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Abstract
In present study, 144 direct shear tests are performed on mated rock joint replicas under constant normal load condition (CNL).
For these tests, three natural roughness of joint surface are transferred to the RTV silicon rubber molds. On these molds, mixture
of cement, sand, and water in the ratio of 1:1.5:0.45 by weight is poured and joint replicas are made. In this study, the
experimental shear strength is corrected with gross contact area (Ac) and incremental dilation angle (i). Further, the peak dilation
angle is determined by Barton’s and incremental dilation (dv/dh) approaches and compared. The results showed that Barton’s
approach underestimates the peak dilation angle. The roughness quantification of joint surface is done using 3D noncontact type
profiler, and morphological parameters of joint surface are determined in each shearing direction as described by Grasselli and
Egger (Int J RockMechMin Sci 40:25–40, 2003). A new predictivemodel for joint roughness coefficient (JRC) is developed and
Barton’s model is modified. It is observed that modified Barton’s model provides good approximation of shear strength in desired
shear direction.Moreover, modified Barton peak shear strength (τPre) is compared with Barton and Grasselli’s experimental peak
shear strength, and it is observed that τPre matches closely with Barton’s peak shear strength.

Keywords Incremental dilation angle . Direct shear test . Maximum asperity angle . Joint roughness coefficient

List of symbol
σn Normal stress
ϕb Basic friction angle
τi Dilation corrected shear stress
τip Dilation corrected peak shear stress
τ or τexp Experimental or uncorrected shear stress
τA Gross contact area corrected shear stress
τPre Modified Barton peak shear strength
τB Barton’s peak shear strength
τp Uncorrected peak shear stress
τGE Grasselli’s experimental shear strength

A Amplitude of profile
CNL Constant normal load
D Fractal dimension
JRC Joint roughness coefficient
JCS Joint wall compressive strength
L Length of sample
RTV Room temperature vulcanizing
Z2 Root mean square of first derivative of profile
dy/dx Slope of profile
AC Gross contact area
Aθ* Normalized potential contact area
A0 Maximum potential contact area
θmax Maximum asperity angle
θ∗ Threshold dip angle
C Dimensionless fitting parameters
i Incremental dilation angle
r Radius of sample
dv/dh Rate of dilation
dn Dilation angle
dna Actual peak dilation angle
SSE Sum of square error
MSE Mean square error
N No. of data
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Introduction

Rock mass contains many types of discontinuities like fault,
fold, and joints. ISRM (1978) defines these discontinuities as
having zero tensile strength. Among them, joint can be defined
as a plane of weakness along which there is no visible displace-
ment. It can be opened or filled with gouge material such as silt
and clay. The presence of rock joints largely governs the me-
chanical properties of rock mass. In geotechnical engineering,
the accurate assessment of joint shear strength is very essential
for stability of rockmass. The shear strength is mostly controlled
by the roughness of joint surface which is composed of first-
order (waviness) and second-order (unevenness) asperities.

Due to very complex nature of roughness, the accurate
prediction of joint shear strength is not an easy task. In liter-
ature, many constitutive models (Patton 1966; Ladanyi and
Archambault 1970; Barton 1973; Plesha et al. 1989;
Maksimović 1992, 1996; Jing et al. 1992; Huang et al.
1993; Wibowo et al. 1994; Kulatilake et al. 1995; Zhao
1997a, b; Amadei et al. 1998; Yang and Chiang 2000;
Indraratna and Haque 2000; Homand et al. 2001; Wang
et al. 2003; Grasselli and Egger 2003; Tatone 2009;
Asadollahi and Tonon 2010; Ghazvinian et al. 2012; Xia
et al. 2014) are developed to predict shear strength of rock
joints under CNL condition. Among all constitutive models,
Barton model (Eq. 1) is still widely used in practice due to its
simplicity.

τB ¼ σntan ϕb þ JRClog10
JCS
σn

� �� �
ð1Þ

where ϕb is the basic friction angle, JRC is the joint roughness
coefficient, and JCS is the joint wall strength which is equal to
compressive strength of rock for fresh rock joints. JRC can be
estimated either by back calculation of direct shear tests results
or by visual comparison with ten standard profiles ranging
from 0 to 20 (Barton and Choubey 1977).

In the field of rock engineering, the accurate determination
of JRC remains an active area of research, and to quantify
JRC, several methods like statistical (Tse and Cruden 1979;
Yu and Vayssade 1991; Yang et al. 2001; Tatone and
Grasselli 2010), fractal (Brown and Scholz 1985; Reeves
1985; Maerz et al. 1990; Milinverno 1990; Power and Tullis
1991; Sakellariou et al. 1991; Huang et al. 1992; Odling 1994;
Kulatilake and Um 1999; Xie et al. 1999; Yang and Di 2001),
and tilt tests (Barton et al. 1985) are used in literature.

Tse and Cruden (1979) proposed empirical statistical rela-
tionship between the JRC and Z2 (root mean square of first
derivative of profile). In their study, ten standard profiles giv-
en by Barton and Choubey (1977) are enlarged by 2.5 times
both in x and y coordinates. Then, new profile (25 cm long)
digitized along its length and 200 discrete data points taken at
equal interval of 1.27 mm. However, the enlargement of stan-
dard profiles seems incorrect because it changes the roughness

of profile significantly, but Tse and Cruden’s relationship
(Eq. 2) is still used as an alternate method to estimate JRC
numerically.

JRC ¼ 32:2þ 32:47log10Z2 ð2Þ
where Z2 is given as:

Z2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

L
∫

x¼L

x¼0

dy
dx

� �2

dx

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

L
∑

i¼N−1

i¼1

yiþ1−yi
� �2
xiþ1−xið Þ

s
ð3Þ

In Eq. 3, L is length of profile and dy/dx is the slope of
profile at fixed interval. The value of Z2 is not unique and it is
sensitive to choice of sampling interval. The relationships be-
tween JRC and Z2 at different sampling interval are studied by
many researchers as given in Table 1.

In literature, fractal methods (Brown and Scholz 1985;
Reeves 1985; Maerz et al. 1990; Milinverno 1990; Power
and Tullis 1991; Sakellariou et al. 1991; Huang et al. 1992;
Odling 1994; Kulatilake and Um 1999; Xie et al. 1999; Yang
and Di 2001) are used for estimation of JRC. Odling (1994)
determined the amplitude (A) and fractal dimension (D) of ten
standard profiles and observed that with increase in JRC, am-
plitude (A) of profiles increases while fractal dimension (D)
decreases. He showed that rough joints and smoother joints
have D values close to 1 (self-similar fractal) and 1.5 (self-
affine fractal), respectively. Khosravi et al. (2013) measures
“D” for saw toothed joint samples with line segment method
and establish power relationship between back calculated JRC
and “D.” Li and Huang (2015) had done review of compass-
walking, box-counting, and average height-base length (h–b)
methods for determining “D” of ten standard profiles and
discussed applicability of existing relationships of JRC and
D in literature. They indicate that the fractal dimension esti-
mated from compass-walking and h–b method more closely
relate to JRC than box-counting methods.

Grasselli and Egger (2003) and Tatone (2009) developed
new surface characterization parameters and shown that nor-
malized potential contact area Aθ*

� �
in specific shear direc-

tion is function of threshold dip angle (θ∗) as shown in Eq. 4.

Aθ* ¼ A0
θmax−θ*

θmax

� �C

ð4Þ

where A0 is the maximum potential contact area for speci-
fied shear direction which is found by putting threshold dip
angle (θ∗) equal to zero, θmax is the maximum asperity
angle in shear direction, and C is the dimensionless fitting
parameters that characterize the distribution of apparent
inclination angles over the joint surface in desired shear
direction. Moreover, they postulated that parameters (A0,
θmax, and C) are directional dependent, and the ratio of
θmax/(C + 1) is capable to characterize the anisotropy in
roughness of joint surface.
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In literature, many empirical equations are available to find
JRC based on statistical parameter and the fractal dimension. In
these empirical equations, one of the major drawback is that JRC
values are taken fromBarton’s standard ten 2D profiles of 10 cm
which subjective in nature. Moreover, it is almost impossible to
compare a 3D joint surface with these standard profiles.
Therefore, in this study, to eliminate subjectivity in estimation
of JRC, a predictive model is proposed based on known mor-
phological parameter of joint surface in desired shear direction.

The experimental shear stress or uncorrected shear stress (τ)
is simply the shear force divided by nominal (fixed) area. Many
researchers (Hencher and Richards 1989; Jing et al. 1992;
Muralha et al. 2014) suggested that sample half that remains
fixed during shearing should have greater diameter than the
moving half sample so that nominal area remains constant
throughout the test. If this procedure is not followed then nom-
inal area or gross contact area reduction techniques should be
carried out for estimation of correct shear stress. Moreover, due
to complex nature of roughness, angle of shearing plane con-
tinuously changes during the direct shear tests. This leads to
continuous change in dilation angle. Therefore, in this manu-
script, experimental peak shear strength is corrected with gross
contact area (AC) and incremental dilation angle (i) and a correct
method to find peak dilation angle is also discussed.

Sample preparation

The natural rock joint samples are collected from different
location and three different profiles of 90-mm diameter are

selected visually on them. The joint roughness is transferred
to silicon rubber mold with the help of room temperature
vulcanizing (RTV) silicon rubber and catalyst. Further, ratio
of cement, sand, and water in the ratio of 1:1.5:0.45 by weight
is poured on silicon rubber mold, and finally, joint replicas
(JR1, JR2, and JR3) are prepared. The detailed description of
sample preparation is given by Kumar and Verma (2016).

The mechanical properties like uniaxial compressive
strength, Brazilian tensile strength, and Poisson’s ratio of joint
replicas are determined and reported in Table 2. The basic
friction angle (ϕb) of replicas are determined on saw cut sur-
face and found to be 35.83°.

Roughness quantification

A 3D noncontact type rock surface profiler is used for rough-
ness quantification of joint replicas (Fig. 1). It is a laser scan-
ner and has least count of 0.5 mm in X and Y directions and
0.1 mm in Z direction. Each joint replica is scanned at 30°
interval in only six directions (0°, 30°, 60°, 90°, 120°, and
150°) because in backward and forward directions, roughness
measurement will remain same. In each shearing direction, for
90 mm replica, a total of 180 parallel lines at 0.5 mm spacing
were obtained with X, Y, and Z data. These data are processed

Table 1 Existing relationship of Z2 with JRC in literature

Authors Proposed relationships Sampling
interval
(mm)

Yu and Vayssade (1991) JRC = 60.32 Z2 − 4.51 0.25
Yu and Vayssade (1991) JRC = 61.79 Z2 − 3.47 0.50
Yu and Vayssade (1991) JRC = 64.22 Z2 − 2.31 1.00
Yang et al. (2001) JRC = 32.69 + 32.98log10Z2 0.50
Tatone and Grasselli

(2010)
JRC = 51.85(Z2)

0.60− 10.37 0.50

Tatone and Grasselli
(2010)

JRC = 55.03(Z2)
0.74− 6.10 1.00

Table 2 Mechanical properties of
model material (Kumar and
Verma 2016)

Mechanical properties No of samples Average value SD

Uniaxial compressive strength (σc) 7 40.83 MPa 1.95

Brazilian tensile strength (σt) 7 4.36 MPa 0.37

Poisson’s ratio (v) 3 0.17 0.03

Density (ρ) 10 21.45 kN/m3 0.46

Young modulus (E) 7 10.09 GPa 0.52

Basic friction angle of rock, (ϕb) 1 35.83 Deg –

Fig. 1 3D noncontact type joint surface profiler used for roughness
quantification of replicas
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in MATLAB software to find joint roughness parameters (A0,
θmax, and C) as suggested by Grasselli and Egger (2003).

To visualize the distribution of Aθ* with θ∗ of asperities
(0°, 15°, 25°, 35°…) over joint surface in shear direction, plots
between them are shown in Fig. 2a. These graphs depict max-
imum potential contact area for particular threshold dip angle
before shearing. Further, to determine the value of C, the
graph between Aθ* and (θmax − θ∗)/θmax is plotted and found
that these are related in power function (Fig. 2b). Further,
nonlinear regression analysis was performed to find the cor-
rect value of parameter C as described (Tatone 2009).The
values of A0 and C for three joint replicas are reported in
Table 3 and observed that these values are comparable with
existing values in literature (Grasselli et al. 2002; Xia et al.
2014). It is observed that values of A0, C, and θmax change as
shearing direction changes which show the capability to char-
acterize the anisotropy of joint surface.

Direct shear tests

In this study, a total of 144 direct shear tests are performed
using 4 normal stresses (0.25, 0.5, 1.0 and 1.5 MPa) under
CNL condition. For particular profile and at each normal
stress, twelve direct shear tests are performed at 30° apart in
anticlockwise direction from direction 0° as shown in Fig. 1.
This 0° is marked and kept constant for particular profile. The
electro-mechanical direct shear apparatus is used for
conducting all shear tests. The joint replicas of 90 mm diam-
eter are put with necessary arrangements in square shear box
of 10 cm. These tests are performed up to 10 mm of shear
displacement at shearing rate of 0.2 mm/min (Muralha et al.
2014). The shear load, normal load, shear displacement, and

vertical displacement are recorded by a personal computer
equipped with a data acquisition system.

Results and discussion

Correcting shear stress with gross contact area (Ac)

It is observed that for any direct shear test, huge data points
(around 2000 to 2500) are generated because data are recorded
at 1 second interval. Among these data, it is also observed that
for the same shear displacements, many close values of shear
load and vertical displacement exist. These data are defined as
“identical data” in this study. To overcome this issue, Origin
Lab version 2018 is used in which these identical data are
averaged to get one value of shear load and vertical displace-
ment at particular shear displacement. This procedure reduced
the data points (around 1000) which is quite easy for further
calculation.

Among these data, the shear load and shear displacement
are selected at interval of 0.2 mm with MATLAB program.
The value of 0.2 mm shear displacement is so selected that
there is minimum loss of data points. Then, corrected shear
stress with gross contact area (τA) is calculated by dividing the
shear force with the gross contact area (Ac). For shear displace-
ment of “Δh” in mm, the gross contact area (Ac) is calculated
with Eq. 5 (Hencher and Richards 1989).

Ac ¼ πr2−
Δhr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4r2− Δhð Þ2

q
2r

0
@

1
A−2r2sin−1

Δh
2r

� �
ð5Þ

where "r” is the radius of sample in mm.

Table 3 Estimated values of C,
θmax, and A0 for joint replicas Shearing direction JR1 JR2 JR3

C θmax A0 C θmax A0 C θmax A0

0 3.57 53.49 0.43 3.56 80.31 0.31 3.51 82.06 0.33

30 3.5 62.48 0.42 4.94 84.22 0.28 5.78 84.48 0.32

60 3.14 57.02 0.41 3.22 81.57 0.25 2.78 71.14 0.30

90 5.35 85.22 0.41 2.71 68.58 0.27 2.52 66.51 0.28

120 3.74 53.28 0.41 3.72 81.25 0.29 4.28 73.77 0.28

150 6.95 80.66 0.43 3.99 71.83 0.30 3.05 65.05 0.30

180 4.86 55.43 0.43 3.13 79.92 0.31 4.53 83.49 0.33

210 3.49 66.51 0.42 2.87 82.81 0.28 4.2 86.96 0.32

240 4.14 79.66 0.41 3.62 73.21 0.25 3.84 75.12 0.30

270 4.2 82.89 0.41 1.91 62.72 0.27 2.97 76.83 0.28

300 4.41 55.64 0.41 3.06 86.05 0.29 5.94 78.45 0.28

330 2.95 62.16 0.43 2.61 65.21 0.30 2.29 67.89 0.30

1019    Page 4 of 11 Arab J Geosci (2020) 13: 1019



Correcting shear stress with incremental dilation
angle (i)

If the shear plane has angle (i) from the horizontal, the normal
stress (σn) and corrected shear stress with gross contact area (τA)

can resolved tangentially and vertically to the plane of shearing.
Then, dilation corrected shear stress (τi) and normal stress (σi)
can be evaluated by following equations (Hencher et al. 2011).

τ i ¼ τAcosi−σnsinið Þcosi ð6Þ

Fig. 2 (a) Distribution of Aθ*

with θ∗ (b) graph betweenAθ* and
(θmax − θ∗)/θmax

Table 4 Comparison of peak shear stress (τp) and dilation corrected peak shear stress (τip)

Joint
Replica

Shearing
direction

σn1 = 0.25 MPa σn2 = 0.5 MPa σn3 = 1 MPa σn4 = 1.5 MPa

τp
(MPa)

τip
(MPa)

τp
(MPa)

τip
(MPa)

τp
(MPa)

τip
(MPa)

τp
(MPa)

τip
(MPa)

JR1 0 0.48 0.46 0.55 0.56 1.31 1.37 1.47 1.55
30 0.35 0.35 0.72 0.74 1.08 1.09 1.57 1.57
60 0.29 0.39 0.51 0.52 0.83 1.15 1.15 1.09
90 0.41 0.43 0.53 0.65 1.02 1.22 1.50 1.51
120 0.38 0.38 0.44 0.53 1.05 1.09 1.28 1.58
150 0.38 0.40 0.64 0.68 1.01 1.05 1.18 1.38
180 0.57 0.56 0.66 0.67 1.01 1.28 1.76 1.92
210 0.43 0.45 0.92 0.90 1.39 1.49 2.06 2.23
240 0.54 0.52 0.95 0.91 1.24 1.25 1.72 1.69
270 0.39 0.43 0.55 0.48 1.64 1.74 2.08 2.02
300 0.57 0.56 0.83 0.79 1.22 1.33 1.52 1.64
330 0.47 0.43 0.92 0.83 1.38 1.28 1.62 1.63

JR2 0 0.47 0.41 1.14 1.08 1.61 1.81 1.82 1.85
30 0.68 0.61 1.11 1.07 1.84 1.67 2.64 2.56
60 0.58 0.66 1.29 1.20 1.99 1.99 3.28 3.36
90 0.50 0.49 0.93 0.88 1.05 0.97 1.87 1.97
120 0.61 0.44 0.83 0.80 0.96 1.01 1.84 1.85
150 0.54 0.54 0.77 0.73 1.45 1.44 2.26 2.25
180 0.50 0.48 0.88 0.80 1.17 1.44 2.10 2.24
210 0.44 0.45 0.67 0.64 1.63 1.64 1.82 2.06
240 0.47 0.45 1.10 1.04 1.15 1.13 2.22 2.37
270 0.40 0.43 0.96 0.92 1.43 1.48 2.39 2.45
300 0.54 0.61 0.68 0.69 1.30 1.35 1.98 2.20
330 0.67 0.65 0.99 0.93 1.89 1.80 2.74 2.66

JR3 0 0.45 0.43 0.74 0.74 1.04 1.08 1.48 1.55
30 0.46 0.44 0.76 0.74 1.01 1.04 1.85 1.83
60 0.58 0.59 0.96 0.89 1.46 1.01 2.10 1.90
90 0.43 0.40 1.14 0.97 1.73 1.73 2.32 2.22
120 0.64 0.65 1.33 1.33 1.87 1.67 2.29 2.22
150 0.45 0.46 0.68 0.79 1.41 1.49 2.34 2.35
180 0.50 0.48 0.71 0.73 1.13 1.12 2.09 2.24
210 0.41 0.43 0.74 0.76 1.11 1.16 1.70 1.81
240 0.39 0.35 0.87 0.84 1.48 1.53 1.94 1.99
270 0.58 0.56 0.83 0.76 1.24 1.16 1.57 1.68
300 0.47 0.44 0.90 0.91 1.25 1.26 1.41 1.45
330 0.40 0.35 0.79 0.74 1.35 1.32 1.95 2.00

Page 5 of 11     1019Arab J Geosci (2020) 13: 1019



σi ¼ σncosiþ τAsinið Þcosi ð7Þ
where i= tan−1(dv/dh) and dv and dh are vertical and horizontal
displacements (0.2mm), respectively. The Eq. (6) and Eq. (7) are
for uphill movement of upper half of sample. The sign of these
equations should be reverse in case of downhill movement.

In 0°direction of JR1, the dilation corrected shear stress (τi)
and uncorrected shear stress (τexp) are compared for normal
stress of 1.5MPa (Fig. 3). It depicts that the trend of both plots
is same, but in post-peak region, the τexp is less than τi. For this
phenomenon, there may be two possible reasons. First is that
the nominal area decreases sharply as the shearing progress
and second is rate of dilation (dv/dh) which may be positive
due to failure of asperities and production of gouge material
during shearing. For comparison, uncorrected peak shear
stress (τp) and dilation-corrected peak shear stress (τip) for
144 direct shear tests are reported in Table 4.

Fig. 3 Comparison of dilation corrected shear stress (τi) and uncorrected
shear stress (τexp) in 0° direction of JR1

Table 5 Peak dilation angle (dn) and actual peak dilation angle (dna)

Joint replica Shearing direction σn1 = 0.25 MPa σn2 = 0.5 MPa σn3 = 1 MPa σn4 = 1.5 MPa

dn
(Deg)

dna
(Deg)

dn
(Deg)

dna
(Deg)

dn
(Deg)

dna
(Deg)

dn
(Deg)

dna
(Deg)

JR1 0 5.71 8.14 4.35 8.13 4.65 10.04 0.39 3.18
30 1.89 3.77 5.38 12.09 2.46 4.97 3.90 6.50
60 3.47 14.04 1.15 4.54 − 1.15 5.44 − 2.14 1.83
90 3.43 16.26 − 0.72 6.79 − 0.19 10.30 − 0.67 2.58
120 3.43 5.89 − 2.29 1.66 2.66 12.80 0.19 5.44
150 1.68 5.71 3.01 4.33 1.91 6.34 − 0.10 4.09
180 7.97 12.75 2.98 8.65 0.71 2.60 − 3.18 10.78
210 5.14 12.68 6.42 25.46 2.58 26.57 1.43 13.42
240 7.22 22.25 5.14 13.47 4.48 8.64 3.37 7.13
270 − 8.16 21.25 7.86 1.83 5.59 9.87 6.23 6.11
300 6.65 18.84 5.51 17.82 4.95 10.65 0.57 4.09
330 3.70 15.64 2.49 16.93 3.52 11.56 0.76 7.13

JR2 0 14.00 16.70 15.00 19.29 11.00 18.43 0.76 13.39
30 18.26 19.86 14.75 17.65 12.13 15.26 11.45 13.84
60 18.95 22.99 10.76 20.85 7.60 15.26 7.13 13.39
90 8.90 19.05 8.53 12.80 4.29 10.78 2.38 7.77
120 6.28 13.39 5.94 10.62 2.09 7.13 4.38 7.97
150 6.03 21.80 7.75 12.09 6.29 10.78 6.10 10.78
180 11.13 17.68 11.74 15.95 6.32 11.07 6.48 12.18
210 16.44 18.43 9.93 14.68 8.31 11.31 4.29 8.13
240 11.02 17.20 12.37 19.25 8.81 10.31 7.55 9.93
270 10.29 14.85 10.58 22.04 9.13 10.78 7.69 13.39
300 11.31 14.93 8.09 9.87 6.28 10.30 3.81 7.60
330 12.95 15.38 12.32 14.68 10.48 13.39 9.65 14.49

JR3 0 8.62 14.35 7.97 13.39 0.86 7.58 0.57 5.13
30 7.41 14.47 10.94 11.86 4.29 17.57 4.43 14.04
60 12.27 13.39 10.11 15.96 8.34 11.75 7.97 12.06
90 16.04 19.65 12.41 10.92 8.62 15.95 7.13 14.41
120 14.57 15.95 13.76 18.82 12.81 13.39 8.63 10.26
150 7.81 16.70 7.78 13.13 6.12 14.93 3.81 11.97
180 9.20 14.62 5.71 7.41 6.09 7.91 4.86 12.09
210 5.96 11.56 6.20 11.66 3.47 6.05 3.23 13.39
240 8.40 12.80 8.84 12.80 7.69 11.07 5.60 9.46
270 13.01 18.44 10.20 14.68 6.14 12.09 2.67 8.75
300 11.13 15.22 10.76 15.26 3.78 9.46 1.43 4.97
330 8.64 11.31 6.84 11.66 5.44 13.39 4.23 13.45
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Estimation of correct peak dilation angle

Peak dilation angle is mobilized at peak shear stress and there is
no peak dilation prior to peak shear stress and it is determined
by drawing tangent at a point corresponding to peak shear stress
(τp) on plot of vertical displacement versus shear displacement
(Barton 1973). Hencher et al. (2011) exhibit that Barton’s ap-
proach is based on empiricism and provides instantaneous peak
dilation angle. They suggested that peak dilation angle can exist
prior or post to peak shear stress depending upon the nature of
roughness and applied normal stress.

Therefore, to extend our understanding and to remove
existing ambiguity toward peak dilation angle, Barton and
Hencher’s approach are analyzed. In this paper, plots between
uncorrected shear stress (τ) versus shear displacement (h)
(Fig. 4a), and vertical displacement (V) versus shear displace-
ment (h) (Fig. 4b) are plotted. Then, peak dilation angle (dn)
are determined as per Barton (1973). Moreover, the graphs
between dilation-corrected shear stress (τi) versus shear dis-
placement (h) (Fig. 4c) and dilation rate (dv/dh) versus shear

displacement (h) (Fig. 4d) are drawn and actual peak dilation
angle (dna) is determined. The values of dn and dna, are report-
ed in Table 5 and observed that dna underestimate the dn at
large extent. The reason for this phenomenon is that rate of
dilation (dv/dh) gives incremental dilation angle at every
0.2 mm shear displacement which is always high.

During analysis of data, multiple peaks of τi is observed in
Fig. 4c. However, in this research paper, first τip is recorded
for all 144 direct shear tests. It is also noticed that concept of
dilation rate (dv/dh) provides easier way to find unique value
of dna in any shearing direction which is quite essential for
prediction of peak shear stress of rock joints.

Back calculated JRC

Over the years, the prediction of JRC remains a matter of
research to predict shear strength of rock joint in Barton’s
model. So, it is imperative to know JRC in each shearing
direction. For four normal stresses (0.25, 0.5, 1, 1.5 MPa),
τBarton is determined (Eq. 1) with one arbitrary value of JRC.
Then, sum of square error (SSE) as given in Eq. (8) is mini-
mized by altering the value of JRC in Solver add-in for
Microsoft Excel. The value of JRC corresponding to mini-
mum SSE is back calculated JRC in desire shear direction.

SSE ¼ ∑ τ exp−τB
� �2 ð8Þ

As seen above, the back calculated JRC is determined after
conducting direct shear tests at different normal stresses. But
the ultimate aim is to find JRC in advance so that Baton’s
model (Eq. 1) can be used in efficient way. Keeping this
objective, efforts are made to predict back calculated JRCwith
known parameter of roughness (A0, θmax, and C) in desired
shearing direction. Different combinations of these parameters

Fig. 4 Typical curves of direct
shear test on JR2 in 0° direction

Fig. 5 Plot between JRC and 1
A0
� θmax

Cþ1ð Þ
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are plotted with back calculated JRC but they did not
provide good relationships. Finally, back calculated JRC
is plotted with function 1

A0
� θmax

Cþ1ð Þ as shown in Fig. 5

and found that JRC can be predicted with power func-
tion (R2 = 0.73) as given in Eq. (9). For JR3, the back
calculated JRC and predicted JRC are compared in radar

Fig. 6 Comparison between back
calculated JRC and Predicted JRC
for JR3

Table 6 Dilation corrected peak
shear strength (τip) and predicted
peak shear strength (τpre) of joint
replicas

Joint replica Shearing direction σn1 = 0.25 MPa σn2 = 0.5 MPa σn3 = 1 MPa σn4 = 1.5 Mpa

τip τpre τip τpre τip τpre τip τpre

JR1 0 0.46 0.33 0.56 0.61 1.37 1.13 1.55 1.61
30 0.35 0.36 0.74 0.65 1.09 1.19 1.57 1.69
60 0.39 0.36 0.52 0.66 1.15 1.20 1.09 1.70
90 0.43 0.36 0.65 0.65 1.22 1.19 1.51 1.69
120 0.38 0.33 0.53 0.61 1.09 1.13 1.58 1.61
150 0.40 0.32 0.68 0.59 1.05 1.09 1.38 1.56
180 0.56 0.31 0.67 0.57 1.28 1.07 1.92 1.53
210 0.45 0.37 0.90 0.67 1.49 1.21 2.23 1.72
240 0.52 0.38 0.91 0.69 1.25 1.24 1.69 1.76
270 0.43 0.39 0.48 0.70 1.74 1.26 2.02 1.77
300 0.56 0.32 0.79 0.59 1.33 1.10 1.64 1.58
330 0.43 0.38 0.83 0.68 1.28 1.23 1.63 1.74

JR2 0 0.41 0.52 1.08 0.89 1.81 1.52 1.85 2.09
30 0.61 0.69 1.07 1.09 1.67 1.78 2.56 2.40
60 0.66 0.97 1.20 1.39 1.99 2.12 3.28 2.78
90 0.49 0.41 0.88 0.73 0.97 1.30 1.97 1.82
120 0.44 0.39 0.80 0.70 1.01 1.26 1.85 1.77
150 0.54 0.52 0.73 0.89 1.44 1.52 2.25 2.10
180 0.48 0.52 0.80 0.89 1.44 1.52 2.24 2.10
210 0.45 0.50 0.64 0.85 1.64 1.48 2.06 2.04
240 0.45 0.52 1.04 0.89 1.13 1.52 2.37 2.10
270 0.43 0.58 0.92 0.97 1.48 1.63 2.45 2.22
300 0.61 0.50 0.69 0.86 1.35 1.48 2.20 2.05
330 0.65 0.72 0.93 1.13 1.80 1.83 2.66 2.45

JR3 0 0.43 0.33 0.74 0.61 1.08 1.13 1.55 1.61
30 0.44 0.38 0.74 0.68 1.04 1.23 1.83 1.74
60 0.59 0.46 0.89 0.80 1.01 1.41 1.90 1.96
90 0.40 0.58 0.97 0.96 1.73 1.62 2.22 2.22
120 0.65 0.64 1.33 1.03 1.67 1.71 2.22 2.32
150 0.46 0.55 0.79 0.92 1.49 1.57 2.35 2.15
180 0.48 0.46 0.73 0.81 1.12 1.41 2.24 1.96
210 0.43 0.39 0.76 0.70 1.16 1.26 1.81 1.78
240 0.35 0.48 0.84 0.83 1.53 1.44 1.99 2.00
270 0.56 0.42 0.76 0.74 1.16 1.31 1.68 1.84
300 0.44 0.36 0.91 0.65 1.26 1.18 1.45 1.68
330 0.35 0.44 0.74 0.77 1.32 1.36 2.00 1.90

MSE(%) 1.33 2.11 3.75 4.95
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diagram (Fig. 6) which indicate that Eq. (9) provides
the good approximation of JRC.

JRC ¼ 1

A0
� θmax

C þ 1ð Þ
� �0:62

ð9Þ

Modified Barton’s peak shear strength criterion (τpre)

In order to develop peak shear strength criterion, it is assumed
that shear behavior of rock joints replicas is similar to that of
rock joints. Taking account this consideration, modified
Barton’s peak shear strength criterion (Eq. 10) is developed
by substituting Eq. (9) is in Eq.(1).

τpre ¼ σntan ϕb þ
1

A0
� θmax

Cþ 1ð Þ
� �0:62

� log10
JCS

σn

� �" #

ð10Þ

For all three joint replicas, dilation-corrected peak shear
strength (τip) and modified Barton’s peak shear strength

(τpre) are compared (Fig. 7). At each normal stress, mean
square error (MSE) is calculated (Eq. 11) and the values of
τip and τpre with mean square error are listed in Table 6. It is
noticed that mean square error varies from 1.33 to 4.95%
which is quite reasonable.

MSE ¼ 1

N
∑N

i¼1 τ ip−τpre
� �2� �

� 100 ð11Þ

Comparison of modified Barton’s criterion with
existing models

Modified Barton’s peak shear strength criterion is compared
with Barton’s criterion as shown in Fig. 8. The mean square
error (MSE) is calculated at normal stress of 0.25, 0.5, 1, and
1.5 MPa and found to be 0.24, 0.54, 1.22, and 1.93%, respec-
tively, which is quite comparable.

Further, modified Barton’s peak shear strength criterion
(τpre) is also compared with Grasselli’s experimental peak
shear strength (τGE). For comparison, the input data like σn,
ϕb, A0, θmax, C, and JCS are taken from the research paper of
Grasselli and Egger (2003). It is found that for few experimen-
tal cases, τGE overestimates the τpre as shown in Fig. 9. The
possible reason for overestimation may be that Grasselli and
Egger (2003) calculated the joint roughness parameters A0,
θmax, and C at accuracy of 0.05 mm, whereas in proposed
modified Barton’s peak shear strength criterion, these param-
eters are calculated at accuracy of 0.10 mm. The another prob-
able reason for this overestimation can be scale effect of joints
because Grasselli and Egger (2003) have used joint size of
150 mm by 150 mm in lab experiments, whereas modified
Barton’s peak shear strength criterion is proposed for joint
sample of 90 mm diameter. However, the scale effect of joints
is not studied in this manuscript.

Fig. 8 Comparison of modified Barton’s peak shear strength criterion
with Barton’s criterion

Fig. 9 Comparison of modified Barton’s peak shear strength with
Grasselli’s experimental peak shear strength

Fig. 7 Comparison between dilation corrected peak shear strength (τip)
and predicted shear strength (τpre)
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Conclusions

In this paper, 144 direct shear tests are performed on rock joint
replicas of 90-mm diameter under constant normal load con-
dition (CNL). In each shearing direction, experimental shear
stress (τexp) is corrected using corrections like gross contact
area (AC) and incremental dilation angle (i). The peak dilation
angle (dn) and actual peak dilation angle (dna) are determined
with Barton’s and incremental dilation (dv/dh) approach, re-
spectively. It is concluded that mostly numerical value of dn is
lower than the dna. Therefore, this research recommends that
the actual peak dilation should be determined by incremental
dilation (dv/dh) method.

A predictive model for JRC is developed based on mor-
phological parameters like A0, θmax, and C. Finally, Barton’s
model is modified and it is observed that modified peak shear
strength criterion provides good approximation of dilation
corrected peak shear strength (τip). The developed shear
strength criterion has the advantage over existing models be-
cause it is independent of JRC. Modified Barton’s peak shear
strength (τpre) is compared with Barton’s shear strength (τB)
and found that τpre closely matches with τB. Moreover, τpre is
also compared with Grasselli’s experimental shear strength
(τGE) and it is found that few cases τGE overestimate the values
of τpre. It is pointed out that the probable reasons of overesti-
mation are scale effect and accuracy of joint roughness quan-
tification in proposed model.

It should be noted here that parameters A0, θmax, and C are
sensitive to measurement accuracy. Therefore, Eq. (9) is sub-
jected to change at different measuring accuracy. The modi-
fied Barton’s peak shear strength criterion is formulated for
joint replicas by conducting laboratory direct shear tests in
range of σn/σc=0.006 to 0.036.
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