 432 756 8
OBZ7 0.2 8.05 8.25 1.76 432 457 45
OBZ6 0.01 1.2 1.21 0.44 441 273 107
OBZ5 0.05 5.25 5.3 1.38 436 380 72
OBZ4 0.6 20.3 20.9 3.78 422 537 27
OBZ3 0.01 0.08 0.09 0.12 434 67 367
OBZ2 0.01 0.13 0.14 0.14 437 93 143
OBZ1 0.1 4.76 4.86 1.38 437 345 72
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Gas chromatography coupled to mass spectrometry
method

Seven samples were analysed through gas chromatography
coupled to mass spectrometry (GC/MS) which were firstly well
prepared in order to be passed to GC/MS analysis (6 samples
from the main Cretaceous source rocks and one oil seep sample
recorded in the fractured Cenomanian strata). The bitumen frac-
tion was extracted with organic solvent (dichloromethane:
CH2Cl2), and then liquid chromatography with a single column
was performed to recuperate saturate, aromatic and polar frac-
tions. Saturate biomarkers were determined usingAgilent 7890A
gas chromatograph interfaced to an Agilent 5975 quadrupole
mass spectrometer. The GC was equipped with split/splitless
injection system, operated in split mode, and DB-1MS fused

silica capillary column of 30 m length, 0.25 mm inner diameter
and 0.25 μm film thickness. Helium was used as a carrier gas
with a flow rate of 1 ml/min. The oven temperature used to
analyse saturates was programmed from 50 °C (hold 2 min) to
170 °C (5 min) to 300 °C at 1.5 °C/min. The mass spectrometer
was operated in the electron impact mode at electron energy of
70 eV and a source temperature of 230 °C.

Results

Rock-Eval pyrolysis analysis of the upper Barremian

The organic content of the upper Barremian samples in Douar
Mraouna section presents high organic contents (TOC)

Table 2 Various parameters
obtained by Rock-Eval pyrolysis Parameters Unit Formula Name

Tmax °C TpS2 − ΔTmax Tmax
RC CO wt% [S4CO × 12/28]10 Residual org. carbon (CO)

TR S1 HC Exp./S1 + S2 Transformation ratio

PC wt% [(S1 + S2) × 0.83] + [S3 × 12/44] +
[(S3CO + S3′CO/2) × 12/28]

Pyrolysable org. carbon

PI S1/(S1 + S2) Production index

RC CO2 wt% [S4CO2 × (12/44)]/10 Residual org. carbon (CO2)

RC wt% RC × CO + RC × CO2 Residual org. carbon

TOC wt% PC + RC Total organic carbon

HI mg HC/g TOC (S2 × 100)/TOC Hydrogen index

OI mg CO2/g TOC (S3 × 100)/TOC Oxygen index

Fig. 4 TOC, total organic carbon, wt%; Tmax , temperature at maximum of S2 peak; HI, hydrogen index=S2 × 100/TOC, mg HC/g TOC; PP,
petroleum potential yield =S1+S2 (mg/g)
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ranging from 0.58 to 4.92% (Table 1). The pyrolysis derived
S1 and S2 values range from 0.1 to 0.44 mg/g and 1.06 to 9.30
mg/g, respectively. The majority of values indicate fair to
good source rock potential. Few samples have mostly poor
potentiality than other samples. Most samples present high
petroleum potential values reaching 13.16 mg HC/g rock.
Tmax values of upper Barremian range from 441 to 448 °C
with a mean value of 441 °C suggesting that the samples are
early to mid-mature for oil generation. The hydrogen index
(HI = S2 × 100/TOC, mg HC/g TOC) corresponds to the peak
S2 normalized for the TOC content and serves as indication of
kerogen types (Tissot and Welte 1984; Peters 1986). The hy-
drogen index (HI) values range from 147 to 276 mg/g,
reflecting that this formation is dominated by gas-prone kero-
gen with 62.5% of the representative samples occur under
200 mg HC/g TOC indicating a type III organic matter, and
37.5% of samples are between 200 and 300 mg HC/g TOC
indicating a mixed organic matter type II/III (Fig. 5).

Middle to upper Albian organic-rich strata of Jebel
Oum Stoud section

The organic richness (TOC) of the middle–upper Albian
(Fahdene Formation) varies from poor to fair (Fig. 4b) with
values ranging from 0.24 to 1.15% (Table 1). Only one sample
(OS8) is rated good to very good. The pyrolysis derived “S1”

values range from 0.01 to 0.43 mg/g, and the remaining po-
tential “S2” values range from 0.30 to 5.22 mg/g (Table 1; Fig.
4b), indicating that they are of poor to fair source rock poten-
tial (Fig. 4b). Tmax range from 434 to 442 (Table 1; Fig. 4b),
indicating an immature source rocks. HI values range from 67
to 454 mg/g (Table 1; Fig. 4b), indicating that the Fahdene
Formation ranges from oil-prone to gas-prone kerogen with
41% of the representative samples occurring between 300 and
700 mg HC/g TOC and indicating a marine planktonic organ-
ic matter (type II), and 34% of the studied samples are derived
from continental organic matter (type III), while 25% of the
samples present type II/III organic matter (Fig. 5)

Cenomanian–Turonian source rock

Samples collected from Cenomanian–Turonian facies
(Bahloul Formation) outcropping in Oued Bazina area present
high TOC values reaching 6.76% with a mean value of 2.82%
(Table 1; Fig. 4c). Tmax values of the Cenomanian–Turonian
organic-rich strata are very low and did not exceed 430 °C in
this area. HI vs. Tmax diagram (Fig. 5) shows that most of the
samples collected from these facies present high HI values
exceeding 300 mg HC/g which indicate that this source rock
is very rich in oil-prone kerogen and containing essentially
marine planktonic organic matter (type II).

Fig. 5 HI vs. Tmax diagram of the
main Cretaceous source rocks.
(DM-U. B: upper Barremian
section; OS-Al: Albian section;
OBZ-C–T: Cenomanian–
Turonian section)
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Molecular composition of the Cretaceous organic-rich
strata

Samples collected from the upper Barremian, Albian and
Cenomaninan–Turonian organic-rich facies outcropping in the
NE of Thibar diapir (northern Tunisia) are rich in organic ex-
tracts or bitumen. The organic extracts are dominated by satu-
rate and aromatic hydrocarbons over the NSO compounds

(resins and asphaltenes). Values of total hydrocarbons represent
77% of the organic extracts for upper Barremian facies, 91% for
the Albian facies and 68% for Cenomanian–Turonian facies
(Table 3).

Molecular biomarkers lead to the reconstruction of the
geological history of the organic-rich rocks. In fact, they
consist of molecular fingerprints that survive after all dia-
genetic phenomena. According to their molecular struc-
tures, there are several types of biomarkers. The saturate
fraction of upper Barremian and Albian samples (DM9,
DM12 and OS12) shows unimodal n-alkane distribution
ranging from n-C15 to n-C30+ and maximizing around n-
C17 and n-C18. Moreover, n-alkane distribution of
Cenomanian–Turonian samples (OBZ11 and OBZ16) ex-
hibits an equal concentration (Fig. 6). In all studied sam-
ples of the Cretaceous series, the Pristane (Pr) dominates
the Phytane (Pr) as indicated by the relatively high Pr/Ph
ratio ranging from 1.4 to 2.5. The upper Barremian and
Albian organic-rich facies are marked by a dominance of
n-C18 and n-C17 over Pr and Ph, respectively ,with lowest
value recorded in the upper Barremian facies (Ph/n-C18

ratio = 0.42). However, in the Cenomanian–Turonian sam-
ples (OBZ11 and OBZ 16), the Pr and Ph dominate their
respective n-alkanes.
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Table 3 Geochemical data from Cretaceous organic-rich strata
analysed using liquid chromatography and GC/MS.

Parameters DM12 DM9 OS12 OBZ11 OBZ16

Saturates (%) 45 34 47 27 28

Aromatics (%) 25 44 44 42 38

NSO compounds 30 22 9 31 34

Pr/Ph 2.5 2.48 2.21 1.8 1.4

C19/(C19 + C23) 0.38 0.38 0.34 0.04 0.05

C24Tet/(C24Tet + C23TT) 0.31 0.32 0.22 0.26 0.29

C27 (%) 33 34 31 27 27

C28 (%) 31 30 29 38 39

C29 (%) 36 36 39 34 34
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The steranes (m/z 217 and 218) and terpanes (m/z 191)
were used to determine the geochemical characteristics of
each source rock such as the origin of organic matter, thermal
maturity, lithology, depositional environment and biodegrada-
tion. The abundance of regular steranes over diasteranes (m/z
217; Figs. 7, 8, and 9) suggests a carbonate lithology approved
by the important concentrations of tetracyclic terpane T24
(Palacas et al. 1984; Connan and Dessort 1987). The
diasterane/sterane ratio is generally influenced by both miner-
al matrix and thermal degradation (Tissot and Welte 1984).
Samples collected from the upper Barremian and
Cenomanian–Turonian facies (DM12, DM 9, OBZ11 and
OBZ16) show, on the ion 217 mass spectrum, a relative pre-
dominance of steranes compared with diasteranes.

The C27-, C28- and C29-steranes can be used as indicators of
the depositional environment and the organic matter origin
(Moldowan and Mc Caffrey 1995). The sterane distributions
of the upper Barremian and Albian samples (DM12, DM9 and
OS12) show a predominance of C29-steranes over C28- and
C27-steranes. However, OBZ11 and OBZ16 samples

collected from the Cenomanian–Turonian black shales exhibit
a predominance of C28-steranes over C27 and C29

homologous.
C27 18α-22,29,30-trisnorneohopane (Ts) is thermody-

namically more stable than C27 17α-22,29,30-trisnorhopane
(Tm) (Peters and Moldowan 1993), and the ratio increases
with increasing maturity. Samples from upper Barremian
and Albian facies (DM12, DM9 and OS12) exhibit the pre-
dominance of Ts over Tm with Ts/Tm ratio values ranging
from 3.42 to 3.81 for upper Barremian samples and of 2.91 for
Albian sample. In contrast, samples from the Cenomanian–
Turonian facies (OBZ11 and OBZ16) show a predominance
of Tm over Ts with very low Ts/Tm ratio of 0.17 and 0.19,
respectively.

Oil seep molecular analysis

The bimodal n-alkane distributions of the OB-OS-CEN oil
seep sample indicate its sourcing from a rock that presents
a marine organic matter origin with some continental
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contribution. The analysed sample displays a moderate
predominance of Pristane compared with Phytane with a
Pr/Ph ratio of 1.9 indicating a sub-oxic depositional envi-
ronment (Fig. 10a). This is supported by the homohopane
(C31–C35HH) distribution of the ion 191 mass spectra.
Additionally, there is a relative abundance of diasteranes
compared with steranes indicating that the source rock of
the studied oil sample is relatively rich in clay fraction.
(Fig. 10b). Gammacerane comes from the reduction of tet-
rahymena (Venkatesan 1989). The low concentration of
gammacerane in OB-OS-CEN oil seep sample indicates
deep marine environment characterized by normal salinity
(Niu et al. 2018) with gammacerane/hopane ratio value of
0.05.

Discussion

Organic richness and generative petroleum potential

Rock-Eval pyrolysis analysis of the Cretaceous organic-rich
strata outcropping in Oued Bazina area, NE of Thibar diapir,
was used to evaluate the organic matter richness and the pe-
troleum potential (PP).

Based on the petroleum potential vs. TOC diagram
(Fig. 11), samples from the three studied Cretaceous
source rocks split into two groups: (1) a highly organic-
rich group with an excellent petroleum potential

represented by the Cenomanian–Turonian strata (Bahloul
Formation) and the upper Barremian black laminated
limestone plates and marls and (2) a moderate organic-
rich group with poor to fair petroleum potential represent-
ed by the Albian succession (Fahdene Formation) of Oum
Stoud section.

Our results concur with available published geochemi-
cal studies (Layeb 1990; Belayouni 1994; Abbassi 2008;
Chaari 2002; Affouri et al. 2013; Ben Fadhel et al. 2014;
Ayari 2015; Talbi et al. 2019) undertaken on the upper
Barremian, Albian and Cenomanian–Turonian organic-
rich strata in the salt dome zone and in the Medjerda valley
(Figs. 12 and 13). Nevertheless, the Cenomanian–Turonian
anoxic event in the salt dome area displays a wide variation
of TOC values (TOC values are varying from 1.69 to
2.85% with a mean value of 2.4% and a PP ranging be-
tween 4 and 20.28 kg of HC/ton of rock) (Fig. 13) that is
directly related to the particular geometry of the basin dur-
ing the lower to middle Cretaceous epochs. Within this
frame, it is thought that the structural framework was con-
trolled by NE–SW faults (Boltenhagen 1985; Chihi 1995)
that generated half-graben structures characterized by thick
sedimentary prisms on the collapsed side of normal faults
and reduced ones on their resistant side (Talbi et al. 2019).
These half-grabens have acted as restricted mini-basins
favouring the water stagnation, the accumulation and pres-
ervation of the organic matter and consequently the devel-
opment of locally euxinic conditions in the bottom waters.
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The record of the anoxic event is evidenced by the high
amount of organic matter included in the black laminated
limestone plates, black limestones and marls in the Bahloul
Formation in Oued Bazina.

In several areas located above or close to the Triassic salt
domes, the early and middle Albian deposits are commonly
missing, and only the late Albian and Vraconian series are
present (paleohigh related hiatus). This is the case of Oum
Stoud section where the early Albian is lacking. The organic
richness (TOC) of the middle–upper Albian (Fahdene
Formation) varies from poor to fair (Fig. 4b) with values rang-
ing from 0.24 to 1.15% (Table 1). Only one sample (OS8) is
rated good to very good. The comparison of our results with
available data (Belayouni 1994; Abbassi et al. 2010; Chaari
2002; Ben Fadhel et al. 2014; Talbi et al. 2019) show that in
the salt dome zone, the TOC values are ranging from 0.52 to
1.1% with a mean of 0.8%, while the petroleum potential is
varying between 1.08 and 2.82 kg of HC/ton rock which is
considered as poor to fair PP.

Lithology, depositional environment and kerogen
type

The predominance of steranes comparatively with
diasteranes in the upper Barremian (DM9 and DM12)
and Cenomanian–Turonian (OBZ11 and OBZ16) samples
indicates that the organic-rich facies are composed of car-
bonates containing some argillaceous fraction (Figs. 7 and
9). In contrast, the analysed Albian sample (OS12) shows
the predominance of diasteranes compared with steranes and
therefore suggesting a more clastic source rock (Fig. 8). Upper
Barremian samples (DM9, DM12) contain more clastic fraction
than Cenomanian–Turonian samples (OBZ11 and OBZ16)
(Fig. 14).

The low concentration of gammacerane in samples collect-
ed from upper Barremian, Albian and Cenomanian–Turonian
(DM9, DM12, OS12, OBZ11 and OBZ16) indicates that the
studied Cretaceous source rocks were deposited in a deep
marine environment with normal salinity. The upper
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Barremian samples show a regular decreasing of
homohopanes from C31 to C35 which is characteristic of a
sub-oxic depositional environment. However, the irregular
decrease of C31–C35 hopanes of samples from Cenomanian–
Turonian source rock (OBZ11 and OBZ 16) indicates a sub-
oxic to anoxic depositional environment (Figs. 7, 8, and 9).
The Pristane/Phytane ratio tends to be high in more oxidizing
environments and low in strongly reducing ones (Powell and
McKirdy 1973). Pr/Ph ratio indicates a sub-oxic depositional
environment for the upper Barremian and Albian successions
and a sub-oxic to anoxic environment for the Cenomanian–
Turonian organic-rich strata with values of 2.48–2.5, 2.21 and
1.4–1.8, respectively (Table 3).

Tricyclic terpanes have also been associated with the alga
Tasmanites (Revill et al. 1994). Abundant tricyclic terpanes
are attributed to a common feature of a freshwater environ-
ment (Kruge et al. 1990). The diagram of C19/(C19 + C23)Tt

vs. C24TT/(C24Tt + C23Tt) shows that samples from the
upper Barremian, Albian and Cenomanian–Turonian facies
are deposited in marine environment (Fig. 15). A comparison
with other localities suggests that results of upper Barremian
are similar to those of Jebel Ammar and Jebel Ressas
(Elkhazri et al. 2009). Cenomanian–Turonian facies preserved
a type II organic matter signature in the salt dome zone
(Affouri et al. 2013).

The distribution of the C27, C28 and C29 (αα20R) regular
steranes can serve as a facies parameter (Shanmugam 1985;
Killops and Killops 2005). Indeed, C27 sterols are derived
from algae, while C29 sterols are synthesized from land plants
(Volkman 1986). Samples from the Cretaceous source rocks
have shown a marine algal input (Fig. 16). The absence of
terrestrial inputs in the upper Barremian, Albian and
Cenomanian–Turonian source rocks concurs with results of
Hallek et al. 2020.
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Thermal maturity

Assessment of thermal maturity of the three source rocks
outcropping in the NE of Thibar salt dome is determined
by Rock-Eval pyrolysis, Tmax values and Ts/Tm distribu-
tion. The upper Barremian and Albian facies (DM9,
DM12 and OS12 samples) exhibit the predominance of
Ts over Tm and therefore indicating a mature stage. The
upper Barremian facies Ts/Tm ratio (3.81) indicates more
advanced thermal maturity level compared with the
Albian facies (Ts/Tm ratio = 2.91). However, the
Cenomanian–Turonian facies (OBZ11 and OBZ16 sam-
ples) show a very low Ts/Tm ratio indicating an imma-
ture stage (Fig. 9). The C29 ααS/C29 ααR vs. C29
ββR/C29 ααR diagram shows that samples from upper
Barremian source rock (DM12 and DM9) present high
maturity level compared with samples from Albian
(OS12) and Cenomanian–Turonian source rocks (OBZ11
and OBZ16) (Fig. 17).

The Tmax values recorded in the Cenomanian–Turonian
samples organic-rich strata are very low (429-437 °C)
confirming that this source rock is immature. Tmax values of
the Albian succession in Oum Stoud section range from 434 to
442 °C indicating that the Albian source rock is early mature

to mature. Tmax values recorded in Douar Mraouna section
(441–448 °C) indicate that the upper Barremian source rock
is mature with high respect to the oil window (Table 1; Fig.
4a).

The integration of our results on thermal maturity with
published data indicates clearly that the thermal maturity
degree is fairly low (immature) toward the eastern part
(Oued Bazina, Oued Faouar and Ech Cheid) as indicated
by the relatively low Tmax values which range from 431 to
439 °C, while toward the west (Sfa Boubaker, Jebel
Srassif and Jebel Hdidia), the Fahdene (Albian) and the
Bahloul (Cenomanian–Turonian) source rocks are mature
to late mature as indicated by the relatively high Tmax

values varying between 440 and 446 °C according to the
results of Rock-Eval pyrolysis from the outcrop sections
studied by several authors (Chaari 2002; Ben Fadhel et al.
2014; Affouri et al. 2013). The increase of the thermal
maturity appears to be related to the high rate of sedimen-
tation and subsidence driven by regional tectonic move-
ments along NW–SE, NE–SW and east–west trending
normal faults (Soua et al. 2009). However, in the NE part,
the Cretaceous outcrops of Oued Bazina deposited close
to the paleohighs as the result of the Triassic salt dome
movement since the lower Cretaceous have not buried
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enough to produce oil. Nevertheless, and despite their
position close to Ech Cheid salt dome, the Albian and
Cenomanian–Turonian organic-rich facies of the Oued
Siliana section (Figs. 12 and 13) show high degree of
thermal maturity (448 °C and 442 °C). Comparison of
the geochemical results of the Cenomanian–Turonian
and Albian facies according to a NE-SE transect extend-
ing from Oued Faouar, Oued Siliana to Oued Bazina
(Figs. 12 and 13) shows that the thermal maturity in-
creases near the Triassic salt structure, whereas in the
inter-diapiric domains, we notice a decrease in maturity
(e.g. Oued Faouar and Oued Bazina sections). This ar-
rangement prompted us to look for the link between high
thermal maturity and salt dome structures. In this context,
Downs (2012) showed that salt domes strongly increase
the parameter of the temperature in the sedimentary de-
posits, which has an impact on the maturity of the organic

matter and on the time of hydrocarbon generation. Thus,
the cases of Oued Siliana can be included in this frame-
work where the Bahloul Formation (Oued Siliana) is lo-
cated close to the Jebel Echid diapir that increased the
heat flow because of the thermal anomaly surrounding
Jebel Ech Cheid salt structure.

Oil/source rock correlation

Oil/source rock correlation using biomarker analysis per-
mit to determine the source of the single oil seep recorded
in the Cenomanian faulted limestone beds. Three samples
(DM12-U.B, OS12-Al and OFO-C/T) collected from
Cretaceous source rocks (upper Barremian, Albian and
Cenomanian–Turonian) have been used for this correla-
tion. Regarding the low maturity stage of Cenomanian–
Turonian samples of Oued Bazina area, we provided

Fig. 12 Tmax, TOC and petroleum potential distribution of Albian source rock in northern Tunisia
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another sample from Oued Faouar region (OFO-C–T).
Sterane, terpane and hopane distributions exhibit similar
values for upper Barremian source rock (DM12-U. B) and
OB-OS-CEN oil seep. This result indicates that the single
oil seep recorded in Oued Bazina area “OB-OS-CEN”
was sourced from the upper Barremian source rock
(Figs. 18 and 19).

Conclusion

Results from organic geochemistry study of the Cretaceous
organic-rich deposits outcropping in northern Tunisia using
Rock-Eval pyrolysis and biomarkers showed good potential
source rocks especially for upper Barremian and
Cenomanian–Turonian where their TOC and petroleum
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diasterane values. (OB-OS-CEN:
Cenomanian oil seep sample;
DM12-U. B: upper Barremian
sample; OS12-Al: Albian sample;
OFO-C/T: Cenomanian–
Turonian sample)

Fig. 19 Oil/source rock
correlation based on terpane,
tricyclique and hopanes values
(OB-OS-CEN: Cenomanian oil
seep sample; DM12-U. B: upper
Barremian sample; OS12-Al:
Albian sample; OFO-C/T:
Cenomanian–Turonian sample)
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potential values are very high. Organic matter of the main
Cretaceous source rocks is mainly deposited in marine envi-
ronment controlled by algal input. Only the upper Barremian
source rock presents relatively high maturity level (oil win-
dow) and must have generated an appreciable quantity of hy-
drocarbons (mainly oil), and some of them could have been
detected in the study oil seep. Despite the large sediments
overlaying the Turonian facies, Tmax values revealed low ma-
turity level for Albian and Cenomanian–Turonian source
rocks in Oued Bazina area.

The correlation of oil/source rocks requires us to reconsider
with a particular interest the upper Barremian black shales for
oil and gas exploration.

Our present study provides a new understanding of this new
important petroleum source rock (PP reaching 13 kgHC/TRock,
over 7–11 m of thickness) around Thibar diapir as well as a new
insight into an active petroleum system in northern Tunisia.
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