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Abstract
Landslides are one of the most destructive natural hazards in Turkey. In addition to loss of lives, there were many negative
impacts of landslides on properties and the environment. To minimize the losses and damages related to landslides, a series of
labour-intensive studies starting from landslide inventory to landslide riskmapping is required. Thus, this study aims to assess the
landslide risk by a semi-quantitative approach in a landslide-prone area located in the Eastern Mediterranean region of Turkey.
This region has been suffering from landslides with its high population and industrial characteristics. A total of 215 deep-seated
rotational earth slides were mapped during field studies. Then, landslide-susceptibility mapping was performed by frequency
ratio and logistic regression methods. For the hazard stage, the susceptibility map and the triggering indicator maps were used to
produce a Landslide Hazard Index (LHI) map. As for the vulnerability analysis, a relative evaluation was performed by
considering land use, infrastructure and population density data. All maps were combined at the final stage to produce a
Landslide Risk Index (LRI) map of the study area. It was revealed that areal coverages of the produced LRI map were 21.4%
very low (VL), 10.8% as low (L), 37.4% as medium (M), 24.8% as high (H) and 5.6% as very high (VH) LRI, respectively. The
so-produced LRI map would be beneficial for further and detailed risk analyses to be performed in the future since it highlights
the landslide risk hotspots in a regional scale.
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Introduction

As declared in the 4th World Landslide Forum, the 2017
Ljubljana Declaration on landslide risk reduction and the
Kyoto 2020 Commitment will shape the future works related
to landslide studies throughout the world in the next years.
These efforts particularly aim to strengthen networking with
governments for landslide risk reduction (Sassa 2017), similar
to the previous scientific attempts such as Aleotti and

Chowdhury (1999), Fell et al. (2008a, 2008b) and
Corominas et al. (2014). All these studies are excellent guides
for any landslide-related study considering almost every as-
pect of the idealized procedures related to these works.
However, landslides and their undesirable effects have still
been a problematic issue throughout the world despite such
important efforts. This situation could be explained by the fact
that insufficient attention is still paid by the decision makers,
politicians and local administrations as well as the people. It
could be concluded that one of the most important aspects of
the 4th Landslide Forum is emphasizing the importance of
responsibilities of the governments and decision makers on
the landslide mitigation efforts, including people living in
the hazardous regions.

Landslide maps of any type are required for a safer urban-
ization and environment, land use and regional development
plans. Of these, landslide-susceptibility and hazard studies
were more performed by the researchers in the landslide liter-
ature. However, landslide risk was not a frequent topic in the
landslide literature (Bednarik et al. 2012). Nonetheless, land-
slide inventory and database preparation stage, a key to
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whatsoever landslide study, is by far the most significant step.
As Ye et al. (2019) stated, detecting and monitoring landslides
are hot topics in the remote sensing community, particularly
with the development of remote sensing (RS) technologies
and the significant progress of computer vision. In this con-
text, RS techniques such as aerial photography, high- or
medium-resolution optical satellite images, interferometric
synthetic aperture radar (InSAR) and light detection and rang-
ing (LiDAR) were widely used in landslide studies (Alkevli
and Ercanoglu 2011; Pirasteh and Li 2017a; Pirasteh et al.
2020). Based on the perpetual developments of computer,
geographical information system (GIS) and RS technologies
at the end of the 1980s and 1990s, the scientific landslide
literature has witnessed splendid progressions. On the one
hand, more attention has been paid by scientists on
landslide-related studies; on the other, data availability and
quality, funding provided by local/governmental agencies
and technological aspects have always increased during this
period worldwide. Particularly, landslide-susceptibility map-
ping studies have been more preferred by the scientists using
different quantitative and qualitative methods when compared
with the landslide hazard and risk studies. The main reason
could be related to the difficulties in producing a landslide
hazard or risk map that could be considered as a more chal-
lenging task and needs more detailed data. In addition, incom-
pleteness of the landslide inventory maps and absence of reli-
able damage data related to landslides could be considered as
the two most important reasons in order to reach hazard and
risk. Despite all, landslide hazard and risk could be evaluated
by different approaches even in national and global scales in
some studies such as Guzzetti et al. (2000), Evans and Roberts
(2006), Nadim et al. (2006), Yoshimatsu and Abe (2006),
Abella and Van Westen (2007), Van Den Eeckhaut and
Herva´s (2012), Jaedicke et al. (2014) and Di Martire et al.
(2017).

Although the term risk corresponds to various meanings in
different disciplines, one of the most commonly used defini-
tions of risk is the expected number of lives lost, persons
injured, damage to property and disruption of economic activ-
ity due to a particular damaging phenomenon for a given area
and reference period (Varnes and IAEG 1984). This definition
is also known as the total risk (RT), which is often difficult to
calculate and is almost impossible particularly for medium-
and small-scale studies. For the medium- and small-scale stud-
ies, the researchers preferred to use the term specific risk (RS)
(e.g. Abella and Van Westen 2007; Akgun et al. 2012;
Bianchini et al. 2017). RS is simply expressed by the product
of hazard (H) and vulnerability (V) (Varnes and IAEG 1984).
The term V means degree of loss to a given element, or set of
elements, at risk resulting from the occurrence of a natural
phenomenon of a given magnitude (Varnes and IAEG
1984). In this regard, we approached the specific risk term in
this study by considering the available data and the scale.

Details regarding the specific risk components (i.e. hazard,
which also includes the susceptibility stage, and vulnerability)
were given in the related sections of the study.

In this study, given the concepts above, a regional semi-
quantitative landslide risk assessment was performed in
Kahramanmaraş City centre and its vicinity, located in the
Eastern Mediterranean region of Turkey. Since the landslides
are one of the most problematic natural hazards in the city, it is
aimed to highlight the landslide risk hotspots in a regional
scale for the study area. To assess the landslide risk of the
selected area, a semi-quantitative landslide risk index (LRI)
was approached because of the fact that there were limited
numerical data such as complete landslide inventory, occur-
rence dates of the landslides, quantitative damage information,
etc. A semi-quantitative risk assessment could be considered
as an intermediate stage between qualitative (heuristic) and
quantitative (probabilistic) risk evaluations by ranking the risk
of concern. In order to calculate the LRI in the study area, data
provided by AFAD (Disaster and Emergency Management
Presidency of Turkey) were used and updated during the field
studies as much as possible. Then, landslide susceptibility,
hazard and vulnerability assessments were performed.
Finally, a semi-quantitative landslide risk assessment was
conducted by producing an LRI map of the study area. All
stages of the study were presented in detail in the next
sections.

Study area

Kahramanmaraş City is located in the eastern part of the
Mediterranean region of Turkey (Fig. 1), and has an extent
of 14,525 km2, comprising of 11 different provinces. The
population of Kahramanmaraş is 1,075,706, and the northern
part of the city mostly contains plain areas. In general, the city
presents mountainous and semi-mountainous morphological
features, and the Mediterranean climate is dominant in the re-
gion. The eastern and the southern parts have a rugged topogra-
phy. The summers are hot and arid; the winters are warm and
rainy. The months December and January are the rainiest ones
with an average rainfall of around 120 mm. The highest tem-
perature is observed in July and August (MGM2019) (Table 1).
The city is in a very important position in terms of industrial
purposes, and there are two official and two privately organized
industrial zones. For the textile industry, Turkey’s largest orga-
nized industrial zone will be established in the city. The city has
a feature that can be regarded as a centre for transportation and
railway network in the Eastern Mediterranean region,
connecting the Eastern and Southeastern Anatolia regions of
Turkey.

Kahramanmaraş City has suitable geological, geomorpho-
logical and climatic characteristics in terms of natural disaster
occurrences such as earthquakes, landslides, floods,
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Fig. 1 Location map of the study
area

Table 1 Monthly long-term meteorological characteristics of the region

January February March April May June July August September October November December

Average temperature (°C) 3.7 5.3 9.0 14.1 19.0 23.8 27.3 27.2 23.7 17.5 11.1 6.0

Maximum temperature (°C) 7.8 9.7 14.2 20.0 25.7 31.0 34.7 34.6 31.6 24.6 16.8 10.2

Minimum temperature (°C) − 9.0 − 9.6 − 7.6 − 1.8 5.0 10.3 15.6 15.7 8.6 0.0 − 5.6 − 7.6
Average precipitation (mm) 120.1 102.3 91.8 68.7 39.0 10.1 3.1 4.2 8.3 45.0 70.5 121.2
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avalanches, etc. For this reason, it is necessary to take into
consideration the properties and the mechanisms of the natural
disasters, particularly for the landslides that are the most com-
monly encountered disaster type in the city (see Fig. 1).
However, if the spatial distribution of the landslides is consid-
ered, it is evident that the central part of the city contains more
landslide locations as well as a bigger population and higher
urbanization. For this reason, the central part of the city (see
Fig. 1) was selected as the study area covering 3516 km2 in
order to assess the landslide risk.

With respect to the geological features, it can be concluded
that Kahramanmaraş is located in a region where the geolog-
ical and tectonic characteristics are complicated. In order to
simplify the geological features, at this stage, they were
grouped by their system/period and are shown in Fig. 2.
Detailed lithological names and ages were also presented be-
low this figure. There are 11 different lithological groups and
48 units ranging between the Precambrian to the Quaternary
period (see Fig. 2). At the basement, Precambrian amphibo-
lite, schists and gneisses are located. These units are overlaid
by marble, gneiss, schists and dolomites of the Ordovician
period. Silurian shale, sandstone alternations are overlaid by
massive limestones of Devonian, quartzite and siltstone.
Permian, Triassic and Jurassic units are mostly represented
by limestone, dolomite, marble and calc-schist. In general,
Cretaceous units are in flysch facies comprising conglomer-
ate, sandstone, mudstone and marl alternations. The
Paleogene period is mostly represented by limestone, sand-
stone and marl in addition to volcanic rocks, which were over-
laid by Neogene units of conglomerate, sandstone, gypsum,
tuff and marl. Neogene units were the most abundant litholog-
ical units in the study area. Quaternary units include alluvium
and slope debris, mostly located in close vicinity to the city
centre and along the rivers and steep slopes. The study area is
very close to the Eastern Anatolian Fault Zone (EAFZ) at
which many destructive earthquakes occurred before, and a
few segments of the EAFZ pass through the SE part of the
study area (see Fig. 2). In addition, thrusts developed mostly
in the Eocene and Miocene and strike slip faults are common-
ly traced in the study area (Sümengen 2013).

The city centre is mostly covered by alluvial deposits and
represents plain features with gentle slopes, while the other
parts show generally moderate to high steep topographical
features. Topographical elevation ranges between 203 and
3024 m (asl), and the eastern and northeastern parts of the
study area have elevation values greater than 2000 m. Slope
degrees range between 0 and 69°, and particularly, the SE and
NE parts of the study area contain steep slopes greater than
45°, covered by massive and strong lithological units.

Landslides in the region were mapped and updated during
the field studies. A total of 215 deep-seated rotational earth
slides (Fig. 3a) were mapped during the field studies, and their
areal extents ranged between 0.002 and 5.2 km2 (Fig. 3b). It

should be noted that the x axis of the landslide sizes in Fig. 3b
represents the logarithm of the landslide sizes. It is very well-
known that a detailed and reliable landslide inventory and
database are essential for any landslide work. However, as in
the case of this study, complete landslide inventory maps are
lacking in many countries. Based on the archives and database
of AFAD, it was not possible to obtain the exact dates of the
all landslides, which was very important for the landslide haz-
ard assessment stage for triggering factor analysis.
Unfortunately, only the dates of 29 of the total landslides were
exactly known (day/month/year) in the AFAD landslide ar-
chives and database (Fig. 3c). It was revealed that March and
January were the two months that most of the landslides oc-
curred. In addition, the occurrence years of the 71 landslides
were only known in this database when compared with the
Kahramanmaraş Meteorological Station (KMS) data (Fig.
3d). Although there are 11 rainfall stations in the city, they
have many data deficiencies. There is only one rainfall station
located in the city centre (i.e. KMS), including full daily rain-
fall data starting from 1959 to 2015 with a mean annual pre-
cipitation (MAP) of 718.5 mm (see Fig. 3d).

Even if the exact dates of all landslides were not known, it
could be initially concluded that there was a good harmony
between the number of landslides and rainfall amount, which
could be considered as a key indicator to the hazard assess-
ment. When Fig. 3d is examined, it could be concluded that
there was a general agreement with the number of landslides
and precipitation, particularly in 1976, 1987 and 2009, respec-
tively. Unfortunately, the long-term data of KMS itself was
not sufficient enough to model the landslide hazard through-
out the study area. For example, some landslides, particularly
located in the NW part of the study area, are highly far from
the location of KMS (approximately 50 to 60 km). Thus,
under these circumstances, it was not possible to assess the
landslide hazard in the region based on the definition given by
Guzzetti et al. (1999). The details related to the triggering
factors can be found in the hazard section.

Methodology

Landslide susceptibility

In order to assess the landslide risk in a region, the second
important stage following the landslide inventory studies is to
evaluate the landslide susceptibility. Landslide susceptibility
evaluations need to be able to respond to questions (e.g.,
where, under which conditions? etc.) that landslides are likely
to occur in the future. The quality and the accuracy of these
maps are also related to the purpose, scale, data and financial
conditions of the study. In this context, the susceptibility
phase after the inventory studies is very important for both
hazard and risk stages. Landslide susceptibility assessment
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has been frequently performed in the scientific landslide liter-
ature. Basically, two approaches, qualitative and quantitative
methods, have been adopted for the preparation of landslide
susceptibility maps. Qualitative methods are generally carried

out depending on the field observations by using the knowl-
edge and experience of the researcher, while quantitative
methods are performed by using statistical and/or mathemat-
ical modelling techniques. In quantitative methods, the

Fig. 2 Geological features of the study area
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parameters that are related to landslides are statistically eval-
uated and are produced as digital maps, mostly on a GIS
platform. For example, in addition to some multivariate statis-
tical analyses, frequency ratio (FR), logistic regression (LR),
support vector machines (SVM) and artificial neural networks
(ANN) have been widely used to assess and/or to compare
landslide susceptibility in many studies (Li et al. 2017; Chen
et al. 2019a; Gholami et al. 2019). Although all these meth-
odologies had pros and cons, we preferred to assess landslide
susceptibility in the study area by FR and LR methods which
were successfully applied in the landslide literature for differ-
ent regions.

The FR method has been one of the most widely used and
simple methodologies to evaluate and/or to compare the

landslide-related factors and their relationships between the
landslide and non-landslide locations (e.g. Solaimani et al.
2013; Mondal and Maiti 2013; Regmi et al. 2014; Meten
et al. 2015; Youssef et al. 2015; Wang et al. 2016; Wu et al.
2016; Zhang et al. 2016a, 2016b; Chen et al. 2017; Li et al.
2017; Nicu 2017; Pirasteh and Li 2017b; Sahana and Sajjad
2017; Aditian et al. 2018; Mandal et al. 2018; Zhu et al. 2018;
Arca et al. 2019; Jana et al. 2019; Nsengiyumva et al. 2019;
Yan et al. 2019). Actually, the theory behind the FR method is
a simple ratio of A (area of landslides in a parameter class to
area of all landslides) to B (area of a parameter class to the
entire area) (i.e. FR = A/B). The FR value greater than 1 re-
flects a strong relationship, while the FR value less than 1
presents a poor relationship between the landslides and the

Fig. 3 Landslide features of the
study area: a a view of the
landslides, b frequency
distribution of landslide sizes, c
frequency distribution of
landslide occurrence months and
d annual precipitation of KMS
and number of landslides in the
study area

732    Page 6 of 26 Arab J Geosci (2020) 13: 732



considered parameters (Lee and Sambath 2006). Thus, land-
slide conditioning parameters were produced by the available
data in a GIS platform to produce the landslide susceptibility
map by the FR method. The considered parameters related to
landslides in the region were slope (SLP), lithology (LIT),
aspect (ASP), topographical elevation (TEL), distance to riv-
ers (DTR), land use (LUS), curvature (CRV), distance to
faults (DTF) and normalized difference vegetation index
(NDVI). The SLP, ASP, TEL and CRV parameters were ob-
tained from the digital elevation model (DEM) (containing
26,300,000 pixels) with the 10 m*10 m resolution, gathered
from the General Directorate ofMapping of Turkey. The DTR
map was produced from DEM using ArcHydro tools and GIS
procedures. The LUS map was gathered from AFAD data,
produced from Coordination of Information on the
Environment (CORINE) codes. The NDVI map was pro-
duced from a Landsat ETM+ satellite image using red (R;
band 3) and near-infrared (NIR; band 4) bands by rationing
the reflectance values of the related bands (NDVI = (NIR −
R) / (NIR + R)). In addition, the landslide inventory map (con-
taining 805,662 pixels) was also integrated to the database in
digital format. All files were stored in the GIS platform, and
they are presented in Fig. 4. The next step of the FR analysis
was to calculate the number of pixels either in the domain of a
subgroup of a considered parameter or in the landslide inven-
tory map. This calculation was made in the GIS platform, and
the number of pixels related to the FR equation was extracted.
Then, the FR values of the considered parameters and their
subgroups were evaluated (Table 2). Finally, the Landslide
Susceptibility Index (LSI) was calculated by the summation
of FR values of each parameter as given below (Lee and
Sambath 2006):

LSI ¼ ∑FR FR rating of each factor’s type or range
� � ð1Þ

The landslide susceptibility map produced by FR was ob-
tained (Fig. 5a) using the equation above and standardized in
[0, 1] interval which ranges from very low to very high land-
slide susceptibility classes.

As for the LR method, it has also been one of the most
commonly used methods for landslide susceptibility mapping
purposes among the researchers in recent years (e.g. Talaei
2014; Bai et al. 2015; Lombardo et al. 2015; Chen et al.
2016; Sangchini et al. 2016; Wang et al. 2016; Du et al.
2017; Pham et al. 2017a, 2017b; Raja et al. 2017; Sahana
and Sajjad 2017; Wu et al. 2017; Achour et al. 2018;
Mandal and Mandal 2018; Polykretis and Chalkias 2018;
Chen et al. 2019b; Kadavi et al. 2019; Soma et al. 2019).
Conventionally, application of the LR method to produce a
landslide susceptibility map is performed by dependent (land-
slide inventory) and independent variables (conditioning pa-
rameters of landslides) (Nandi and Shakoor 2009). LR

analyses were performed by the LogisticReg module of the
Idrisi Selva computer code. This module performs binomial
logistic regression using raster or attribute values files. One of
the most important advantages of the logistic regression meth-
od is that continuous and/or discrete variables could be used
for the calculation stage (Lee and Sambath 2006). For the LR
analyses, the dependent (i.e. landslide inventory) and 9 inde-
pendent variables (slope, lithology, aspect, topographical ele-
vation, distance to rivers, land use, curvature, distance to faults
and normalized difference vegetation index) were loaded to
the GIS platform. In the LR analysis, the module estimates a
model of probability which represents the relationship be-
tween the dependent and independent variables. The probabil-
ity of the dependent variable is calculated by the equation
given below:

P y ¼ 1jXð Þ ¼ exp ∑BXð Þ= 1þ exp ∑BXð Þð Þð ð2Þ
where P is the probability of the dependent variable being 1
(landslide); X is the independent variables (conditioning pa-
rameters) (X = (x0, x1, x2,…, xk) and B is the estimated coeffi-
cients of the considered input parameters (B = (b0, b1, b2,…,
bk) (Eastman 2012). Then, a linearization process is needed to
remove the zero and one boundaries for the probability of the
dependent variable. By doing so, the predicted probability
value (P′) will range from 0 to 1 and will be continuous by
applying Eq. 3 (Eastman 2012):

P’ ¼ Ln P=1−Pð Þ ¼ b0þ b1*x1þ b2*x2þ……

þ bk*xkþ error ð3Þ

In addition, the maximum likelihood estimation procedure
is used in the related module of the computer code for finding
the best-fitting set of independent parameters (Eastman 2012).
These procedures are carried out by the following equations:

L ¼ ∏N
i¼1μ

yi
i x 1−μið Þ 1−yið Þ ð4Þ

μi ¼ exp ∑K
k¼0bkxik

� �
=
�
1þ exp ∑K

k¼0bkxik
� � ð5Þ

where L is the likelihood, μi corresponds to the predicted value
of the dependent variable for sample i, N refers to the number
of samples and yi is the observed value of the dependent var-
iable for sample i (Eastman 2012). A stratified random sam-
pling strategy was applied for the analyses considering 10%
sampling proportion by default. LogisticReg module also
summarizes some statistical indicators such as − 2log(L0), −
2log(Likelihood) and pseudo R2. These values indicate how
well the model fit or not considering the parameters fed into
the analyses. For example, pseudo R2 values greater than 0.2
indicate a relatively good fit, and the model is assumed as

Page 7 of 26     732Arab J Geosci (2020) 13: 732



acceptable (Eastman 2012). The statistical results of LR are
tabulated in Table 3, and the landslide susceptibility map pro-
duced by the LR model is shown in Fig. 5b. Since the pseudo
R2 value was greater than 0.2, the model was accepted as a
relatively good fit.

The final stage of the landslide susceptibility mapping pro-
cedures was to assess the performance of the so-produced
maps by FR and LR methods. It was conducted by the ROC
module of Idrisi Selva. The ROC module calculates the area
under the curve (AUC) value using true- and false-positive
percentages for each class, and the user can draw the ROC
curve using these percentages. The AUC value of 1 corre-
sponds to a perfect fit, while the AUC value of 0.5 is consid-
ered as an agreement by chance. During this stage, 8,878,255
pixels (covering approximately 33% of the study area), which
were allocated for this validation stage and were never used
for the former FR and LR analyses, were taken into consider-
ation. Thus, by using this module, AUC values were calculat-
ed for each susceptibility map. The values were 0.862 and
0.828 for FR and LR methods, respectively. The schematic
representation of these results is shown in Fig. 5c. Although
the AUC values were close to each other, the landslide sus-
ceptibility map produced by the FR method was selected as
the input for the landslide hazard assessment because of its
higher AUC value.

Landslide hazard

Similar to the landslide susceptibility assessments, landslide
hazard mapping techniques are divided into two major groups
such as qualitative (direct) and quantitative (indirect) methods.
Qualitative methods are generally based on expert opinion and
considered as subjective. On the contrary, quantitative
methods are considered as objective and produce numerical
estimates (probabilities) of the occurrence of landslide phe-
nomena in any hazard zone (Guzzetti et al. 1999). For both
cases, data quality, reliability and the completeness of the
landslide database are the most significant items for hazard
assessments. In addition, the hazard (H) component is by far
the most complex to establish since it is almost impossible to
link the temporal probability with the landslide occurrences
due to the lack of reliable historical and complete landslide
data in many parts of the world (Van Westen et al. 2006).

Incompleteness of the landslide inventory is one of the
most important problems when one tries to produce a land-
slide hazard and/or risk map. Thus, it becomes almost impos-
sible to reach the exact definition of hazard including the three
components (spatial, temporal and magnitude/size probabili-
ties) in many studies proposed by Guzzetti et al. (1999). Of
these, the magnitude (i.e. size, volume, intensity, etc.) compo-
nent was not considered for the landslide hazard stage in this
study due to the incompleteness of the landslide database.
This situation can also be confirmed in Fig. 3b, particularly

for small landslide sizes covering a few thousand square me-
tres of areal extent. In addition, information related to the
triggering event(s) is also a problematic issue. One of the most
important reasons for this difficulty is generally sourced from
the absence of the documentation of landslide occurrences and
triggering agents such as earthquake, rainfall, human activity,
etc. Furthermore, triggering factors are peculiar to the area
concerned, and their effects on the landslide occurrences
may be different for each site.

Given the problems mentioned above, landslide hazard as-
sessment was conducted by the available data at hand. The
first step of this assessment was to identify the triggering fac-
tor(s). Based on our archive studies and the interviews with
local people during the field studies, the staple point of these
works was that the precipitation was the major triggering fac-
tor of landslides. In addition, even if it was not valid for all
landslides in the database, there was a good compatibility
between the higher precipitation values and number of land-
slides represented in Fig. 3d. Therefore, precipitation was de-
termined as the major triggering factor in the study area ac-
cording to these studies. In these studies, there were no
earthquake-triggered landslide data or damage information
caused by landslides following an earthquake. However, the
study area was located in a seismically active zone. In addi-
tion, as mentioned before, the Eastern Anatolian Fault Zone
(EAFZ) and its segments are very close to the study area,
particularly in the SE part (see Fig. 2). Thus, instead of not
eliminating earthquake as a triggering factor of landslide oc-
currences, it was used as a hazard component. For this stage,
the approaches provided by Abella and Van Westen (2007)
and Akgun et al. (2012) were considered although there were
no earthquake-triggered landslide data in their database. In
these studies, peak ground acceleration (PGA) was taken into
consideration as a triggering indicator with respect to landslide
hazard. For this purpose, an index map (LHI) was produced
by using Eq. 6 and Eq. 7:

LHI ¼ LSI*TI ð6Þ
TI ¼ PGA*0:2ð Þ þ PRE*0:8ð Þ ð7Þ
where LHI is the landslide hazard index, LSI refers to the
landslide susceptibility index and TI is the triggering indicator
of landslides including precipitation (PRE) and PGA data. Of
these, LSI was obtained in the previous section. For the trig-
gering indicators, PGA and PRE maps were used as inputs of
TI. For the PGAmap, earthquake hazardmap of the study area
was gathered from AFAD. It was based on PGA values

�Fig. 4 Parameter maps used in the susceptibility analyses: a aspect, b
curvature, c distance to faults, d distance to rivers, e normalized difference
vegetation index, f slope, g topographical elevation, h lithology and i land
use
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ranging from very low to very high hazard, which corresponds
to 10% probability of exceedance in 50 years with a return
period of 475 years. This map was standardized in [0, 1]
interval for the study area and is shown in Fig. 6a as an

input of TI. Then, the other input of TI, namely the PRE
map, was produced. To produce the PRE map of the study
area, the approach provided by Akgun et al. (2012) was con-
sidered. Data scarcity and deficiency problems related to the

Fig. 4 (continued)
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Table 2 FR values of the considered parameters and their subgroups

ASP (°) # of pixels in
domain (A)

# of pixels in
landslided areas (B)

FR DTR (m) # of pixels in
domain (A)

# of pixels in
landslided areas (B)

FR

N (0–22.5; 337.5–360) 2,315,742 97,046 1.37 0–250 5,284,976 249,277 1.54

NE (22.5–67.5) 2,736,079 125,042 1.49 250–500 4,275,524 219,445 1.67

E (67.5–112.5) 3,169,091 134,151 1.38 500–750 3,214,754 103,894 1.05

SE (112.5–157.5) 3,448,359 133,082 1.26 750–1000 2,433,983 73,337 0.98

S (157.5–202.5) 3,955,951 107,591 0.89 1000–1250 1,887,945 46,177 0.79

SW (202.5–247.5) 3,718,105 81,163 0.71 1250–1500 1,487,251 29,291 0.64

W (247.5–292.5) 3,573,060 86,197 0.79 1500–1750 1,149,370 20,729 0.59

NW(292.5–337.5) 3,355,835 41,390 0.40 1750–2000 952,159 18,675 0.64

Flat (− 1) 27,778 0 0.00 2000–2500 1,465,419 44,052 0.98

CRV 2500–3000 1,163,715 785 0.02

<− 2.8 285,181 7382 0.84 > 3000 2,984,904 0 0.00

(− 2.8) to (− 1.8) 985,377 34,314 1.14 TEL (m)

(− 1.8) to (− 0.8) 3,400,784 196,043 1.88 0–500 1,708,583 10,369 0.19

(− 0.8) to (− 0.3) 3,809,495 119,981 1.03 500–750 5,347,207 150,590 0.92

(− 0.3) to (0.2) 7,856,450 253,717 1.05 750–1000 4,799,825 235,085 1.59

(0.2)–(0.7) 4,609,160 119,708 0.85 1000–1250 3,989,234 205,928 1.68

(0.7)–(1.7) 4,070,563 46,284 0.37 1250–1500 3,340,579 140,199 1.37

(1.7)–(2.7) 983,552 23,950 0.79 1500–1750 2,904,217 40,916 0.46

(> 2.7) 299,438 4283 0.47 1750–2000 2,401,193 17,967 0.24

DTF (m) 2000–2250 1,185,807 4608 0.13

0–1000 8,097,279 420,925 1.69 2250–2500 423,439 0 0.00

1000–2000 4,344,442 201,967 1.52 2500–2750 182,113 0 0.00

2000–3000 2,922,922 68,777 0.77 >2750 17,803 0 0.00

3000–4000 2,230,188 46,559 0.68 SLP (°)

4000–5000 1,708,301 26,413 0.50 (0–5) 3,176,603 0 0.00

5000–6000 1,057,217 10,884 0.34 (5–10) 2,651,230 153,564 1.89

6000–7000 643,305 12,003 0.61 (10–15) 3,399,132 184,827 1.77

7000–8000 583,376 14,497 0.81 (15–20) 4,051,355 183,798 1.48

8000–9000 552,300 3637 0.21 (20–25) 4,168,157 137,530 1.07

9000–10,000 546,517 0 0.00 (25–30) 3,805,374 83,657 0.72

>10,000 3,614,153 0 0.00 (30–35) 2,816,728 42,868 0.49

NDVI (> 35) 2,231,421 19,418 0.28

(<− 0.4) 19,358 585 0.98 LUS (*)

(− 0.4 to 0.2) 559,954 2577 0.15 111 17,094 0 0.00

(− 0.2 to 0.0) 7,310,931 160,951 0.72 112 192,066 0 0.00

(0.0 to 0.2) 13,592,953 439,879 1.05 121 56,790 0 0.00

(0.2 to 0.4) 3,997,792 201,670 1.64 124 10,965 0 0.00

(> 0.4) 819,012 0 0.00 141 3422 0 0.00

LIT 142 2096 0 0.00

Otki 172,031 0.00 0.00 211 83,709 3168 1.23

Otko 173,944 0.00 0.00 212 1,737,347 16,387 0.31

JKk 1,329,095 19,143 0.47 221 359,761 9016 0.82

Mza 2,552,727 35,197 0.45 222 14,607 2169 4.85

Ot 1,576,820 13 0.00 223 61,686 5909 3.13

Kmd 9029 0 0.00 231 20,806 153 0.24

Tmy 89,585 48 0.02 242 3,500,267 412,563 3.85

Sb 223,208 4260 0.62 243 4,283,610 158,580 1.21

Dk 140,954 0 0.00 311 330,345 7180 0.71
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Table 2 (continued)

ASP (°) # of pixels in
domain (A)

# of pixels in
landslided areas (B)

FR DTR (m) # of pixels in
domain (A)

# of pixels in
landslided areas (B)

FR

Tkk 2,814,592 155,387 1.80 312 2,067,798 10,655 0.17

Mzbg 27,848 0 0.00 313 2,276,898 45,609 0.65

Qal 2,211,679 0 0.00 321 1,511,866 5119 0.11

Pç 545,778 949 0.06 324 6,002,138 97,239 0.53

Pzy 62,371 0 0.00 331 37,465 0 0.00

Tzk 518,234 26,166 1.65 332 449,989 596 0.04

Qym 399,732 6491 0.53 333 2,637,030 31,209 0.38

Tkp 1,706,134 66,334 1.27 511 5594 110 0.64

Tem 217,809 3070 0.46 512 636,651 0 0.00

Tb 760,527 73,961 3.17

Trd 578,491 2113 0.12
Mzb 1,167,800 13,221 0.37

Pn 198,875 479 0.08

Tad 37,625 1065 0.92

Tkm 877,520 20,727 0.77

Tka 308,251 3414 0.36

Jkka 149,144 0.00 0.00

Tzl 302,848 23,959 2.58

Qs 18,299 0 0.00

Tkg 1,076,819 59 0.00

TQa 16,052 0 0.00

Pno 74,163 0 0.00

Tkd 2,035,269 226,461 3.63
PlQp 377,691 10,175 0.88

Tg 293,172 18,761 2.09

Trmk 380,990 6106 0.52

Tma 1,555,772 56,006 1.17

Kke 2748 0 0.00

Tkt 119,378 8574 2.34

Je 120,008 1200 0.33

Tzb 84,919 0 0.00

Kbe 57,726 0 0.00

KTa 51,475 0 0.00

Tks 89,687 4632 1.69

Tmf 17,743 992 1.83

Dsi 179,990 929 0.17

Tmt 454,624 15,078 1.08

Ktşg 13,486 692 1.68

Kbes 109,751 0 0.00

Tmh 4342 0 0.00

Qay 13,245 0 0.00

*Explanations for CORINE codes: 111, continuous urban fabric; 112, discontinuous urban fabric; 121, industrial or commercial units; 124, airports; 141,
green urban areas; 142, sport and leisure facilities; 211, non-irrigated arable land; 212, permanently irrigated land; 221, vineyards; 222, fruit trees and
berry plantations; 223, olive groves; 231, pastures; 242, complex cultivation patterns; 243, land principally occupied by agriculture, with significant areas
of natural vegetation; 311, broad-leaved forest; 312, coniferous forest; 313, mixed forest; 321, natural grasslands; 324, transitional woodland-shrub; 331,
beaches, dunes, sands; 332, bare rocks; 333, sparsely vegetated areas; 511, water courses; 512, water bodies
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Fig. 5 Landslide susceptibility
analysis results: a FR map, b LR
map and c ROC curves
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precipitation and landslide data were almost the same in their
study area. For this reason, we considered the additional data
of three meteorological stations (Göksun, Afşin and Elbistan;
for the locations, see Fig. 1) at which the most long-term data
exist regardless of their deficiencies in some years, along with
the data of KMS. Thus, considering the annual precipitation
data of these four meteorological stations from 1959 to 2014,
the PRE map was obtained by using the inverse distance
weighted technique. This map was standardized for the study
area similar to the PGA indicator and is shown in Fig. 6b as a
second input of TI. Then, to produce the LHI map, PGA and
PRE maps were multiplied by 0.2 and 0.8, respectively, as
suggested by Abella and Van Westen (2007). In other words,
the TI part of LHI was obtained by using Eq. 7. Finally, the
LHI map of the study area was produced (Fig. 7) using these
equations. The LHI map was classified into five groups rang-
ing from very low (1) to very high (5) classes to represent the
hazard component of the LRI.

Vulnerability

Losses and/or damages that may be raised from any natural
disaster should be evaluated by considering economic, social,
socio-economic or environmental factors. Based on the liter-
ature studies, scientists generally considered vulnerability part
of landslide risk in four different groups such as physical,
economic, environmental and social ones. Naturally, the most
important element is human life, but it is suggested that other
factors should also be taken into consideration (Fell et al.
2008a, 2008b). It is evident that an interdisciplinary study is
needed to evaluate this issue in a way that involves many
different disciplines for a sustainable risk assessment and
management. Vulnerability assessment is an essential part of
the landslide risk evaluations (Bednarik et al. 2012). In

addition, vulnerability assessment involves the understanding
of the interaction between a given landslide and the affected
elements (Dai et al. 2002). However, studies related to vulner-
ability with respect to landslides are far less abundant (Galli
and Guzzetti 2007). Furthermore, it should be noted that there
is a considerable amount of uncertainty in the vulnerability
assessment stage. Thus, in many cases, researchers have to
make some assumptions depending on factors such as scale,
spatial features, data groups at hand, data quality and
reliability.

In the literature, the term vulnerability was defined in many
ways for various purposes. In addition to the definition of
vulnerability given in the first section of this study by
Varnes and IAEG (1984), it is possible to find out different
definitions of vulnerability. Recent reviews and applications
of vulnerability in different disciplines can be found in detail
in Gonçalves and Zezere (2018), Behera et al. (2019),
Giannakidou et al. (2019), Miranda and Ferreira (2019),
Rehman et al. (2019) and Singh et al. (2019a, 2019b). From
a different point of view, Köhle et al. (2007) considered vul-
nerability as a dynamic parameter in risk assessments since it
has temporal and spatial content. Since it was almost impos-
sible to access the data on temporal content for such a big area
and there were many data deficiencies, the spatial content of
vulnerability was solely considered by the available data of
concern.

Similar to the absence of documentation problem between
landslide occurrences and triggering factors mentioned in the
hazard section, there are also problems arising from the lack of
information between reliable and/or available damage data
and landslides. To some extent, this situation also makes
quantitative landslide risk assessments impossible (Van
Westen et al. 2006). In addition, lack of damage data also
hampered to produce vulnerability curves or functions as well
as fragility curves. Therefore, it is one of the most challenging
tasks to assess vulnerability as a part of risk concept when
historical catalogues related to damage data for landslides
are lacking, as in the case of this study.

To cope with these issues mentioned above, some indices
were used in the literature, particularly for small- andmedium-
scale studies (e.g. Abella and Van Westen 2007; Akgun et al.
2012; Giannakidou et al. 2019). In this study, for the reasons
mentioned above, it was preferred to produce a relative vul-
nerability index (RVI), as a second component of LRI, in
addition to LHI. It contains mainly three different components
such as environmental, infrastructural and population density
features, based on the available data for the study area. In
addition to RVI, its sub-components were also explained in
the following lines.

In the study area, categorical land use (Fig. 8), water chan-
nels (WCH), potable water pipeline (PWP), power lines
(PWL), road network (RON), railway (RAI) and natural gas
pipeline (NGP) (Fig. 9) and population density data (Fig. 10)

Table 3 Statistical
results of the LR method
of landslide
susceptibility analyses

Variables Coefficient

Intercept − 7.47
DTR 0.09

LUS 2.34

ASP 0.85

CRV 0.12

DTF 0.18

LIT 1.61

NDVI 0.54

SLP 0.81

TEL 1.15

− 2Log (L0) 768,953.77

− 2Log (L) 599,704.31

Pseudo R2 0.22

χ2 (9) 169,249.46
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Fig. 6 Triggering factor maps of
the study area: a PGA map and b
PRE map
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were taken into consideration as the elements at risk. All these
data were gathered from the AFAD Provincial Directorate of
Kahramanmaraş, based on the year of 2015 data. For land use
components (see Fig. 4i and Table 2), they were classified into
six groups (see Fig. 8) such as urban areas, plantation, agri-
cultural, forest, bare land and water based on their categorical
features for the AHP analyses explained below to shorten the
number of parameters. In addition, linear density calculations
(per km2) were performed in the ArcGIS platform for linea-
ment features of WCH, PWP, PWL, RON, RAI and NGP
elements in the study area, and they were standardized in [0,
1] interval (see Fig. 9). For the population density (see
Fig. 10), 2015 population density data of Kahramanmaraş
were interpolated and standardized in [0, 1] interval through-
out the study area.

As being a part of the specific risk, the term vulnerability
depends basically upon the degree of loss (economically and/

or physically) for the element(s) at risk and the magnitude/
intensity (velocity, volume, energy, impact pressure, etc.) of
a natural phenomenon (i.e. landslide in this case). In the sci-
entific literature, some excellent reviews and applications can
be found with respect to landslide vulnerability considering
the loss and magnitude components (e.g. Leone et al. 1996;
Catani et al. 2005; Galli and Guzzetti 2007; Totsching and
Fuchs 2013; Bianchini et al. 2017; Singh et al. 2019a,
2019b). Due to the lack of such vulnerability-related data,
vulnerability assessment was performed by considering the
relative loss (RL) and spatial impact (SI) of the elements at
risk in the study area to produce a RVI map (Fig. 11). In other
words, degree of loss and magnitude and/or intensity compo-
nents of vulnerability were simulated by RL and SI, respec-
tively (see Fig. 11). Economic valuation (i.e. relative cost of
the elements) of RL for environmental and infrastructural el-
ements at risk was achieved by AHP matrices fulfilled by the

Fig. 7 LHI map of the study area
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local experts of AFAD. The question of “if a landslide occurs
in the study area, what would be the relative economic loss on
an element at risk because of this landslide?” was asked to
these experts. For population data, a standardized population
density map was used for RL. The spatial impact (SI) of the
elements at risk was linked to the spatial distributions of these
elements on the landslide locations based on categorical (for
land use) and frequency distributions (for infrastructures and
population) throughout the study area. SI values were simply
calculated by dividing the number of pixels of each subgroup
of element at risk to the total number of landslided pixels,
expressed as landslide frequency (LF) in Fig. 11. The idea
behind this concept was that the LF value of an element at
risk would be high in the landslide areas if it was really linked
to a landslide occurrence. If not, it would be low or zero as in
the case of RAI and NGP components of infrastructural ele-
ments (see Fig. 11).

For the RL component, the AHP model was used for envi-
ronmental and infrastructural vulnerability. The AHP method
was introduced by Saaty (1977), and it was one of the most
commonly used methods to cope with various problems in
decision making. AHP is a theory of measurement through
pairwise comparisons and relies on the judgements of experts
to derive priority scales in relative terms (Saaty 2008). The
reasons why we selected AHP theory to assess the RL com-
ponent of vulnerability are mainly twofold: firstly, damage/
loss data scarcity throughout the study area and, secondly,
scale and size of the study area. Information such as economic
loss and damage that may occur as a result of the landslides on
the vulnerability of each element at risk could not be reached
and/or was not available for the study area. Under these con-
ditions, the most important advantage of the utilization of the
AHP method was that it allowed the spatial expression of the
RL to the elements at risk. To make comparisons, a scale of

Fig. 8 Categorical land use map of the study area
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Fig. 9 Infrastructural elements-at-risk maps and their densities: a water channel, b potable water pipeline, c power line, d road network, e railway and f
natural gas pipeline
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numbers was needed, which indicated the importance among
the elements (Saaty 2008). The scale provided by Saaty
(1977) ranges between 1 (equal importance) and 9 (extreme
importance), and the reciprocals (e.g. 1/9, 1/7, 1/3, etc.) could
also be used when comparing the importance of the pairs to
fulfil the AHP matrices. From this point of view, three local
experts of AFADwere asked the question mentioned above to
fulfil the AHP matrices for environmental and infrastructural
elements at risk to achieve the RL component of the vulnera-
bility. AHP matrices used to produce RLmaps of the environ-
mental and infrastructural elements at risk are tabulated in
Table 4 and Table 5, respectively. The grey-shadowed parts
in these tables correspond to the reciprocals of the values. To
produce the RL maps, the considered elements-at-risk param-
eters of concern were fed into the GIS platform. For this stage,
the weight module of the Idrisi Selva computer code was used.
The module gives the value of consistency ratio (CR) as a

measure of the consistency among the considered parameters.
The CR value lower than 0.1 is acceptable with respect to the
consistency of the parameters of concern (Saaty 1977). Details
related to the AHP method can be found in Saaty (1977,
2008). As can be seen from Table 4 and Table 5, CR values
were lower than 0.1, and they were considered as consistent.
To obtain an RVI map of the study area, SI and RL
components were multiplied and standardized in [0, 1]
interval for each element-at-risk group in the GIS plat-
form. Then, environmental (EVM), infrastructural (IVM)
and population (PVM) vulnerability maps were obtained
by these calculations. All these stages are represented in
Fig. 11. EVM, IVM and PVM maps are also shown in
Fig. 12a–c as the components of the RVI map. Finally,
the RVI map of the study area (Fig. 12d) was produced
by arithmetically adding these three vulnerability maps
using the equations given below. It was classified in 5

Fig. 10 Standardized population density map of the study area
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groups ranging from very low (1) to very high (5)
vulnerability:

EV ¼ SIenv*RLenv ð8Þ

IV ¼ SIinf*RLinf ð9Þ

PV ¼ SIpop*RLpop ð10Þ

RVI ¼ EVþ IVþ PV ð11Þ
where EV is the environmental vulnerability, IV is the infra-
structural vulnerability, PV is the population vulnerability, SI
is the spatial impact for the elements at risk group (i. e. envi-
ronmental, infrastructural and population), RL is relative loss
for the elements-at-risk group (i.e. environmental, infrastruc-
tural and population) and RVI is the relative vulnerability
index.

Results and discussion

At the final stage of the study, a semi-quantitative landslide
risk index (LRI) map was produced by considering the LHI
and RVI maps. LRI was achieved by combining the LHI and
RVI maps, expressing the specific risk throughout the study
area. For the combination of LHI and RVI, we took into con-
sideration a semi-quantitative risk matrix ranging from very
low (1) to very high (5) classes, which is tabulated in Table 6.
Considering the LHI and RVI classes tabulated in Table 6, the
final LRI map was produced (Fig. 13). This map provides a

general overview on the landslide risk phenomenon in the
study area. In other words, it could be considered as an initial
step with respect to landslide risk assessments in the study
area. According to this map, the northern part of the region
was abundantly classified in the VL group, while the close
surrounding regions to the city centre (except for the southern
part of the city centre) were in the high and very high LRI
classes. This means that LHI and RVI values were relatively
high. Areal coverages of the LRI classes were calculated as
21.4% very low (VL), 10.8% as low (L), 37.4% as medium
(M), 24.8% as high (H) and 5.6% as very high (VH) LRI,
respectively. These values were 19.1% and 10.6%, 23.3%
and 31.3%, 27.6% and 31.6%, 20.2% and 22.2%, and 9.8%
and 4.3%, corresponding to the classes of VL, L, M, H and
VH components, for hazard (LHI) and vulnerability (RVI),
respectively. These differences could be explained by the haz-
ard and vulnerability components of LRI. For example, a re-
gion with a very high class of vulnerability may be in a very
low hazard class, or vice versa. If these classes were combined
together based on the class values given in Table 6, the
resulting class would be low LRI.

As a general point of view of landslide characteristics, a
total of 215 deep-seated rotational earth slides were mapped
during the field studies. It was revealed that the landslides in
the study area generally occurred in low to medium slope
angles. The landslides in the region were mostly observed in
a weathering zone of weak flysch units, formed by siltstone,
mudstone and sandstone alternations with occasionally volca-
nic intercalations. The landslides in the study area generally
occurred on the northeastern-facing slopes with topographical
elevations between 1000 and 1250m (asl). The most common
land cover types of landslides are orchards (25.72%), mixed
agricultural area (20.42%) and olive groves (16.60%). In land-
slide susceptibility analyses, FR and LR models were taken
into consideration. In the performance evaluations, the AUC
values were calculated as 0.828 for the LR method and 0.862
for the FRmethod, respectively. Due to its higher AUC value,
the FR model susceptibility map was selected as the main
input component for hazard analysis. For the hazard stage,
precipitation and peak ground acceleration parameters were

Table 4 AHP matrix used in economic valuation of vulnerability assessments for the components of land use categories

Elements Urban Area Plantation Agricultural 
Area

Forest Bare 
Land

Water

Urban Area 1
Plantation 1/6 1
Agricultural 
Area

1/5 2 1

Forest 1/4 4 2 1
Bare Land 1/9 1/5 1/7 1/8 1
Water 1/5 1/2 1/3 1/5 3 1
Weight 0.459 0.088 0.140 0.226 0.027 0.060
*CR: 0.08 (consistent)

�Fig. 11 Flow chart representing the calculation of spatial impact and
relative loss of elements at risk: a environmental, b infrastructural and c
population
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Fig. 12 Vulnerability maps for the study area: a environmental vulnerability map (EVM), b infrastructural vulnerability map (IVM), c population
vulnerability map (PVM) and d relative vulnerability (RVI) map

Table 5 AHP matrix used in economic valuation of vulnerability assessments for the components of infrastructural elements

Elements RAI NGP PWL PWP WCH RON
RAI 1
NGP 3 1
PWL 1/2 1/5 1
PWP 1/3 1/6 1/3 1
WCH 1/4 1/7 1/4 2 1
RON 2 1/3 3 4 5 1
Weight 0.151 0.421 0.109 0.046 0.052 0.221
*CR: 0.07 (consistent)

732    Page 22 of 26 Arab J Geosci (2020) 13: 732



considered. Although there were no data related to the
earthquake-triggered landslides in the region, closeness to
the active fault zones of the study area was the main reason
for this selection (20% effect in triggering indicators in hazard

stage). Based on the archive studies and the interviews with
local people, most of the landslides was triggered after a long-
term heavy rainfall. There was also a good harmony between
the higher precipitation values and the number of landslides.
Thus, 80% weight was given to the triggering indicator for
LHI calculation.

It was almost impossible to assess the temporal vulnerabil-
ity in such a region and data scarcity. Thus, it was preferred to
assess the spatial vulnerability comparing the considered ele-
ments at risk, relatively. In other words, it was not intended to
assess an individual element at risk in the region such as a
building, road cut, etc. The main idea herein was to represent
the spatial vulnerability with respect to each group of elements
at risk. The economic valuation of vulnerability stage was
performed by the AHP model. However, it should not be
considered as an insufficient approach since it would provide

Fig. 13 LRI map of the study area

Table 6 Semi-quantitative risk matrix used in the study

LHI classes RVI classes

1 (VL) 2 (L) 3 (M) 4 (H) 5 (VH)

1 (VL) 1 (VL) 1 (VL) 1 (VL) 2 (L) 2 (L)

2 (L) 1 (VL) 2 (L) 3 (M) 3 (M) 4 (H)

3 (M) 1 (VL) 3 (M) 3 (M) 4 (H) 4 (H)

4 (H) 2 (L) 3 (M) 4 (H) 4 (H) 5 (VH)

5 (VH) 2 (L) 4 (H) 4 (H) 5 (VH) 5 (VH)
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valuable information based on the experience and judgement
of the experts, particularly in data-scarce environments. For
the vulnerability assessments, two indicators, namely spatial
impact (SI) and relative loss (RL), were introduced. These
indicators were associated with the degree of loss and magni-
tude and/or intensity components of the term vulnerability
given by Varnes and IAEG (1984). Degree of loss and mag-
nitude (to some extent, intensity) components of vulnerability
were imitated by RL and SI, respectively. For the losses, eco-
nomic valuation of RL for environmental and infrastructural
elements at risk was performed by using the AHP model.
Based on the results of the AHP model, urban area class was
the most valued one for environmental elements at risk. For
infrastructural elements, the most valued element was natural
gas pipeline. For population data, population density map was
used for this purpose (i.e. relative loss) since it was not logical
to compare human life with another type of element at risk by
using AHP. As for the spatial impacts of the elements at risk, it
was assessed based on the spatial distributions of these ele-
ments located on the landslides. Spatial impact values of the
elements at risk were calculated by landslide frequencies
based on their spatial distributions. For this indicator, it was
linked to the intensity or magnitude of a landslide. It was
thought that an element at risk was further damaged if the
intensity or magnitude of the landslide of concern was higher
than that of the other landslides. Thus, spatial distribution on
landslide locations (i.e. LF) of any element at risk could be
more expected to expose a landslide. For example, in the case
of the RAI and NGP components of infrastructural elements,
there were no landslide locations with respect to areal extents
since the LF values were 0 for their all subgroups. However,
NGP and RAI were two of the most valued components
(NGP, the first one; RAI, the third one) of infrastructural ele-
ments based on the economic valuation (see Table 5). It means
that there will be a possible economic loss if a landslide oc-
curs, but since they have no spatial impact, infrastructural
vulnerability will be zero for these components. However,
environmental and/or population vulnerability may exist in
the areas covered by NGP and RAI components. For this
reason, environmental, infrastructural and population vulner-
abilities were added arithmetically to produce the RVI map.

Conclusions

The practical utilization of the so-produced LRI map in re-
gional planning of the study area is very important in the
future. It is thought that the utilization of such maps, which
will be very beneficial especially for decision makers and
local administrations, will also play an important role in min-
imizing the damages caused by landslides. In the light of all
these assessments, it is clear that landslides and their conse-
quences will pose serious problems for the region in the

future, regardless of considering the population growth.
Apart from the city centre, there were many scattered settle-
ments located in medium- to very-high-LRI zones in the study
area (corresponding approximately to 70% areal coverage for
these classes). Since this approach is the initial step of
highlighting the landslide risk assessment of the region, de-
tailed analyses should be performed in these zones in addition
to the database improvement.

It was important to conduct such a work to highlight the
landslide risk conditions based on the available data for the
study area. However, it should be kept in mind that it can be
re-evaluated with some additional studies when the data defi-
ciencies are eliminated in the future. It is inevitable in data-
scarce regions that some certain assumptions should be made.
In this context, it is considered that the public institutions and
organizations, especially the decision makers, local adminis-
trations and universities, have significant responsibilities to
produce and to transfer reliable and high-quality data not only
for landslides but also for all natural hazards for future works.
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