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Abstract
Geochemical exploration of stream sediments is an important step for the identification of areas of interest with potential
mineralization, particularly in the early stages of mineral exploration. A total of 407 sample points for 15 different geochemical
traces were collected from Central Wales and classified into two groups: a training group consisting of 285 samples and a testing
group consisting of 122 samples. Geospatial characterization of each parameter at stream level was performed using two different
prediction models; the inverse distance weighting and the geostatistical kriging. Several variations of the IDWmodel was applied
based on the power function and the number of the sample points, and the best one selected based on “root mean square
prediction error” statistic. The same statistic was also used in the best-fitted semivariogram models including the circular,
spherical, exponential and Gaussian for each geochemical parameter in Kriging. Finally, the mineral prospectivity map of the
area was developed based on the geochemical accumulation index (GAI) using multivariate overlay analysis. The experimental
results show that there is no single method that can be used independently to predict the spatial distribution of geochemical
elements in streams. Instead, a combinatory approach of IDW and kriging is advised in order to generate more accurate
predictions. The mineral prospectivity map based on GAI showed that most of the mineral-enriched streams were found in
northwest, northeast, and south part of the study area which was also confirmed with the existing mining activities in the region.

Keywords Geochemical mineralization prediction . Geostatistics . Stream sediments . Geographic information systems . Spatial
modeling .Mineral exploration

Introduction

Stream sediments usually result from the erosion and transpor-
tation of soil and rock remnant, and other materials present
upstream of the sampling locations within a basin (Merritt
et al. 2003). Thus, stream sediments are considered to be rep-
resentative of the geochemistry of the rocks present in the

upstream drainage basin. Usually, stream sediments are the
primary sampling source for geochemical exploration, primar-
ily in areas where distinct drainage systems exist due to the
local topography (Fle tcher 1997; Salminen and
Gregorauskien 2000; Zuluaga et al. 2017). Geochemical explo-
ration sampling from stream sediments is a suitable technique
for identification of areas of interest with significant minerali-
zation content, particularly in the early stages of mining for
undiscovered minerals (Arndt et al. 2017; Carranza 2017;
Cheng 2007, 2012; de Mulder et al. 2016; Khalajmasoumi
et al. 2017; Nieto et al. 2014). For the best results, it is always
preferred to get as many samples as possible to work with a
dense and large sampling dataset. However, high-density sam-
pling of stream sediments is challenging due to the cost in-
volved in getting geographical accessibility. Therefore, a limit-
ed number of samples are usually collected from the field and
after analyzing in the lab used for estimation for larger areas
using geostatistical interpolation models (Ottesen et al. 1989).

Geostatistical models have been extensively used as a pow-
erful tool for providing accurate estimates of any spatial/
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temporal phenomena at unsampled locations using sampled
data along with a quantification of the related uncertainty (Cai
et al. 2018; Dagdelen and Vega 1997; Goovaerts 2000; Liu
et al. 2006, 2018; Lu and Wong 2008; Moral 2010; Piel et al.
2013; Ssempiira et al. 2017). Several spatial interpolation
methods, including geostatistics, have been developed in the
past to better predict spatial distributions based on limited
samples. However, the accuracy of the interpolated surface
varied widely between models (Robinson and Metternicht
2006). In general spatial interpolation methods can be divided
into three main categories, i.e., with respect to the number of
points used for prediction (global/local), with respect to the
surface smoothness (exact/approximate), and with respect to
the error estimation (deterministic/stochastic) (Li and Heap
2014).

The most common interpolation methods used for
geospatial characterization of geochemical data from streams
are Nearest Neighbor (NN) (Li and Heap 2014; Yang et al.
2004), Triangular Irregular Network (TIN) (Li and Heap
2014; Wu et al. 2011; Yang et al. 2004), Inverse Distance
Weighting (IDW) (Li and Heap 2014; Lu and Wong 2008),
Radial Based Functions (RBF) (Ding et al. 2017) and Kriging
(Kleinschmidt et al. 2000; Panahi et al. 2004; Wu et al. 2011).
In general, kriging is the most applied, tested, and validated
geostatistical model in the field of spatial interpolation. The
most significant advantage of this model over several other
spatial and statistical models is that kriging considers the spa-
tial correlation of the data for the predictions. Several types of
kriging have evolved over the time, but the most commonly
used are ordinary kriging (OK), simple kriging (SK), universal
kriging (UK), indicator kriging (IK), and co-kriging (Panahi
et al. 2004). Among all these techniques, the predictions are
highly dependent not only on the location of the data but also
on the accurate development of the semivariogrammodel. But
the development of the required semivariogram model is time
taking and subjective. In addition to that, the transformation of
the data may also be required in non-stationary conditions and
directional trends needed to be considered (Nieto and Toffait
2007). Hence different geospatial characterization methods
have been used in the past to characterize geochemical min-
eralization which tends to overextend predictions to areas not
really influenced by the original stream mineralization condi-
tion. As it is not required that a stream sediment sample (S1) be
collected at a particular location (L1) on a stream which rep-
resents the geochemical value at L1, it is quite possible that it is
a representative of the upstream location L2 or L3, i.e., the
potential source of the mineralized zone (Fig. 1).

Therefore this research focuses on the development of a
new approach for geospatial characterization based on a con-
tinuous geochemical prediction surface up to the extent of
sampling streams. Hence geochemically spatial predictions
of continuous streams will provide improved estimations in
streams considering the source of the mineralization.

Geochemical data are usually geospatial data as it can be
expressed as x, y, and z, where x and y are location coordinates
(latitude, longitude or easting, northing) and z represents the
recorded value (i.e., elements concentration) at those coordi-
nates. Geochemical data are usually stored in a spatial format
as point data with location and value, hence can be processed
in geoinformatics (Zuo et al. 2016). With the advancement in
computer technology, several geographic information system
(GIS)-based numerical codes are available with a strong com-
ponent of geostatistics embedded in them. Surface interpola-
tions through geostatistical modelling in GIS are very power-
ful for estimating geochemical values (Johnston et al. 2012; Li
and Heap 2014). This research study has also incorporated a
very strong GIS numerical package ESRI’s ArcGIS
Geostatistical Analyst, which is equipped with advanced spa-
tial geostatistical predictive models for predictive modelling.
The two widely used interpolation methods, including the
geostatistical (IDW and Kriging), were selected and applied
to test their efficiency for geochemical characterization and
prediction along the unsampled streams. Also these, models
have been extensively used in the past, but none of them has
been applied and tested for the prediction of geochemical
values at individual stream levels, which is a new proposed
methodology of this research study. Furthermore, the geo-
chemical accumulation index (GAI) has been developed in
this research to identify the mineral enriched streams and for
identification of potential mineral prospects in the study area.

Materials and methods

Study area

The study area for this research is located in Central Wales of
Great Britain (Fig. 2) and has a prolonged history of gold
mining, with the main center of activity being the
“Dolgellau Gold Belt” where the Clogau and Gwynfynydd
mines were very active gold mines, particularly towards
South, in the Welsh Basin, where gold has been mined since
the Roman times. Besides gold, several other secondary prod-
ucts such as lead, copper, zinc, iron, nickel sulfides and others
are present throughout the Wales area.

The dataset used in this study (WF/MR/93/013) was ob-
tained from the British Geological Survey (BGS) (Brown
1993). The stream sediment baseline geochemistry data was
estimated from samples collected across the central Wales
region by BGS as shown in Fig. 2. Sampling was based on
the collection of heavy minerals accumulated from the first-
and second-order streams. Active stream sediment was moved
through a 2-mm sieve, collected in a wooden pan (about 3–4
kg) and condensed by panning to about 60 g. This process was
repeated using additional sediment from the same site and the
two concentrates combined together were inspected on-site

1080    Page 2 of 21 Arab J Geosci (2020) 13: 1080



for heavy minerals and collected in a Kraft bag. A total of 407
samples were collected and analyzed for 15 different ele-
ments, including titanium (Ti), manganese (Mn), iron (Fe),
vanadium (V), nickel (Ni), copper (Cu), zinc (Zn), zirconium
(Zr), tin (Sn), antimony (Sb), barium (Ba), cerium (Ce), lead

(Pb), arsenic (As), and gold (Au). Gold was estimated on 60 g
of the sample by atomic absorption spectrometry after grind-
ing and dissolution in aqua regia (a yellow-orange fuming
liquid), with a lower confidence limit of detection as 10 parts
per billion (ppb) Au. All other elements (Ti, Mn, Fe, V, Ni,

Fig. 2 Study area map highlighting the location of major towns, roads, and stream sediment sample points

L2

S1

L1

L3

Fig. 1 3D topographical
representation of streams along
with geochemical sampling and
value locations
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Cu, Zn, Zr, Sn, Sb, Ba, Ce, Pb, and As) were determined byX-
ray fluorescence analysis of milled sub-samples in parts per
million (ppm). The descriptive statistic of the 15 elements is
given in Table 1.

From Table 1, it can be observed that the distributions
of most geochemical parameters are positively skewed
and their frequency diagrams do not follow a normal dis-
tribution (Bai and Ng 2005; Beedles and Simkowitz
1978). Coefficient of variation (CV) values < 10 and >
90% indicate low and high variability, respectively, in the
data (Reed et al. 2002), and in this dataset, Ti and Au
have the lowest and the highest variability, respectively.
It can be observed through summary statistics that the
data need to be transformed to a normal distribution and
as all the variables have variability so spatial and
geostatistical modelling can be applied for further predic-
tions (Komnitsas et al. 2010). Further, the correlation co-
efficient (Pearson coefficient) matrix, as shown in Fig. 3
was developed to highlight the statistical relationship be-
tween geochemical variables (Facchinelli et al. 2001). The
correlation coefficient matrix reveals that the correlation
coefficient value r ranges from negative 0.66 (between Ti
and Pb) to positive 0.69 (between Fe and V). The r values
are statistically significant at a 0.05 (5%) confidence
level.

Directional distributional trend of geochemical data

Usually, the standard deviational ellipse (SDE) is used to
capture the spatial trend for a set of measured observa-
tions (Lefever 1926). The SDE is based on standard de-
viations computed on spatial coordinates (x, y) of the ob-
servations and has been applied to describe bivariate

features. Most commonly, it is applied to assess the geo-
graphical distribution trend of the features concerned by
analyzing both of their dispersion and direction. For a
given set of n samples M ¼ xiðf ; yi ; ziÞgni¼1, the corre-
sponding SDE is defined by three parameters: spatial
mean (or average spatial location) (x; y ), spatial disper-
sion (or concentration) (σx, σy), and orientation of the
geochemical data θ. In addition to the traditional spatial
mean center (gravity on the distribution), weighted spatial
mean or median of the data could also be used as other
options (Wang et al. 2015). The average spatial location
of the SDE is computed using the following equation:

x ¼ 1

n
∑n

i¼1xi; y ¼
1

n
∑n

i¼1yi ð1Þ

the average spatial location is subtracted from each sam-
ple to center the observed samples at the origin, i.e.,

exi ¼ xi−x;eyi ¼ yi−y ð2Þ

the centered samples are then used to compute the orien-
tation of the SDE as follows

θ ¼ arctan
Aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ 4B2

p
2B

ð3Þ

where

A ¼ ∑n
i¼1ex2i −∑n

i¼1ey2i� �
; B ¼ ∑n

i¼1exieyi
Table 1 Summary statistics of
geochemical elements in the
study area (N = 407)

Elements Min Max Mean Variation coefficient Skewness (Pearson)

Ti 730.0 7050.0 5247.0 19.6 −2.0
Mn 10.0 9210.0 825.3 100.3 5.9

Fe 9400.0 76,100.0 46,805.7 25 −0.8
V 0.0 360.0 102.7 36.3 0.0

Ni 7.0 656.0 47.9 107.6 7.9

Cu 1.0 19,917.0 549.4 414.5 5.4

Zn 33.0 17,454.0 777.2 309.4 4.7

Zr 0.0 304.0 175.6 22.4 −1.2
Sn 0.0 260.0 10.9 243.4 5.6

Sb 0.0 693.0 14.0 414 7.1

Ba 62.0 2907.0 457.8 38.7 7.1

Ce 10.0 100,073.0 12,516.1 133 2.4

Pb 5.0 13,397.0 1157.4 248.5 2.6

As 0.0 80.0 12.8 67.5 3.3

Au 0.0 8765.0 36.3 1258.8 17.6
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and finally, the spatial dispersion of the SDE is computed
using the shifted and oriented samples based on

σx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
∑n

i¼1 eyisinθþ exicosθ� �2r
σy ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
∑n

i¼1 eyicosθ−exisinθ� �2r ð4Þ

A rule-of-thumb drawn from the Rayleigh distribution
recommends that a first, second, and third standard
deviational ellipse will cover approximately 63, 98, and
99.99% of the features (geochemical data) in two dimen-
sions (x and y) (Wang et al. 2015). In this research, the
directional distributional trend of all the 15 elements was
assessed with one standard deviation, which covers 63%
of the data in ArcGIS software.

Streams delineation using digital elevation model

Global Digital Elevation Map (GDEM) derived from the
Advanced Spaceborne Thermal Emission and Reflection
Radiometer (ASTER) was used to extract the streams present
in the study area. The GDEM was re-projected from
Geographical Coordinate Systems to Projected Coordinates
Systems for spatial referencing. The pre-processing of
GDEM is always required and recommended before the ex-
traction of any spatial information. Usually, a raw DEM often
has a large number of “sinks” (or false depressions), i.e., sin-
gle or multiple pixels with extreme low elevation and are
completely enclosed by immediate higher elevation pixels
(Jones 2002). The sinks, if present in the DEM, then must
be removed using the fill operation available in any raster
GIS packages. In this research study FILL operation of

Fig. 3 The correlation matrix between different geochemical variables highlighting the positive and negative associations
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ArcHydro model of ESRI’s ArcGIS was applied as shown in
Fig. 4. The FILL operation eliminates the sinks by either (a)
raising the elevation on the sink cell to that of its lowest neigh-
bor or (b) lowering the elevation of the lowest neighbor adja-
cent to the sink (Jones 2002).

After pre-processing of the GDEM, the next step is to de-
termine the flow direction, which is the ability to control the
direction of water from every pixel in the raster to its down-
slope neighbor. Several algorithms can be used to determine
the direction of flow, including the Multi-Flow Direction
(MFD), D-Infinity (DINF), and D8 (Płaczkowska et al.
2015). Among all these, the D8 (eight flow direction) method
is the simplest and the most effective. D8 assigns the flow (in
terms of coding) from individual pixel to one of its eight
connecting cells, either adjacent or diagonal, in the direction
with the steepest downward slope.

Once the flow direction raster is created, the next step is to
calculate areas where water may accumulate as a result of
rainfall, known as the Flow Accumulation raster. Mainly,
the value to each cell in the resulting raster contains the sum
of the amount of water that has fallen on all the raster cells
upstream from it. The objective is to simulate the flow, or
possible flow, of water to form creeks, streams, and/or rivers.
A threshold value is required to determine the minimum num-
ber of cells that can generate the flow, i.e., in this study a
threshold of 150 was set, which means that a minimum of
150 cells should contribute to generating a flow into a cell
(Wei et al. 2016). The threshold value is selected from a range
[100, 359] according to the number of connected pixels which
fall on the stream to generate an adequate amount of flow.
After highlighting the streams in the area, the next step is to
convert them from raster to vector by using the Streams to
Feature utility of ArcHydro. The mineral prediction at stream
level will provide more realistic information and help to mark
the mineral-enriched zones as compared with a classical
square regional predicted surface.

Spatial interpolation methods

Inverse distance weighting (IDW)

IDW is a local, exact, and deterministic interpolation model,
which means it predicts a value at unsampled locations using a

subset of sampled values, and then it will be the same, i.e., the
line passes through the points and gives no error assessment.
Due to its simplicity and computationally non-intensiveness,
several researchers, without having much knowledge in spa-
tial statistics and geostatistics, will use IDW as a default meth-
od to produce a surface when data values exist only at sampled
locations. This model assumes that data values that are nearby
to one another are more similar than those that are at far dis-
tances (Wong 2016). To calculate a value for any unsampled
location, IDW uses the measured values close to the
unsampled location.

The IDW model predicts the unknown geochemical valuebg eð Þ ruð Þ of element e at location ru, using the observed (or
known) element values g(e)(ri) at sampled locations ri as fol-
lows:

bg ruð Þ ¼ ∑i;ri∈N k
u
wig rið Þ; ð5Þ

where wi is the weight for the observed value g
(e)(ri) for geo-

chemical element e and N k
u is the set of k nearest sample

locations around the spatial location ru. In other words, the

predicted value bg eð Þ ruð Þ at ru is a weighted sum of observed
values g(e)(ri) with

∑k
i¼1wi ¼ 1

The weight wi is inversely proportional to the α
th power of

Euclidean distance between ru and ri and defined as follows:

wi ¼ ri−ruk k−α
∑k

j¼1 r j−ru
�� ��−α ; ð6Þ

where ‖ri − ru‖ is defined as Euclidean distance between ru
and ri.

The α parameter is quantified as a geometric form for the
weight while other conditions are possible. This condition
indicates that if α is more significant than 1, then the
distance-decay influence will be more as compared with an
increase in distance and vice versa. Therefore, a small α tend
to give predicted values as averages of g(e)(ri) in the neighbor-
hood, while large α assign more weights to the nearest points
and gradually decrease for points far away. As a result, when
α→ 0

Before Fill After Fill

Fig. 4 The effect of FILL
operation on the GDEM as on left
side false depressions were filled
after applying the operation
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Lim
α→0

bg ruð Þ ¼ Lim
α→0

∑k
i¼1wig rið Þ;

¼ Lim
α→0

∑k
i¼1

ri−ruk k−α
∑k

j¼1 r j−ru
�� ��−α g rið Þ;

¼ Lim
α→0

∑k
i¼1

1

∑k
j¼11

g rið Þ; ¼ 1

k
∑k

i¼1g rið Þ;

ð7Þ
and wi→ 1/k. Then, the predicted value is the average of all
sampled values. Similarly when α→∞, bg ruð Þ ¼ g rcð Þ where
rc is the closest sample location.

Usually, the geoscientists and mineralogists use the power
α = 2, which is known as the inverse distance squared weight-
ed model. In this research, three different IDW power values
α = 1, α = 2, and α = 3 had been tested to generate the geo-
chemical prediction surfaces. There is no theoretical reasoning
in the selection of a particular value over others, however, the
influence of changing power should be examined by visualiz-
ing the output and observing the validation statistics. The
measured values near to the unsampled location have more
impact on the predicted value than those farther apart. IDW
considers that each sampled point has a local impact that re-
duces with distance. So this model uses weights assigned to
the sample values as it gives more weights to points nearby to
the unsampled location, and the weights reduce as a function
of distance; therefore, the name inverse distance weighting.

Kriging

Kriging predicts the structure of spatial variability through a
variogram and incorporates the spatial autocorrelation (Hattis
et al. 2012). The kriging prediction is modeled as the summa-
tion of a global trend λ (which is the general trend in the entire
data) and a local stochastic variation ε (Matheron 1963):

bg rið Þ ¼ λ rið Þ þ ε rið Þ; ð8Þ
where ri represents the spatial coordinates. Depending on the
global trend λ, several types of Kriging models have been
established. For example, simple kriging (SK) assumes λ =
0; ordinary kriging (OK) assumes λ as an unknown constant
mean; and universal kriging (UK) assumes λ a general poly-
nomial trend as z = ax + by + c, where x, y are the variables
for the latitude and longitude respectively and z can be statis-
tically analyzed from the past data. In this research study OK
is used because it provides more realistic and reliable predic-
tions based on mean squared errors; is an unbiased predictor
for sparsely sampled regions (Cressie 1993); and minimizes
the influence of spatial outliers (Triantafilis et al. 2001), if
present in the data. The OK method predicts the bg ruð Þ at ru
using the weighted sum of the data as follows:

bg ruð Þ ¼ ∑i;ri∈N k
u
wigi rið Þ: ð9Þ

The choice of weight in Eq. (9) should be made in such a
way that wi yields the lowest mean square estimation error
(Cressie 1993). Besides this the selection of wi also depends
on the type of semivariogram model as suggested by Deutsch
and Journel (1992). The experimental semivariogram bγ rð Þ can
be defined as the average square difference of the geochemical
data values between the samples, parted by the lag vector r. If
there are no explicit directional dependencies present among
the data values, then Matheron method-of-moments estimator
can be used to develop unidirectional experimental
semivariogram as follows:

bγ rð Þ ¼ 1

2k rð Þ ∑
k rð Þ
i¼1 g rið Þ−g ri þ rð Þ½ �2
n o

ð10Þ

where k(r) is the number of sample pairs at lag distance r,
(Deutsch and Journel 1992) after which bγ rð Þ is then fitted to
the model function γg(r). The weights wi for ordinary kriging
can be given by the (k + 1) × (k + 1) linear systems of equa-
tions as follows:

∑i;ri∈N k
u
wiγg ri; r j

� 	þ μ ¼ γg r j; ru
� 	

; j ¼ 1;…; k ð11Þ
∑i;ri∈N k

u
wi ¼ 1 ð12Þ

where k is the number of geochemical samples within the
proximity of bg ruð Þ; γg(ri, rj) is the semivariogram between
two geochemical samples ri and rj; γg(rj, ru) is the
semivariogram between rj and predicted ru; and μ is a linear
external parameter called the Lagrange factor. The variance of
OK prediction is given by Eq. (12), whereas the Lagrange
factor compensates the uncertainty related to the mean value.

σ2
Ebg ruð Þ ¼ ∑i;ri∈N k

u
wiγg ri; ruð Þ þ μ ð13Þ

Semivariogram estimation

In literature, there are several types of semivariogram models
(Olea 2006; Varouchakis and Hristopulos 2013), but the most
commonly used are Gaussian and circular, and these are also
tested in this study along with exponential and spherical. The
general equation for all these semivariogrammodels are given
as follows:

γg rð Þ ¼ σ2
g 1−exp −

rj j
ξ

� �
 �
ð14Þ

γg rð Þ ¼ σ2
g 1−exp −

rj j2
ξ2

 !" #
ð15Þ
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γg rð Þ ¼ σ2
g 1:5 rj j=ξ−0:5 rj j=ξð Þ3
h i

θ ξ− rj jð Þ ð16Þ

where

θ ξ− rj jð Þ ¼ 0 ifξ− rj j < 0;
1 ifξ− rj j≥0;

�
and

γg rð Þ ¼ σ2
g 1−

2

π
cos−1

r
ξ

� �
þ 2r

π

ffiffiffiffiffiffiffiffiffiffiffi
1−

r

ξ2

r� 
: ð17Þ

in the above equations σ2
g is the variance; ∣r∣ is the Euclidean

norm of the lag vector r, and ξ is the characteristics length.
After the development of semivariogram models, the most
appropriate one is selected by comparing the root mean square
prediction error statistics between the observed and predicted
geochemical values. Depending on the semivariogram model,
the prediction error at location S0 can be computed in terms of
the standard deviation as follows:

E ruð Þ ¼ ∑k
i¼1wiγ ri−ruk kð Þ ð18Þ

where ‖ri − ru‖ is the distance among the locations ri and ru.

Sample size requirements for variogram computation

As per recommended in the literature, a minimum of 100– 150
data points are required to achieve a steady variogram (Voltz
and Webster 1990). This requirement is fulfilled in this re-
search, with 407 geochemical points available for each ele-
ment. Because the number of sample points was more than the
minimum number as recommended in literature, so anisotropy
(directional trend) can also be determined if present in the
data. The ArcGIS Geostatistical Analyst can compute the op-
timum parameters, such as Major Axis (Range), Minor Axis
(Range), and Angle of Rotation (Direction) to constitute the
anisotropic effect.

Potential mineral prospects

The potential mineral prospectivity was done by develop-
ing the geochemical accumulation index (GAI) using the
multivariate overlay analysis to map the high, medium,
and low-mineral enriched streams. Multivariate overlay
analysis has been used by several research studies
(Correia and Waitzberg 2003; Hou et al. 2017) to classify
the regions in different classes of underlying physical
phenomenon. All the predicted surfaces of both IDW
and Kriging were classified into three main classes based
on Jenks Natural Breaks (JNB) algorithm (Khamis et al.
2018). With JNB, classes were made for each geochemi-
cal predicted map based on features similarity and

relatively significant data value differences in classes.
The standardized classes were combined through linear
combination by adding them together to obtain the final
high, medium, and low mineralized streams.

Results and discussion

The directional distributions (standard deviational ellipse)
were used to map the geographical trend of different
geochemical elements, as shown in Fig. 5. The ellipses
were developed using the first standard deviation (almost
63% of the data) as it is recommended by several re-
search studies (Kent and Leitner 2007; Seidl et al.
2015) to avoid the effects of any potential spatial outlier
if present in the data.

In general, all the elements are distributed north to south
except the gold, which showed the directional trend in north-
east to southwest. For a detailed analysis, these 15 geotechni-
cal elements were grouped in five different classes of direction
and geographical concentration, as shown in Fig. 5.

The results showed that nine geochemical elements
(As, Ba, Ce, Fe, Mn, Ni, Ti, V, Zr) have north to south
distribution, whereas Mn and As are concentrated more
towards the north and south, respectively. The main re-
g i o n s o f A s m i n e r a l i z a t i o n m a y b e d u e t o
metasedimentary rocks and form post-orogenic granites
in the southeast area of the study. Cohen et al. (1999) also
found similar results in Wales and associated the variabil-
ity of As with the geological rocks located within the
area. The three elements Pb, Sb, and Zn can be grouped
because of the same directional trend, i.e., northwest to
southeast with Zn as a bigger ellipse as it has more vari-
ability. The Sn also has north-south concentration but the
largest deviational ellipse, which means it has the highest
variability and 63% of the values distributed all over the
study area. Cu has the most concentrated values, i.e.,
smaller standard deviational ellipse and is mainly distrib-
uted north-south but at west of the study area. The gold
has an altogether different distribution, which is northeast
to southwest, but 63% of the data values are geographi-
cally concentrated in the lower part of the study area.

Streams delineation

Stream delineation was performed from the ASTER glob-
al digital elevation model with 30-m spatial resolution
using the D8- algorithm. The flow direction raster shows
that the majority of the flow in the basin was from north
and northeast to southwest and west which can be due to
the presence of the Irish Sea on the West of Wales. The
flow accumulation raster shows the major flow lines
(streams) in the area based on the directional raster.

1080    Page 8 of 21 Arab J Geosci (2020) 13: 1080



Finally, the streams were extracted using that flow accu-
mulation raster with a threshold value of 150, as
discussed in the methodology section of this paper.

Figure 6 showed that all the sample locations were
correctly overlaid on the streams, which can be taken as
the verification of the accuracy of extracted streams and
the used threshold value. These streams were further con-
verted into a vector data format, and a buffer of 100 m
was applied to them, to be further used in the prediction
models, as shown in Fig. 7.

Criteria for comparison

The geochemical sample points were split into two groups
named as the training and the test group with 70% and 30 of
the points, respectively. The criterion to split data was that the
sample points located in the homogenous geological group
and on the same streams were selected and separated from
the training data as test data.

Out of the total 407 geochemical sample points, 285 were
used to train the model, and the remaining 122 points were

Fig. 5 Directional distribution
through standard deviational
ellipses of all the geochemical
elements (N = 407)
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used to test the accuracy of the predicted surfaces. The root
means square prediction error (RMSPE) statistics were used to
select to assess the difference between predicted and the actual
geochemical values (Robinson and Metternicht 2006). The
formula for RMSPE is given as the following equation:

RMSPE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
∑N

i¼1 Z xið Þ− bZ xið Þ
n o2

r
ð19Þ

where bZ xið Þ is the predicted geochemical value, Z(xi) is the
geochemical observed (known) value, and N is the total num-
ber of samples. Ideally, the value of RMSPE should be zero if
there is no error in prediction; however, the low RMSPE sug-
gests less error in the predicted surface and vice-versa.

Spatial interpolation and interpretation

The predicted/interpolated geochemical surfaces developed
by IDW were controlled and changed by varying the two
IDW parameters, i.e. the power function and the number of
sample points used in the prediction. Starting with the lower
power (α) as 1 to a higher power of 3 were tested, whereas the
number of the nearest sample points were varied from 5 to 15
with increments of 5 at each step. The other parameters, like
sector type, which is the directional search for the inclusion of
several points, were kept fixed, i.e., four sectors with a 45°

offset, angle 0, and auto-calculation of semi-major and minor
axis.

For an initial prediction, the model was set with low power
(α) as 1 and a maximum of 5 neighbor points were selected.
The number of neighbor points was increased up to a maxi-
mum of 15 with the same power. The same procedure was
repeated for powers 2 and 3. The results showed that a single
power factor and number of neighbors could not be used for
all the geochemical variables; all the three power value and a
different number of neighbors produced best geochemical pre-
diction surfaces for different elements. The lowest root mean
square prediction error (RMSPE) statistics (Table 2) were
used to select the most appropriate combination model param-
eters for the geochemical elements.

To discuss the effects of power and the number of neigh-
bors Sn is taken as a case study, the prediction surfaces with
all the variation of powers and neighbors are shown in Fig. 8.

The comparison of Sn-predicted surface, as shown in
Fig. 8, revealed that areas with a low (near to zero) con-
centration remain almost the same in all the model types,
but the area of medium and high concentration varies with
different models. The change is quite significant at the
edges and in the middle, particularly the southern part of
the map. The maps of all the predicted streams geochem-
ical properties through the IDW models based on the low-
est RMSPE are given in Fig. 9.

Fig. 6 Extracted streams (solid
blue lines) from the digital
elevation model and overlaid on
the sample locations (solid green
dots)

1080    Page 10 of 21 Arab J Geosci (2020) 13: 1080



Fig. 7 The extracted streams in
the study area

Table 2 RMSPE of all the geochemical elements against different IDW models

IDW-P-1
(5/5)

IDW-P-1 (10/
5)

IDW-P-1 (15/
5)

IDW-P-2
(5/5)

IDW-P-2 (10/
5)

IDW-P-2 (15/
5)

IDW-P-3
(5/5)

IDW-P-3 (10/
5)

IDW-P-3 (15/
5)

Ti 935.306 930.288 928.567 982.25 970.99 966.118 1030.16 1022.93 1020.6

Mn 579.784 599.78 615.654 551.378 550.218 549.433 551.375 549.231 547.605

Fe 10,176.4 10,103.139 10,131.154 10,801.5 10,658.5 10,602.4 11,411.1 11,327.8 11,301.3

V 34.497 34.064 34.213 36.225 35.652 35.54 38.311 37.98 37.918

Ni 41.582 42.233 42.779 38.871 38.621 38.51 38.632 38.43 38.328

Cu 1624.36 1650.882 1669.518 1698.91 1683.29 1674.35 1799.99 1795.61 1793.09

Zn 2047.331 2063.756 2079.226 2130.86 2113.68 2105.43 2278.01 2269.98 2266.43

Zr 32.354 32.309 32.658 34.193 33.917 33.838 35.523 35.394 35.349

Sn 26.992 26.824 26.695 28.873 28.634 28.453 29.796 29.704 29.643

Sb 46.614 46.112 46.034 45.513 45.329 45.508 48.993 48.634 48.566

Ba 186.463 182.52 181.299 201.156 198.719 197.45 213.379 212.64 212.31

Ce 14,657.94 14,734.557 14,827.495 15,512.6 15,383.3 15,353.4 16,499.4 16,410.6 16,394.1

Pb 2305.09 2322.459 2348.981 2324.85 2318.12 2320.98 2387.3 2381.34 2380.93

As 7.599 7.616 7.654 7.681 7.669 7.677 7.88 7.867 7.865

Au 525.482 513.607 509.136 585.032 580.134 578.308 619.582 618.648 618.407

Page 11 of 21     1080Arab J Geosci (2020) 13: 1080



The results of geochemical properties of stream sediments
showed that Au was present in the lower streams of the study
area towards the south and southwest, whereas no or very low
gold concentration was found in the northern part of the study
area. There were only traces of Gold present in the study area,
and distinct anomalies in the area could be associated with the
dominated alluvium (containing several significant placer de-
posits) or metasedimentary rocks (Cohen et al. 1999). As, Fe,
Ti, V, and Zr had variable concentration and could be found
throughout the streams present in the study area. The highest
and above-average concentration of Ba was observed in the
eastern and western streams to the north, respectively. The

high concentrations of Cu were mainly in the middle streams
towards the north of the study area, whereas average values
were found in the middle. The Ce was significant in the lower
streams of the study area towards the south with a little higher
amount in the northwest region of the study area. Mn showed
less variability and is mainly concentrated in the upper streams
more towards the north. Ni and Pb were found in high con-
centration near the eastern streams of the study area. Sb
followed the same trend of concentration as Ni and Pb but in
more streams. Sn was mainly dominated in the lower streams
towards the south with medium and a few high quantities in
the northwest and northeast of the study area. The highest

IDW-P-1 (5/5) IDW-P-1 (10/5) IDW-P-1 (15/5)

IDW-P-2 (5/5) IDW-P-2 (10/5) IDW-P-2 (15/5)

IDW-P-3 (5/5) IDW-P-3 (10/5) IDW-P-3 (15/5)

Fig. 8 Prediction maps of Tin
(Sn) for different power and sam-
ple points used in the IDW model
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Mn Ni Pb

Sb Sn Ti

V Zn Zr

Legend Very Low Low Average High Very High

Fig. 9 Predicted stream surfaces of all the geochemical elements based on the lowest RMSPE of IDW model
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Fig. 10 Semivariogram models of all the geochemical elements along with different RMSPE
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concentration of Zn was observed in the northeastern and
middle streams with average values in the lower streams of
the study area. For kriging, interpolation is the first and the
most important thing to develop an empirical semivariogram
model and then fitting that model as structural analysis in
Kriging; this process is usually known as variography. The
four most commonly applied theoretical semivariogram
models circular, spherical, exponential, and Gaussian were
tested against the streams’ sediment geochemical data. The

semivariogram models were tried to fit the average of the
binned data; also the directional variations were incorporated
for micro-tuning of the models.

The selection of the most appropriate semivariogram
model for a particular geochemical element was made
based on the lowest yielded RMSPE by each model.
The semivariogram of all the models, along with their
RMSPE, is given in Fig. 10.

Fig. 10 continued.
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The analysis showed that out of the 15 streams’ sediment
geochemical elements, only two can be better predicted with
the circular semivariogram model, which is V and Ba. The
spherical semivariogram model can be used for Mn, Ni, Cu,
Zr, Sn, Ce, As, and Au, whereas the exponential
semivariogram model is suited best for Ti, Fe, Sb, and Pb.
Only one geochemical element Zn can be best predicted by
the Gaussian semivariogram model. To discuss the effects of
the semivariogram model on stream sediments, Sn was taken
as a case study, the prediction surfaces with all the circular,
spherical, exponential, and Gaussian semivariogram models
are shown in Fig. 11.

The comparison of Sn predicted surface through four
semivariogram models, as given in Fig. 11, showed that
the spherical model is more accurate than the others as it
produced more continues geochemical values in streams.
The same is supported by the semivariogram model of Sn,
as mentioned in the Fig.10. The circular model also
showed some continuity but is not as accurate as of the
spherical. This continuity might be due to the circular
semivariogram model, which shows a little variation in
the s ta r t and then leve ls o f f . The exponent ia l
semivariogram model of Sn suggested abrupt changes in
the geochemical values, and the same is highlighted in the

Circular Spherical

Exponential Gaussian

Fig. 11 Prediction maps of Tin
(Sn) for different semivariogram
models used in kriging
interpolation
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Fig. 12 Predicted stream surfaces of all the geochemical elements based on the lowest RMSPE of semivariogram models using kriging
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predicted surface. The Gaussian model showed some var-
iability but is unable to depict appropriately because most
of the geochemical sample points were not fitted through
the model. The change is quite significant at the edges in
the north and the middle, particularly the southern part of
the map. The maps of all the predicted streams geochem-
ical properties through the kriging model based on the
lowest RMSPE of the best-fitted semivariogram model is
given in Fig. 12. The trend of prediction surfaces by
kriging is in line with the IDW results but significantly
more realistic and continues.

Potential mineral prospects

The multivariate overlay analysis for both IDW and kriging
predicted surfaces were carried out in order to develop the
geochemical accumulation index (GAI) of the study area, as
shown in Fig. 13.

The higher values of GAI in a stream represent the
higher chances of mineralization at the origin and sur-
rounding regions and vice versa. The results showed that
most of the mineral enriched streams were found in the
northwest, northeast, and southern parts of the study area.
By tracing these mineral-enriched streams, the potential
mineral prospects can also be mapped accordingly and
with less time and cost. The potential mineral prospects,
as identified in this research area, were also confirmed
with the existing mining activities in the regions, as

shown in Fig. 14. This showed that the methodology
adopted in this research study could successfully be ap-
plied to identify the potential mineral prospects in a re-
gion using stream sedimentation.

Comparison of prediction models

In order to choose the best prediction surfaces, the root means
square prediction error (RMSPE) of each geochemical ele-
ment for both IDW and Kriging models were compared
(Table 3).

The highest and the lowest difference between IDW and
Kriging model were found among Ce and As, respectively.
For Ce and As, the IDWmodel with power as 1 and number of
nearest sample points as 5 gives the better prediction surface
with the lowest RMSPE, whereas as per kriging, the spherical
model generates the lowest RMSPE which is also lower than
the IDW model. Overall, the kriging model yields a low
RMSPE because it incorporates the spatial correlation
(autocorrelation) of the sample streams’ geochemical values
along with their locations. Several researchers also concluded
that the kriging model is better for spatial predictions than the
IDWmodel. For example, Shahbeik et al. (2014) applied IDW
and kriging for mineral ore prediction, and it was concluded
that the kriging performs much better, and the results were
reliable. Similarly, another study conducted by Mueller et al.
(2004) showed that kriging is more efficient in the prediction
of soil fertility than IDW. Also, Goovaerts (2000) stated that

Fig. 13 Mineral-enriched streams extracted through geochemical accumulation index (GAI)
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Kriging yields more accurate rainfall predictions with the low-
est root mean square error.

Conclusion

This study has shown a novel approach for prediction of geo-
chemical properties of stream sediments using geostatistical
interpolation models, including IDW and kriging. Instead of
generating over-extended predicted surface models that most
likely are outside the mineralization range from the stream
samples, the new proposed geospatial characterizations were
modelled strictly based on the geo-profile of each stream
using digital elevation 3Dmodels. The predicted geochemical
value distribution at each stream showed an overall improved
spatial characterization that can be used to accurately trace
back the key minerals within each of the streams. The study
showed that the two spatial prediction models used, IDW and
kriging methods, should be used under a combinatory

approach in order to predict the spatial distribution of geo-
chemical elements better. Overall, spatial realizations using
IDW with a low power function tended to produce more ac-
curate results probably due to the relatively high variability
among the geochemical sample data (Robinson and
Metternicht 2006) (Kravchenko and Bullock 1999). The
kriging method also showed accurate results as well, specifi-
cally when using the spherical semivariogram model and then
exponential models. The mineral prospectivity map based on
the geochemical accumulation index (GAI) showed that most
of the mineral-enriched streams were located in the northwest,
northeast, and southern parts of Central Wales; the same was
also confirmed with the existing mining activities in the
region.

The statistics ‘root mean square prediction error’ (RMSPE)
was used as the primary indicator to assess the estimation
accuracy of both methods. The resulting models with the low-
er RMSPE values were considered for further analysis. One of
the critical conclusions resulting from this study is that IDW

Fig. 14 Existing mining activities
overlaid on the GAI based
mineral enriched streams
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and kriging results should not be considered independently;
instead, a combinatory model should be produced in the pre-
diction of the geochemical elements for stream sediments.
Further research should investigate if other geo-
environmental factors such as proximity to the sea, structural
geology, geophysical conditions, and terrain slope angle can
be incorporated into the characterization model.
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