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Hydrothermal alteration-related kaolinite/dickite occurrences
in ignimbrites: an example from Miocene ignimbrite units in Avanos,
Central Turkey
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Abstract
Miocene-Quaternary volcanic complexes associated ignimbrites from the Cappadocia Volcanic Province in Central Anatolia
have been subjected to hydrothermal alteration which produced several industrial clay mineralizations. This study focuses on the
hydrothermally altered Late Miocene dacitic to trachy-andesitic ignimbrites in the Avanos region and aimed to determine the
alteration in terms of conditions and origin. Hydrothermally altered samples consist mainly of quartz and kaolin group clays, and
minor amounts of goethite/limonite, alunite, jarosite, illite, and mixed-layered illite-smectite. The kaolinite and dickite associa-
tions were principally determined from the diagnostic XRD peaks and confirmed by FTIR and SEM data. They have fine-grained
and pseudo-hexagonal uniform-kaolinite and prolonged-dickite-shaped platelets as tightly packed vermicular booklets. The
kaolinite and dickite association with fine-grained alunite and jarosite point out the steam-heated igneous environments at
shallow depth level. Hydrothermal alteration-related minerals occurred as replacement of volcanic glass/groundmass and
neoformation in the pores from the acidic hydrothermal solutions. The mineralogical associations suggest that the hydrothermal
alteration occurred in acidic and moderate temperature conditions. Major and trace element compositions of altered samples
exhibit distinct differences with respect to the host-rock composition. Chondrite normalized LREE contents increase, whereas
HREE contents decrease in altered ignimbrites with respect to unaltered ignimbrite. The oxygen and hydrogen isotope data of
kaolinite/dickite demonstrate that magmatic vapor phases mixed with meteoric waters. The steam-heating-related igneous
environment seems to be responsible for magmatic vapors which circulated along the crack zones within the acidic volcanogenic
rocks, and therefore the acidic conditions caused kaolin-dominant alteration.
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Introduction

Kaolin group minerals (kaolinite, dickite, nacrite) having 1:1
phyllosilicate structure with a composition of Al2Si2O5(OH)4
are common hydrothermal alteration minerals under acidic
conditions, that formed by alteration of primary igneous min-
erals as well as direct precipitation (neoformation) from the
hydrothermal fluids (e.g., Murray 1988; Murray and Keller
1993; Inoue 1995). Hydrothermal alteration of volcanic and

volcanoclastic rocks with acidic and intermediate composition
commonly leads to the formation of industrial clays (e.g.,
Murray 1988). For instance, there are several industrial kaolin
deposits in volcanic-hosted rocks related to acidic conditions
in several regions of Turkey (Karakaya et al. 2001; Sayın
2007; Karakaya 2009; Ece et al. 2013; Kadir and Erkoyun
2013; Kadir et al. 2014; Ünal-Ercan et al. 2016; Başıbüyük
and Yalçın 2019). The study area is located in the Cappadocia
Volcanic Province (CAVP) that contains Miocene-aged
volcanogenic units (Innocenti et al. 1975; Temel 1992) (Fig.
1).

Previous studies on CAVP units generally focused on the
tectonic, petrological, geochemical, and volcanological as-
pects (e.g., Innocenti et al. 1975; Schumacher et al. 1990; Le
Pennec et al. 1994; Mues-Schumacher and Schumacher 1996;
Schumacher and Mues-Schumacher 1996; Temel et al. 1998;
Le Pennec et al. 2005; Viereck-Götte et al. 2010; Schmitt et al.
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2011; Aydar et al. 2012) while only a few studies were made
on clay occurrences in CAVP (Ertek and Öner 2008; Gurel
and Kadir 2008; Kadir et al. 2013). Ertek and Öner (2008)
mentioned the possible hydrothermal alteration effect on the
ignimbrites and stated an intense alteration caused the kaolin
clay occurrences and their industrial uses effect, but did not
provide any detail for hydrothermal alteration. The origin and

conditions of volcanic-hosted clay-bearing alteration can pro-
vide important data and/or tools for determining potential in-
dustrial clay occurrences for widely distributed volcaniclastic
layers in CAVP. This study is focused on the hydrothermal
alteration of the lowermost parts of ignimbrite beds. The
Kavak ignimbrite (Pasquaré 1968) represents the earliest
volcanogenic stages (9.12 Ma, Aydar et al. 2012), and its
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Fig. 1 Geological map and stratigraphic section of the Avanos-Nevşehir area (modified from Aydar 2012) and location of the studied samples
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ignimbrite layers have a potential alteration state through the
later volcanic activities that extended up to 2.5 Ma (Aydar
et al. 2012). In this context, this study aimed to investigate
detailed mineralogical and geochemical characteristics of al-
tered ignimbrites and to understand the origin and occurrence
of clay-rich alteration zones through hydrothermal alteration.

Geological setting and lithology

The study area in the central part of the CAVP (Fig. 1) has
been investigated throughout the last few decades in terms of
its volcanology context (Aydar et al. 2012 and references
therein). The CAVP as a plateau with an altitude of 1400–
1500 m is dated as Miocene to Upper Holocene in age. The
CAVP has been reported to have a few Quaternary stratovol-
canoes (Erciyes Mountain and Hasan Mountain) and numer-
ous monogenetic outlets (cinder cones, maars, domes) (Aydar
and Gourgaud 1998).

Miocene volcanic complexes and lava flows are also asso-
ciated with ignimbrites (e.g., Aydar and Gourgaud 1998;
Aydar et al. 2012). This unit is underlain by sedimentary,
magmatic, and metamorphic basement rocks (Fig. 1). The
region has a topographical slope in the north direction, bound-
ed by the Taurus Mountains in the south, and two distinct
Quaternary stratovolcanoes; Hasan Mountain and Erciyes
Mountain, respectively in the west and east. Miocene-
Pliocene ignimbrites cover a total area of 20,000 km2 (Le
Pennec et al. 1994; Aydar et al. 2012).

Large pyroclastic discharge deposits were formed by cov-
ering the surface with high-intensity pyroclastic currents
caused by the explosion of magmas ranging from volcanic
rocks with composition of dacites to rhyolites (Smith 1960;
Wilson et al. 1980; Aydar et al. 2012). The pyroclastic layers
are distributed as very common and distinct deposits and these
discharge deposits may have individually traveled long dis-
tances (e.g., Wilson et al. 1995; Aydar et al. 2012). The no-
menclature of ignimbrite was taken from Le Pennec et al.
(1994), in which 10 ignimbrite members of Ürgüp
Formation were identified from old to young: Kavak, Zelve,
Sarımadentepe, Sofular, Cemilköy, Tahar, Gördeles,
Kızılkaya, Valibabatepe, and Kumtepe. They are separated
by abundant rhyolitic-dacitic ignimbrites, lacustrine deposits,
earth, or lava flows (Pasquaré 1968). This study covers the
Upper Miocene Kavak ignimbrite member, which is dated as
the oldest ignimbrite unit in the stratigraphic sequence (Aydar
et al. 2012). However, the Kavak ignimbrite was previously
defined as the upper and lower Göreme ignimbrite
(Schumacher et al. 1990; Ercan et al. 1994), but the Kavak
ignimbrite term is preferred in recent studies (e.g., Aydar et al.
2012 and references therein). Considering the stratigraphic
position of the Kavak ignimbrite and K/Ar dating data,
UpperMiocene age is preferred. In the K/Ar analysis of biotite

minerals of the Kavak ignimbrite, the following ages were
obtained by previous researchers: 8.6 ± 1.7 Ma (Innocenti
et al. 1975); 11.2 ± 2.5 Ma (Temel 1992), and 8.96 ±
0.2 Ma (Schumacher et al. 1990). The mean age was deter-
mined by these researchers and in recent studies an age of 9.12
± 0.09 Ma was reported (Aydar et al. 2012).

Field observations show that ignimbrites have lapilli struc-
tures and parts resembling karstic gaps are observed in some
parts of the white-gray altered unit (Fig. 2). The upper parts of
the Kavak ignimbrite unit exhibits fine-grained stratified fa-
cies at lower parts and massive ignimbrite facies at uppermost
parts (e.g., Guzmán et al. 2020) (Fig. 2a–c). The erosional
differences related to silica-rich (slightly-eroded) in massive
ignimbrite facies and clay-rich (highly-eroded) levels of fine-
grained stratified parts show a similar appearance to fairy
chimneys (Fig. 2a, b). Highly altered clay-rich (argillized)
ignimbrite layers mostly exhibit clean white colors
(Fig. 2b, c). Iron oxy-hydroxide (hematite, goethite/limonite)
zones within the altered ignimbrite layers display orange-
yellow colors due to the effect of hydrothermal fluids circula-
tion especially throughout the fault planes and fractures
(Fig. 2d, e).

Materials and methods

A total of 30 samples were collected from different levels
and locations between Nevşehir and Avanos (Fig. 1) and
analyzed by several methods: optical microscopy (OM),
scanning electron microscopy with energy dispersive X-ray
spectroscopy (SEM-EDX), X-ray fluorescence spectroscopy
(XRF), and inductively coupled plasma mass spectrometry
(ICP-MS) methods. The X-ray diffraction (XRD), XRF,
SEM-EDS, and ICP-Ms analyses were conducted at the
Central Research Laboratory of Niğde Ömer Halisdemir
University, Turkey. XRD analyses of some samples were
performed at the Geology Department of the University of
Cincinnati, USA. The oxygen and hydrogen isotope analyses
were performed at the Stable Isotope Laboratory of Cornell
University, USA.

OM studies were conducted by Olympus binocular trans-
mitted light microscopy to determine textural and mineralog-
ical features of altered ignimbrites.

XRD analysis was performed using a Panalytical
EMPYREAN Advance Diffractometer for determining the
whole rock and clay fraction mineral composition. The anal-
ysis were made by using CuKα (λ = 1.541871 Å) radiation.
Diffraction patterns were recorded from 5 to 70° 2θ with a
scan rate of 3°min−1 for whole-rock, 5 to 30° 2 θ with a scan
rate of 2°min−1 for clay fraction. Samples for clay analysis (<
2 μm) were prepared by separation of the clay fraction by
sedimentation, followed by centrifugation of the suspension,
after overnight dispersion in distilled water. The clay particles
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were dispersed by ultrasonic vibration for about 15min. Three
oriented clay specimens were prepared from each sample by
the following protocol: air dried, ethylene-glycol-solvated at
60 °C for 2 h, and thermally treated at 550 °C for 2 h, respec-
tively. Rietveld optimization for XRD data was performed
with PanAlytical software X’Pert Highscore Plus.

SEM–EDX analysis was performed in a Zeiss EVO
40XVP instrument. Representative clay-rich samples were
prepared for SEM–EDX analysis by gluing the fresh, broken
surface of the sample onto an aluminum sample holder that
had been covered with double-sided tape and coated with a
thin film (~ 350 Å) of gold, using a Giko ion coater.

pH values of the hydrothermally altered samples were de-
termined from homogenized powder samples within the dis-
tilled water (suspension) by using a pH meter (Isolab/pH-
Orp). Fourier-transform infrared spectroscopy (FTIR) analy-
ses were achieved from Bruker Vertex 70 Brand instruments.

The major oxide chemical analyses were obtained for
twenty-one representative pure or nearly pure kaolin samples
by XRF (Philips Panalytical Zetium). Chemical analyses were
performed using the rock standards supplied by MBH

Reference Materials and Breitlander companies. The accuracy
for elements was ± 2%. Loss on ignition (LOI) of each sample
was also determined by drying the samples at 105 °C over-
night, followed by calculation of their H2O content and other
volatiles at 1050 °C. Trace element analyses were acquired by
inductively couple plasma-mass spectroscopy (ICP-MS). The
detection limits ranged from 0.1 to 5 ppm.

The stable isotope analyses were conducted in a Thermo
Delta V isotope ratio mass spectrometer (IRMS) interfaced to
a temperature conversion elemental analyzer (TC/EA). The
results were given as δ18O and δ2H or δD standardized with
Vienna Standard Mean Ocean Water (V-SMOW). Delta
values are measured in units of per mil (‰). Precision is abil-
ity of the instrument to consistently measure the same value
for a known sample throughout the course of the analytic run.
The standard deviation for the internal standard Inter Benzoic
Acid for δ2H is 4‰, and for δ18O is 0.09‰. Corrections were
performed using two-point normalization (regression) based
on standards USGS 601 and USGS 602 for δ18O and IAEA
CH7 and EMA-P1 for δ2H. Detailed analytical procedures are
given in the laboratory website (www.cobsil.com).

Fig. 2 Field observations of the Kavak ignimbrite unit. a Erosional
differences for altered ignimbrite layers related to silica-rich (slightly-
eroded) and clay-rich (highly-eroded) levels known as fairy chimneys.

b, c Highly altered (argillized) ignimbrite layers. d, e Iron oxy-hydroxide
(hematite, goethite/limonite) zones along the cracks and/or fault zones
within the altered ignimbrite layers
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Results and discussion

Petrography results

Optical microscopy

The glassy ash tuffs of the Kavak ignimbrite unit has a
porphyritic texture containing phenocrysts of plagioclase,
quartz, hornblende, biotite, opaque mineral (iron oxide),
and alkali feldspar within the devitrified volcanic ground-
mass associated with pumice grains. According to chemical
compositions, ignimbrites have mostly dacite and
trachyandesite, and partly rhyolite composition (Temel
et al. 1998; Ertek and Öner 2008). Plagioclase phenocrysts
having polysynthetic twinning show fractured and/or crack-
ing texture indicating the pyroclastic eruption (Fig. 3a).
Pyroclastic eruption also deformed the biotite phenocrysts
as shown by the development of fringes along the cleavage
planes (Fig. 3b). The quartz minerals exhibit primary mag-
matic texture which was corroded by the volcanic ground-
mass (Fig. 3c).

The optical microscopic observations of intensely al-
tered ignimbritic rocks show silicification and argillization
(Fig. 4). Primary magmatic quartz (Qm) commonly corrod-
ed the glassy volcanic groundmass which was extremely
devitrified to silica and clays (Fig. 4a–d). The pumice
grains having porous texture were also altered to silica
and clay minerals (Fig. 4a, b). Biotite phenocrysts were
extremely altered to opaque (iron oxide) minerals
(opacitized) and some grains were completely replaced by

opaque minerals and exhibit a pseudomorphic texture
(Fig. 4c, d). Glass shards are mainly observed as completely
silicified grains (Qzh), whereas clay occurrences are
completely related to the volcanic glassy matrix (Fig. 4c–
f). The petrographic observations indicate that the common
alteration products are cryptocrystalline silica (quartz) and
clay (kaolinite/dickite) minerals. Hydrothermal alteration
related silica minerals were precipitated as both pore filling
(euhedral spherical relicts) and replacement of glass shards
(sharp edged grain), where clays were developed due to
transformation from the glassy volcanic matrix.

Scanning electron microscopy

The scanning electron microscopy (SEM) investigation of
argillized samples shows vermicular (vermiform)
kaolinite/dickite booklets (Fig. 5a). The stacking thickness
of booklets reached up to 30 μm. Kaolinite/dickite min-
erals exhibit irregular stacking of pseudo hexagonal kao-
linite platelets, in which kaolinite and dickite minerals are
distinguished by uniform and prolonged shape of plates
(Fig. 5b). Fine-grained euhedral alunite crystals (approxi-
mately 1 μm in size) are also associated with the kaolinite/
dickite minerals (Fig. 5c). The thicknesses of the individ-
ual kaolinite/dickite plates smaller than 1 μm (~ 200 nm),
and horizontal and/or lateral diameters of pseudo-
hexagonal plates are around 2 μm (Fig. 5d). The vermicu-
lar packing of kaolinite/dickite plates exhibits sequential
(or serrated) stacking.

Fig. 3 Optical microscope
images of ignimbrites. a, b
Fractured plagioclase phenocryst
within the devitrified (altered)
volcanic groundmass and pumice
(a: crossed nicols, b: open nicol).
c Deformed biotite phenocryst
with fringe texture along the
cleavage planes within the
siliceous volcanic groundmass
(Crossed nicols). d Corroded
quartz phenocrysts within the
siliceous volcanic groundmass
(crossed nicols)
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Mineralogy results

X-ray diffraction

The altered ignimbrite samples are divided into three
groups, as slightly, moderately, and highly altered, with
respect to their alteration grades on the basis of their
mesoscopical (plasticity related to argillization), petro-
graphical (primary magmatic vs. alteration related compo-
nents), mineralogical (clay content), and chemical (loss on
ignition values related to clay content) properties. X-ray
diffraction (XRD) analyses of the samples having different
alteration grades collected from several profiles and/or
layers are given in Table 1.

The samples contain mainly quartz and clay, and minor
amounts of alunite and jarosite. The clay fraction is com-
posed of kaolinite and dickite and rarely illite and mixed-
layered illite/smectite (I-S) (Fig. 6). The absence of feldspar

minerals seems to be related to their being completely trans-
formed to clays during hydrothermal al tera t ion.
Subordinate amounts of illite (or mica) and I-S could be
associated with the magmatic mica relicts (see Fig. 4c, d)
and their transformation product from mica though I-S to
finally smectite.

The kaolinite and dickite minerals are characterized by
two reflections at 7.15 and 3.57 Å in the range of 2θ = 2–
30° (Fig. 6). The kaolinite and dickite peaks are not affected
by ethylene glycol treatments but collapsed upon heating to
550 °C (e.g., Moore and Reynolds 1989). The highly al-
tered ignimbrites have somewhat higher clay (kaolinite
and dickite), alunite, and jarosite contents than moderately
and slightly altered ones (Table 1, Fig. 7). The diagnostic
peaks for both kaolinite and dickite minerals were used for
distinguishing peaks for both minerals from unoriented
powder patterns as previously preferred by Bailey (1980,
1988) (Fig. 7). The representative diagnostic peaks of

Fig. 4 Optical microscope
images of altered ignimbrites. a, b
Quartz phenocrysts (primary
magmatic quartz-Qm) corroded
by silicified (hydrothermal
quartz-Qh) and argillized
(kaolinite/dickite-Kln/Dkt)
volcanic groundmass (glassy
ash), and microporous pumice
fragments (a: Crossed nicols, b:
Open nicol). c, d Corroded quartz
and opacitized biotite phenocrsyts
associated with the argillized
volcanic groundmass (c: Crossed
nicols, d: Open nicol). e, f
Silicified glass shards and pore-
filled fine-grained hydrothermal
quartz and argillized volcanic
groundmass (e: crossed nicols, f:
open nicol)
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kaolinite and dickite minerals are clearly distinguished
from schematic X-ray powder diffraction diagrams

(Brown and Brindley 1980; p. 330; Fig. 5.2) in the 2θ
ranges of 19–27° and 34–42° (Fig. 7).

Fig. 5. SEM photomicrographs
of kaolinite/dickites. a
Vermicular (vermiform) euhedral
kaolinite/dickite booklets. b
Tightly irregularly stacked
kaolinite/dickite booklets,
pseudohexagonal plates of
kaolinites and dickites exhibit
uniform and prolonged shapes,
respectively. c Euhedral alunite
crystals and prolonged dickites. d
Tightly packed kaolinite/dickite
booklets

Table 1 Mineralogical composition of bulk and clay-size fraction (< 2
μm) of the samples

Sample No Bulk Clay fraction

Qz Cal Alu Jrs Clay Kln Dkt Ilt/I-S

Slightly altered

KAL-1 62 38 68 32

KAL-2A 38 ± 62 65 35

KAL-2B 37 ± 63 71 29

KAL-3 70 ± 30 78 20 2

KAL-9 55 43 58 40 2

KAL-10 47 53 47 53

KAL-11 74 26 62 38

Moderately altered

KAL-1C 22 ± 78 49 51

KAL-2 46 54 92 6 2

KAL-12A 66 2 33 39 61

KAL-12B 49 51 57 43

Highly altered

KAL-1A 48 ± 52 90 10

KAL-1B 10 ± 90 60 40

KAL-3A 8 ± 92 55 45

KAL-3B 18 82 60 40

KAL-3C 39 ± 61 77 23

KAL-4A 28 ± 72 53 46 1

+: 20%, ±: trace (< 5%). Qz quartz, Cal calcite, Alu: alunite, Jrs jarosite,
Kln kaolinite, Dkt dickite, Ilt illite, I-S mixed-layered illite-smectite Fig. 6 Whole rock and clay fraction of altered ignimbrite sample
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Fourier-transform infrared spectrometer

The Fourier-transform infrared spectroscopy (FTIR) properties
of altered ignimbrite samples indicate sharp stretching OH re-
gression bands typical for both kaolinite and dickite at 3689, −
3670, − 3662, and 3620 cm−1 (Fig. 8). The 3620 cm−1 band
belongs to the internal stresses of the -OH groups between the
layers of kaolinite structure. The 1005–1030 cm−1 bands ob-
served in the fingerprint region belong to the Si-O stresses at the
center of the kaolinite/dickite crystals. The band of the hydroxyl
group on the inner surface of the kaolinite/dickite is 911 cm−1.
The weak bands at 745 and 700 cm−1 in the spectra are prob-
ably related to the perpendicular Si-O vibrations of the surface
hydroxyl layer. The bands around 3000 cm−1 are thought to
indicate the presence of alunite (Fig. 8).

Geochemistry results

Major element geochemistry

The major element compositions of altered ignimbrite sam-
ples are given in Table 2 and Fig. 9. According to loss on
ignition values, three alteration groups are divided as slight-
ly altered (5.00–7.76 wt.%), moderately altered (8.00–8.36
wt.%), and highly altered (10.90–13.08 wt.%) ignimbrites.
In order to understand the chemical differences related to
alteration, major element concentrations of altered ignim-
brites are compared with the non-altered ignimbrite compo-
sition (Temel et al. 1998). The major oxide compositions of
the altered ignimbrite samples exhibit a similar trend, but
some differences with respect to the non-altered sample
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Fig. 7 Representative XRD
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Bailey (1980, 1988)
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(Fig. 10). The mean values of TiO2, Al2O3, and P2O5 in-
crease, whereas SiO2, MnO, MgO, CaO, Na2O, and K2O
decrease in the altered samples (Table 2, Fig. 9). The en-
richment in Al2O3 is resulting from hydrothermal alter-
ation, i.e., kaolinization. From slightly altered to highly
altered ignimbrites and finally to theoretical pure kaolinite,
SiO2 slightly decreases but Al2O3 and LOI distinctly in-
crease together with the increasing degree of alteration
(Fig. 10). The unclear decreasing of the SiO2 contents
may be caused by the cryptocrystalline quartz occurrences
together with clays. Kaolinite/dickite-rich clay fractions in
highly altered ignimbrite samples have excess Si and Fe
because of the presence of cryptocrystalline quartz and goe-
thite in the clay fraction, respectively; therefore, their struc-
tural formulas did not calculate because of the charge
imbalance.

Trace-element and REE compositions

The trace element concentrations of altered ignimbrites are
given in Table 2. Some trace element compositions are
evaluated on the chondrite-normalized multiple trace ele-
ment and REE spider diagram (Fig. 11a, b). All elements,
except for Rb, Sr, and P, show obvious enrichments. Rb,
Ba, and Sr show a broad range, i.e., decreased 0.3 times and
enriched up to c. 9400 times, with respect to chondrite
(Fig. 11a). However, the contents of trace elements of al-
tered ignimbrites exhibit similar trends with host-rock

composition; there are some differences for different grades
of alterations with respect to the non-altered host-rock.
Chondrite-normalized (Sun and Mc Donough 1989) Rb,
K, and Yb average contents are noticeably lower than ig-
nimbrite host-rock (Fig. 11b), indicating element mobility
during acidic hydrothermal alteration. Contrary to this, La,
Ce, Nd, Sm, and Ti are enriched in altered ignimbrites,
which seem to be related to increasing the hydrothermal
clay content. In addition to this, some elements (Ba, Sr,
Eu, Ti, Yb) show gradual increase together with the alter-
ation degrees. In other words, the concentrations of Ba, Sr,
and Eu increase, but Ti and Yb decrease together with the
increasing alteration degree (Fig. 11b).

The chondrite-normalized REE values of altered ignim-
brites have a similar trend with the non-altered ignimbrite
sample but exhibit a wide range spider diagrams associated
with the different degrees of alteration (Fig. 12a). All of the
altered ignimbrites as well as the host-rock exhibit clear
enrichment of REE with respect to the chondrite. The
REE spider diagram of altered ignimbrites shows a distinct
decreasing trend from La to Gd (light rare earth elements,
LREE) and a rather stable distribution from Dy to Lu
(heavy rare earth elements, HREE) without any negative
Eu anomaly (Fig. 12b). The altered ignimbrites have enrich-
ment for LREE but depletion for HREE, when compared to
the non-altered ignimbrite host-rock. The highly altered
samples have lower REE values than those of slightly and
moderately altered ignimbrites, except for Eu, Gd, and Er.

3500360037003800

Wavenumber cm-1

KAL-11

KAL-10

36
20

36
89 36

62

KAL-1010
0

20

3500 3000 2500 2000 1500 1000 500

Tr
an

sm
itt

an
ce

 (%
)

10
0

20

3500 3000 2500 2000 1500 1000 500

KAL-11

Wavenumber cm-1

Kl
n

Kl
n

D
ck

Quartz=47, Kaolinite=28, Dickite=25

Quartz=74, Kaolinite=16, Dickite=10

Dck/Kln=0.9

Dck/Kln=0.6

5007501000

Wavenumber cm-1

45
3

53
2

69
1

79
6

10
05

91
1

Fig. 8 FTIR spectra of altered
ignimbrite samples

Page 9 of 18     1044Arab J Geosci (2020) 13: 1044



Ta
bl
e
2

M
aj
or

(w
t%

)
an
d
tr
ac
e
(p
pm

)
el
em

en
tc
om

po
si
tio
n
of

th
e
al
te
re
d
ig
ni
m
br
ite
s

Sl
ig
ht
ly
-a
lte
re
d

M
od
er
at
el
y-
al
te
re
d

H
ig
hl
y-
al
te
re
d

H
os
t-
ro
ck

K
A
L
-1

K
A
L
-2
A

K
A
L
-2
B

K
A
L
3

K
A
L
9

K
A
L
10

K
A
L
11

K
A
L
-1
C

K
A
L
2

K
A
L
12
A

K
A
L
12
B

K
A
L
-1
A

K
A
L
-1
B

K
A
L
-3
A

K
A
L
-3
B

K
A
L
3C

K
A
L
4A

U
-3
49

Si
O
2

73
.8
7

62
.5
2

69
.8
4

73
.3
4

67
.1
8

75
.9
4

80
.7
7

67
.4
2

71
.3
9

71
.6
7

68
.0
0

63
.6
7

55
.4
1

46
.5
2

51
.4
7

60
.6
5

56
.8
6

72
.3
4

T
iO

2
0.
16

0.
17

0.
29

0.
25

0.
39

0.
20

0.
15

0.
26

0.
30

0.
23

0.
25

0.
13

0.
28

0.
12

0.
24

0.
14

0.
31

0.
15

A
l 2
O
3

17
.3
0

28
.1
0

26
.9
2

13
.3
5

18
.0
1

16
.7
9

15
.0
1

22
.1
1

18
.3
2

15
.5
8

20
.1
4

21
.5
9

31
.3
0

36
.1
9

32
.8
3

25
.4
2

27
.9
4

13
.5
2

Fe
2
O
3

0.
18

0.
61

0.
72

2.
66

3.
67

1.
38

0.
14

1.
78

0.
60

2.
54

1.
80

2.
07

0.
82

2.
63

0.
71

0.
27

1.
25

1.
33

M
nO

0.
00
2

0.
00
2

0.
00
2

0.
00
2

0.
00
2

0.
00
7

0.
00
6

0.
01
1

0.
00
2

0.
01
7

0.
00
2

0.
00
2

0.
00
5

0.
00
2

0.
00
2

0.
00
2

0.
00
2

0.
06
0

M
gO

0.
17

0.
06

0.
09

0.
33

0.
48

0.
00

0.
03

0.
00

0.
35

0.
17

0.
13

0.
48

0.
10

0.
24

0.
12

0.
00

0.
12

0.
25

C
aO

0.
06

0.
04

0.
05

0.
07

0.
16

0.
12

0.
10

0.
11

0.
16

1.
66

0.
08

0.
05

0.
09

0.
07

0.
02

0.
08

0.
10

1.
91

N
a 2
O

0.
18

0.
07

0.
00

0.
00

0.
05

0.
00

0.
00

0.
01

0.
11

0.
00

0.
00

0.
12

0.
25

0.
11

0.
00

0.
00

0.
06

2.
07

K
2
O

0.
28

0.
23

0.
35

0.
99

1.
12

0.
16

0.
27

0.
37

0.
80

0.
42

0.
42

0.
37

0.
13

0.
36

0.
11

0.
36

0.
56

4.
2C

6
P 2
O
5

0.
09
7

0.
05
9

0.
07
8

0.
05
8

0.
04
1

0.
02
5

0.
01
3

0.
17
8

0.
04
3

0.
05
8

0.
05
8

0.
11
8

0.
04
4

0.
23
6

0.
02
4

0.
14
1

0.
11
5

0.
05
0

L
O
I

6.
50

7.
76

7.
43

7.
14

7.
50

6.
20

5.
00

8.
14

8.
00

8.
36

8.
36

10
.9
0

12
.0
0

13
.0
0

13
.0
8

12
.5
0

11
.8
8

4.
30

T
ot
al

98
.7
9

99
.6
1

10
5.
75

98
.1
8

98
.5
9

10
0.
81

10
1.
48

10
0.
38

10
0.
07

10
0.
70

99
.2
3

99
.5
0

10
0.
41

99
.4
7

98
.6
2

99
.5
6

99
.1
8

10
0.
24

C
r

1.
27

0.
79

2.
15

21
.7
6

1.
05

1.
00

1.
00

3.
75

6.
48

1.
15

52
.0
7

3.
16

4.
85

29
.2
7

50
.5
6

33
.2
8

1.
00

24
.9
0

N
i

0.
14

0.
08

0.
27

10
.6
0

0.
98

0.
05

0.
05

0.
13

0.
86

0.
48

15
.2
3

3.
43

−
0.
09

6.
11

17
.9
9

18
.6
5

0.
05

4.
70

C
o

0.
56

3.
72

2.
52

6.
22

2.
44

3.
43

0.
31

0.
62

0.
09

4.
02

54
.3
5

0.
73

−
0.
63

0.
09

41
.6
4

2.
42

0.
05

0.
60

V
16
.5
8

14
.1
1

20
.1
2

17
8.
16

9.
99

6.
34

0.
98

40
.9
5

21
.3
1

24
.3
9

27
8.
97

24
.3
8

53
.0
1

25
6.
94

28
3.
38

16
9.
79

2.
15

6.
20

C
u

3.
76

4.
17

3.
79

49
.2
7

2.
54

1.
00

1.
00

19
.0
4

3.
48

2.
84

69
.0
2

6.
99

7.
09

76
.3
7

58
.3
3

38
.9
0

1.
00

n.
a.

Z
n

0.
08

0.
08

0.
08

10
.9
6

0.
08

0.
08

0.
08

0.
08

0.
99

0.
10

13
.8
0

0.
65

0.
08

3.
48

9.
20

8.
08

0.
08

n.
a.

A
s

1.
68

2.
55

3.
81

9.
52

0.
50

6.
69

0.
50

54
.0
0

0.
56

0.
50

5.
22

46
.7
8

40
.0
0

91
.0
2

16
5.
53

15
.8
1

1.
49

n.
a.

Sb
99
25
.0
7

11
23
7.
55

69
74
.0
3

66
37
0.
34

57
32
.6
4

29
69
3.
54

10
52
.6
3

63
72
80
.0
0

55
51
.6
0

79
51
.4
1

16
36
30
.0
0

15
56
20
.0
0

22
87
50
.0
0

12
69
80
0.
00

72
21
80
.0
0

83
18
1.
81

13
03
.8
0

n.
a.

G
e

46
0.
71

69
0.
34

83
5.
65

11
47
6.
20

10
98
.0
7

56
0.
21

26
.4
0

18
55
.4
9

11
14
.9
4

21
24
.5
8

15
99
2.
41

20
17
.4
4

15
84
.5
8

10
98
7.
34

90
05
.0
8

41
88
.7
6

16
6.
06

n.
a.

B
e

0.
05

0.
05

0.
05

0.
12

0.
05

0.
05

0.
05

0.
05

0.
05

0.
05

1.
43

0.
05

0.
05

0.
07

0.
13

0.
03

0.
05

n.
a.

R
b

3.
06

3.
34

4.
72

15
2.
67

17
.9
9

1.
60

0.
83

2.
39

33
.6
5

14
.0
8

12
6.
32

2.
53

2.
12

57
.6
6

72
.8
4

29
.2
0

2.
00

17
1.
60

B
a

63
2.
76

36
9.
18

19
6.
71

26
04
.9
3

54
.9
8

20
.1
5

5.
97

49
2.
70

56
4.
19

16
3.
92

23
7.
94

19
1.
58

69
4.
40

18
88
6.
60

22
59
2.
53

53
18
.3
0

11
5.
46

94
8.
80

Sr
13
2.
52

29
.5
9

32
.7
0

97
0.
71

32
.9
1

6.
15

2.
14

21
1.
09

13
8.
89

50
.7
0

99
7.
82

18
5.
52

10
3.
58

43
10
.8
9

10
51
.8
9

10
56
.5
6

9.
19

24
0.
60

G
a

10
.0
0

6.
73

10
.4
8

57
.8
4

3.
10

2.
00

0.
03

14
.8
7

12
.1
3

6.
33

23
0.
50

9.
98

22
.7
6

93
.8
2

12
4.
82

85
.3
4

0.
85

12
.3
0

U
0.
01

0.
01

0.
01

0.
01

0.
01

0.
01

0.
01

0.
01

0.
03

0.
01

0.
01

0.
04

0.
09

0.
11

0.
23

0.
01

0.
01

n.
a.

L
a

52
.7
56

33
.4
02

45
.9
00

51
.3
17

75
.3
11

50
.3
07

29
.6
88

64
.0
97

65
.9
73

74
.3
68

64
.7
66

21
.5
99

34
.4
68

71
.7
64

18
.6
95

33
.5
97

60
.6
15

30
.6
50

C
e

97
.1
57

55
.5
26

71
.0
50

86
.6
23

13
1.
17
1

85
.0
12

50
.4
06

11
3.
65
4

11
8.
33
5

12
7.
56
2

10
8.
84
7

44
.5
78

62
.4
05

16
1.
24
5

32
.2
86

64
.0
76

10
6.
47
7

49
.4
90

Pr
8.
58
3

4.
42
7

5.
65
1

7.
85
4

11
.6
64

7.
73
8

4.
28
9

8.
84
9

10
.3
71

11
.0
01

9.
00
9

4.
75
8

5.
16
2

12
.7
90

3.
11
2

5.
76
9

9.
17
2

4.
00
0

N
d

25
.1
60

10
.9
46

13
.9
66

22
.3
11

35
.3
21

22
.0
98

11
.4
89

26
.4
20

31
.6
79

31
.4
77

25
.4
54

15
.3
68

13
.5
86

32
.1
26

8.
56
2

16
.2
97

26
.8
78

11
.9
00

Sm
3.
77
9

1.
48
2

1.
82
0

3.
08
6

5.
06
2

3.
23
5

1.
56
4

3.
45
4

4.
20
4

3.
79
9

3.
14
9

2.
11
6

1.
95
1

4.
18
7

1.
34
0

2.
48
0

3.
37
3

2.
09
0

E
u

1.
48
2

0.
59
2

0.
66
6

1.
03
1

1.
52
2

0.
88
3

0.
42
8

1.
15
9

1.
46
3

1.
02
8

0.
74
8

0.
71
2

0.
93
7

2.
90
8

1.
36
5

0.
86
1

1.
37
7

0.
49
0

G
d

15
.6
93

7.
05
7

7.
98
9

11
.0
49

14
.7
80

8.
83
8

5.
40
7

13
.9
24

15
.5
28

13
.9
72

9.
51
6

6.
37
0

9.
88
1

33
.1
10

14
.1
55

8.
26
3

15
.9
17

0.
65
0

D
y

1.
22
1

0.
77
4

0.
92
0

1.
44
0

2.
63
7

2.
15
1

1.
20
1

1.
51
2

1.
69
0

1.
93
0

1.
47
1

0.
86
2

1.
01
1

2.
11
5

1.
17
8

0.
69
0

1.
31
2

1.
53
0

H
o

0.
22
0

0.
14
3

0.
17
2

0.
26
8

0.
44
2

0.
42
5

0.
24
5

0.
28
5

0.
30
4

0.
38
6

0.
25
1

0.
16
4

0.
17
3

0.
36
8

0.
25
9

0.
12
1

0.
21
2

n.
a.

E
r

23
.0
24

10
.5
05

13
.7
16

16
.2
60

35
.6
61

23
.8
68

11
.2
88

20
.0
13

26
.1
80

31
.9
12

19
.8
72

16
.2
17

13
.9
45

32
.5
61

8.
54
1

15
.5
14

26
.3
88

1.
20
0

T
m

0.
09
9

0.
06
7

0.
08
6

0.
12
4

0.
16
5

0.
19
3

0.
13
9

0.
13
4

0.
12
6

0.
15
9

0.
09
8

0.
06
4

0.
07
0

0.
15
7

0.
14
4

0.
03
9

0.
07
3

n.
a.

Y
b

0.
74
9

0.
59
4

0.
74
7

1.
02
1

1.
18
7

1.
49
7

1.
21
6

1.
14
5

1.
02
2

1.
20
7

0.
77
9

0.
51
3

0.
56
7

1.
31
1

1.
21
3

0.
36
0

0.
57
3

1.
38
0

L
u

0.
17
3

0.
08
0

0.
10
1

0.
13
6

0.
14
0

0.
20
1

0.
17
6

0.
16
3

0.
13
3

0.
14
2

0.
08
3

0.
09
8

0.
09
8

0.
18
3

0.
18
0

0.
03
8

0.
05
6

0.
22
0

1044    Page 10 of 18 Arab J Geosci (2020) 13: 1044



Oxygen and hydrogen isotope geochemistry

Oxygen and hydrogen isotope compositions of twelve pure or
nearly pure clay-sized (< 2 μm) kaolin samples show that the
δ18O and δD ‰ (SMOW) values vary from 3.10 to 9.18 and
from 79.97 to 94.31, respectively (Table 3). The calculated
δ18O and δD‰ (SMOW) for mineral-forming water compo-
sition (assuming a temperature of 200 °C) from the equations
of Sheppard and Gilg (1996) and Gilg and Sheppard (1996)
are also given in Table 3. The isotope data of dickite/kaolinite
samples and calculated waters are presented in a δ18O vs δD
‰ binary diagram (Fig. 13a), together with the meteoric water
line (Craig 1961), supergene-hypogene line (Sheppard et al.
1969), kaolinite line (Savin and Epstein 1970), and magmatic
water field (Taylor 1974). Isotopic values of kaolinite/dickite
fall completely in the hypogene area indicating hydrothermal
conditions rather than weathering processes. The relatively

higher dickite-bearing samples (i.e., dickite/(kaolinite+
dickite, Dck*> 40%, Table 1) show relatively higher δ18O
and lower δD ‰ values than kaolinite-rich (Dck*< 40%)
samples. The calculated water compositions on the basis of
the assumed 200 °C temperature conditions locate the area
between magmatic water field and meteoric water line,
representing the mixture of magmatic and meteoric waters
(Fig. 13a). The water composition of relatively higher
dickite-bearing (Dck*> 40%) samples fall close to magmatic
water, whereas kaolinite-rich (Dck*< 40%) samples fall rela-
tively far from magmatic water composition. According to
temperature-related kaolinite-water isotopic fractionation,
possible local meteoric water composition is determined as
δ18O = − 10‰ and δD = − 60‰ (SMOW). If clay-forming
water was assumed to be completely magmatic water, the
minimum temperature conditions of hydrothermal fluids
should be around 250 °C (Fig. 13b). If clay-forming water

Fig. 9 Major oxide (wt. %)
concentrations of kaolinites/
dickites from ignimbrite samples
having different stage of
alteration. Fresh (non-altered)
ignimbrite composition is taken
from Temel et al. (1998)
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originated from meteoric waters, the maximum temperature
should be around 100 °C. The presence of dickite indicates
intermediate phase conditions between kaolinite and pyro-
phyllite which is relatively higher temperatures than those of
kaolinite. Since the formation temperature of dickite should be
higher than 100 °C, the clay-forming water could not have
originated from entirely meteoric waters; hence, the fluids
should be a mixing of meteoric and magmatic waters.

pH conditions

The measured pH values of the studied samples (Table 3)
change between 4.45 and 6.60 and generally showmoderately
low values around pH 5. The differences in pH values for
samples seem to be related to different amounts of kaolin

group minerals, i.e., associated minerals such as quartz and
illite.

Discussion

Hydrothermal clay occurrences

The hydrothermally altered tuff lithologies of the Kavak ig-
nimbrite unit have mainly preserved primary porphyry tex-
ture, that indicate the in-situ alteration in a temperature dom-
inant (steam-heated) environment. The Kavak ignimbrite unit
is the oldest and lowermost level of the Ürgüp formation
(Fig. 1), therefore following the deposition of the Kavak ig-
nimbrite unit (~ 9 Ma, Aydar et al. 2012) the volcanic activity
continued to the Quaternary (Temel 1992) with duration of ~ 6

Fig. 10 Al2O3, SiO2 and LOI
distributions of kaolinites/dickites
with regard to different alteration
stages of ignimbrites. Fresh (non-
altered) ignimbrite and glass
composition are taken from
Temel et al. (1998)
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Ma, at least. Hydrothermal alteration of quartz and clay (kao-
linite and dickite) occurred. Fine-grained (cryptocrystalline)
quartz was developed within the pores in the groundmass
and replaced by glass shards, as well. The kaolinite/dickite
and association with alunite indicate the volcanism-related
steam-heated surficial environments (Reyes 1990;
Hedenquist et al. 2000; Simón et al. 2005; Ece et al. 2013;
Ercan 2016; Mayer et al. 2016). Alunite minerals are formed
as alteration products of Al-bearing minerals in relatively ox-
idizing, acid-sulfate conditions in the advanced argillic alter-
ation zone (Hemely 1959; Knight 1977; Scott 1990). Its oc-
currences under surficial environments indicates the presence
of acid sulfate fluids from H2S gas, which evolved from a
boiling hydrothermal system at depth (Reyes 1990). The very
fine-grained pseudo cubic alunite crystals (Fig. 5c) seem to be
related to acidic steam-heated waters.

According to petrographical observations, volcanic
groundmass and volcanic glass shards as well as pumice
grains completely devitrified and transformed to silica and
kaolin minerals. This process could be explained as volcanic
glass + water → hydrous Al-silicate gel → kaolinite/dickite

reaction that is similar to those of tonsteins (Bohor and
Triplehorn 1993; Spears 2012) as well as volcanic-hosted ka-
olin occurrences (Murray 1988; Yalçın and Bozkaya 2003):

2SiO2:Al2O3þ 7H2O→Al2 OHð Þ6:2Si OHð Þ4→Al2Si2O2 OHð Þ2þ 5H2O Volcanic glass
Al−silicate gel Kaolinite=dickite

The absence of feldspars in altered ignimbrites indicates
that the kaolin minerals also developed from feldspars under
acidic environments:

2 K;Na;Cað ÞAlSi2−3O8þ H2Oþ 2H

þ→Al2 OHð Þ6:2Si OHð Þ4→2SiO2

þ 2 Kþ;Naþ;Ca2þð Þ

Regarding the kaolinite-to-dickite transformation in
sedimentary environments, the temperature at which kao-
linite transforms to dickite is 80 to 200 °C (Dunoyer de
Segonzac 1970; Ruiz Cruz and Reyes 1998), 120–130
(Ehrenberg et al. 1993), and 140 °C (Keller 1988).
However, this transformation in the hydrothermal system

Fig. 11 Chondrite-normalized
multiple trace element diagram of
altered ignimbrite samples. a All
samples. b Average values for
different alteration degrees. Fresh
(non-altered) ignimbrite
composition is taken from Temel
et al. (1998)
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is still unknown because mixtures of dickite with kaolinite
are not commonly encountered in this environment.
Several studies indicate some temperature data for this
transformation, i.e., the temperature of hydrothermal alter-
ation was estimated from 150 °C (Marumo 1989) to 270–
300 °C (Koh and Chang 1997; Papoulis and Tsolis-
Katagas 2008). Palinkaš et al. (2009) determined 210–
250 °C and 290–330 °C conditions from fluid inclusion
data for kaolinite and dickite, respectively, in a metal sul-
fur deposit. The kaolinite-to-dickite transformation was
controlled mostly by temperatures nearing the onset of hy-
pogene conditions > 100 °C or dickite in kaolin-alunite

hydrothermal deposits in Çanakkale, Turkey (Ercan et al.
2016). According to the zonation of hydrothermal kaolin
group minerals with increasing temperature geothermal
systems (Reyes 1990), temperature distributions were giv-
en as kaolinite (< 120 °C), dickite ± kaolinite (120–200
°C), dickite + pyrophyllite (200–250 °C), and pyrophyllite
+ illite (230–320 °C). Thus, dickite forms in a transitional
setting between kaolinite and pyrophyllite temperature
ranges. Therefore, in this study, the maximum temperature
condition for kaolinite + dickite is assumed as 200 °C for
estimating of the origin of hydrothermal fluids (see Fig.
13a).

Fig. 12 Chondrite-normalized
REE compositions of kaolinites/
dickites from ignimbrite samples
having different stage of
alteration. Fresh (non-altered)
ignimbrite composition is taken
from Temel et al. (1998)
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pH conditions of hydrothermal fluids should be moder-
ately acidic (approximately pH=4) because of the develop-
ments of kaolin group minerals and alunite (Reyes 1990).
The pH values of the studied samples are around 5 and
correspond to acidic hydrothermal alteration conditions.
The acidic condition was the principal control for
obstructing the smectite clays, as well as depletion of solu-
ble elements (Na, K, and Ca) ions from ignimbrites (Fig. 9)
under an acid leaching environment. The mineralogical
composition (dominance with silica and kaolin group min-
erals, and scarce alunite and jarosite) and pH data indicate
typical advanced argillic to argillic alteration conditions
under the conditions of moderate to high (150–200 °C)
temperature and low pH conditions.

SiO2 vs. Al2O3 relationships between slightly altered and
highly altered ignimbrites show a clear geochemical trend
from ignimbrite to hydrothermal kaolin transformation
(Fig. 10). In addition to this, the broad ranges of Ba and
Sr contents of altered ignimbrites are other tools for alter-
ation degree determination (Table 2, Fig. 11). The anoma-
lous increase of these elements in the highest grade altered
samples (LOI > 12.5% wt.) should be associated with the
grade of hydrothermal alteration as previously mentioned
by Dill et al. (1997, 2000). Chondrite normalized LREE
contents increase, whereas HREE contents decrease in al-
tered ignimbrites with respect to non-altered ignimbrites.
The different contents of REE values for different grades
of alterations, such as lower REE values for highly altered
ignimbrites, are other geochemical indicators for alteration.

The dominance of kaolinite/dickite, but negligible
amounts of illite and mixed-layered illite-smectite minerals,
should be controlled by several parameters: (1) low pH and

alkalinity conditions of hydrothermal solutions, (2) intense
acid leaching, (3) high silica saturation, (4) high-grade ac-
tivities of ions (H+, H4SiO4, Al(OH)4, etc.) and waters, (5)
high dissolution rates of volcanic materials, and (5) compo-
sition of volcanic material, i.e., low Fe and/or Mg, whereas
high Si and Al, and cation ratios such as K/Na = 0, Si/Al = 1
(Murray 1988; Murray and Keller 1993; Yalçın and
Bozkaya 2003; Kadir et al. 2013).

Origin of hydrothermal fluids

The major and trace element geochemical data of altered
ignimbrites show a similar composition to non-altered
host-rocks, except for somewhat increasing the immobile
elements and decreasing mobile elements (Figs. 9, 11,
and 12). This data indicates the slight leaching by silica-
rich acidic (pH 4–6) hydrothermal solutions. The acidic
character of hydrothermal fluids should be derived from
silica-rich magmatic fluids which circulated through the
acidic pyroclastics rocks with dacite and/or rhyolite com-
position (Temel 1992; Ertek and Öner 2008).

Acid-rich magmatic vapors seem to be responsible for
leaching of the host rock and the advanced argillic alter-
ation. The oxygen and hydrogen isotope data demonstrate
that magmatic vapor phases were mixed with meteoric wa-
ters for assumed temperature conditions as high as 200 °C
(Fig. 13a). The steam-related volcanic environments are the
main source responsible for magmatic vapors which circu-
lated along the crack zones within the earliest ignimbrite
strata during the approximately 6 Ma duration magmatic
period of the Ürgüp formation (Temel 1992).

Table 3 δ18O and δD values of kaolinite/dickite and calculated water compositions.

Sample No pH δ18O δD δ18Owater(*) δDwater(*)

Dck* < 40%

KAL-1 6.60 4.33 − 82.36 − 1.27 − 64.86

KAL-1A 5.03 3.28 − 79.97 − 2.32 − 62.47

KAL-2A 5.09 7.12 − 83.89 1.52 − 66.39

KAL-2B 5.68 5.13 − 84.19 − 0.47 − 66.69

KAL-3 6.60 3.10 − 80.11 − 2.50 − 62.61

KAL-3C 5.21 5.28 − 89.87 − 0.32 − 72.37

KAL-2 5.53 4.76 − 84.30 − 0.84 − 66.80

Dck* > 40%

KAL-1B 6.04 9.18 − 83.77 3.58 − 66.27

KAL-3A 4.80 6.26 − 88.85 0.66 − 71.35

KAL-3B 4.95 7.78 − 89.62 2.18 − 72.12

KAL-4A 4.45 4.73 89.42 − 0.87 − 71.92

KAL-1C 5.53 6.93 − 94.31 1.33 − 76.81

(*) Calculated for assumed temperature of 200 °C from equations of Sheppard and Gilg (1980) for δ18O and Gilg and Sheppard (1996) for δD. Dck* =
Dickite/(dickite + kaolinite)
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Conclusions

Miocene-Quaternary volcanic complexes associated ignim-
brites from the Cappadocia Volcanic Province (CAVP) have
been subjected to hydrothermal alteration and produced indus-
trial kaolin group (kaolinite, dickite) clay occurrences. The
mineralogical composition of hydrothermally altered samples
are represented mainly by quartz and kaolin group clays (ka-
olinite and dickite), and minor amounts of goethite/limonite,
alunite, jarosite, illite, and mixed-layered illite-smectite.
Kaolinite, dickite, and quartz, and scarce alunite, jarosite as-
sociations suggest that the hydrothermal alteration occurred in
acidic (pH < 5) and moderate temperature (approximately 200
°C) conditions, i.e., argillic alteration. The fine-grained

kaolinite and dickite and their associations with the fine-
grained alunite and jarosite minerals are characteristic for
steam-heated related shallow depth environments. Kaolinite
and dickite minerals exhibit uniform and prolonged pseudo-
hexagonal platelets, respectively, as tightly packed vermicular
booklets. Hydrothermal alteration-related silica and kaolin
minerals were developed as the mechanism of replacement
of volcanic glass/groundmass and neoformation in the pores
from the acidic hydrothermal solutions.

The altered samples are classified into three groups based
on their loss on ignition values, i.e., slightly, moderately, and
highly altered samples. Altered ignimbrites have enrichment
for major oxides of TiO2, Al2O3, and P2O5, but depletion for
SiO2, MnO, MgO, CaO, Na2O, and K2O with respect to host-
rock composition. Most of the trace element concentrations
were also enriched in altered samples except for Rb, Sr, and P.
The noticeable decrease in some elements, such as Rb, K, and
Yb, are related element mobility during acidic hydrothermal
alteration. Chondrite-normalized REE values show a similar
trend but have some differences for altered and host-rock
compositions. The contents of LREE increase, but HREE de-
crease in altered ignimbrites. The oxygen and hydrogen iso-
tope data of kaolinite/dickite demonstrate that magmatic vapor
phases mixed with meteoric waters. The steam-heated igneous
environment with a duration of 6 Ma seems to be the reason
for hot magmatic vapors circulating along the cracks zones
through the acidic volcanogenic rocks, and consequently the
acidic (low pH) conditions which caused to kaolin-dominant
clay alteration.
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