
ORIGINAL PAPER

Investigating variations of vegetation: climatic, geological substrate,
and topographic factors—a case study of Kharestan area, Fars
Province, Iran

Abolfazl Ranjbar1 & Abbasali Vali1 & Marzieh Mokarram2
& Farideh Taripanah3

Received: 31 July 2019 /Accepted: 22 June 2020
# Saudi Society for Geosciences 2020

Abstract
Kharestan basin is regarded as one of the sources of sediment production and erosion at the upstream side of the Middle East’s largest
embankmentdam(DoroudzanDam)whosevegetationdirectlyaffects thequalityofwater andsoil conservationand theecologicalhealth
of the environmental.Accordingly, to investigate variations of vegetation, this studyusedEnhancedThematicMapper (ETM) long-term
data for estimatingNormalizedDifferenceVegetation Index (NDVI)with16days interval for the timeperiodof2017–2017 inKharestan
basin.Climatic factors (precipitation, temperature, evapotranspirationpotential) and topography (elevation, aspect, slope, and compound
topographic Index) were considered effective forces on NDVI variations. Spatial distribution of vegetation and its relationship with
climatic and topographic factors in geological formationswere investigated. Principal component analysis (PCA)wasused to investigate
collinearity, multivariate regression was used to explore the relationship between climatic factors and vegetation, and geographical
weighted regression (GWR) was used to study topographic factors. The results indicated that the spatial distribution of NDVI was <
0.5 in south, north, and west, and > 0.5 (including agricultural and horticultural lands) in the center of the basin. There was a positive
correlation between NDVI and precipitation; moreover, the correlations between NDVI, temperature, and evapotranspiration potential
werenegative.TheNDVIvalue increasedwithan increase inprecipitation, anddecreasedwith thedecreaseof temperature to thewestand
north. In all formations, thehighest vegetation growthwas observed at the elevations from1900 to 2900m.ThehighestNDVIvaluewas
observed inKashkan Formation at elevations of 2050 to 2100m. The shaded aspects weremore suitable for vegetation growth than the
sunnyaspects. In all formations, theNDVIvalue increasedup to15° slope, but decreasedwith the rise in slope (from16° slopeonwards).
From among the factors mentioned, precipitation, temperature, and evapotranspiration potential had the greatest impact onNDVI. This
finding is useful for biodiversity protection and constitutes a precious input to environmental and ecological research.
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Introduction

Vegetation plays a very significant role in controlling the con-
tent of the atmospheric CO2, adjusting the climate, and

protecting the environment and its living species against the
adverse effects of climate change. As a natural mediator
among the soil, water, and the atmosphere in terrestrial eco-
systems (Ma and Frank 2006a, b), vegetation also provides a
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proper ecosystem for many species including the animals,
protecting them against natural threats such as landslide, rock
falls, and debris flow (Ribeiro et al. 2016). Moreover, the
development of cities and infrastructures, particularly in
mountainous areas, relies on the protective effects of
vegetation.

The important role of vegetation can be expressed in the
exchange of materials and energy in the earth, which is the
most sensitive part of ecosystems for climate change (Tian
2017; Shi et al. 2019). This factor could indirectly contribute
to climate regulation and stabilization by affecting solar radi-
ation, soil quality, water cycle, and carbon cycle process. It is,
therefore, indirectly effective on regulating climate (Cramer
et al. 2001; nemani et al. 2003; Peng et al. 2012; Zhang et al.
2016, 2019). These exchanges affect the climate at the local,
regional, and global scales. Following the variation in surface
features, any change in vegetation may affect climate proper-
ties. These changes together with the variations of regional
climatic conditions including solar radiation, atmosphere, wa-
ter, and soil energy transfer reflect the characteristics of inter-
mittent and seasonal changes that are indicators of global cli-
mate change (Buitenwerf et al. 2015; Verbeeck and Kearsley
2016).

Land-use related vegetation variations could, in long term,
affect the chemical composition of soil carbon stocks. This is
the main determining factor in the vertical distribution of soil
organic carbon. Although climate and soil texture are the ma-
jor determinants of regional control over total carbon content,
their effect on vertical distribution relies only on vegetation.

Cultivation and decomposition of plants determine the car-
bon input to the soil profile in a way that the presence of the
plant above or under the ground, as well as shallow and deep
roots, may have different effects on the relative distribution of
deep soil carbon (Jobbagy and Jacsoni 2000). Various vege-
tations could alter energy currents, carbon, and nutrients, as
well as vertical and horizontal movement of water, thereby
changing the land’s fertility and the extent of soil’s organic
carbon content (Yadav 2008), in this way, the physiological
diversity of plant species alters the thermal and moisture con-
ditions of soil and determines the extent of the absorbed car-
bon and its transfer rate to the soil, consequently affecting the
emission of the soil’s CO2 in to the atmosphere (Raich and
Tufekcioglu 2000; Baldock et al. 2012; Carvalho et al. 2016).

Generally speaking, vegetation plays an important role in
the spatial and temporal dynamics of the production and trans-
port of sediment (Hilker et al. 2014). The vegetation canopy
acts as a water storage system and reduces the velocity of
raindrops hitting the soil, reducing the splash erosion as a
result (Liu et al. 2018). Vegetation also lowers the velocity
of surface water currents and increases the rate and volume of
infiltration which results in the deposition of soil particles in
water (Wang et al. 2010). The development of plant roots
improves the physical properties of soil such as its strength,

structural stability, and aggregation which are closely related
to soil erodibility (Wang et al. 2016). Therefore, due to pos-
sible changes in hydraulic parameters and runoff conditions,
and the sediment yield, vegetation could significantly affect
soil erosion (Zhang et al. 2017).

Topography and climate are regarded as the main factors
that control the changes made in vegetation, soil, and precip-
itation, especially in hillsides by influencing the precipitation
and the runoff (Bachmair and Weiler 2012). While tempera-
ture and precipitation are considered two main climatic factors
controlling the type of vegetation and its patterning, there are
three main topographic factors which influence the distribu-
tion and patterning of vegetation especially in mountainous
regions, namely, the elevation, the aspect, and the slope
(Huang 2002). Many studies have so far been conducted on
the relationship between precipitation and the type of vegeta-
tion (Li et al. 2007; Fu et al. 2012).

The relationship between the vegetation and environmental
factors such as climate, geological characteristics, and geo-
morphic elements especially in semi-dry regions reflects eco-
logical and biological features (Fang and Zhang 2013). It
could clearly be argued that water, soil nutrients, and surface
and sub-surface erosions are influenced by geological features
(Bisigato et al. 2009; Osterkamp 2008). The geological sub-
strate (formation) adds, through affecting the soil properties
and hydrological processes, to the variety and complexity of
vegetation in semi-dry areas (Huang et al. 2008; Rodríguez-
Moreno and Bullock 2014). However, geomorphic elements
and geological substrate may affect the spatial heterogeneity
of vegetation in smaller scales especially in areas with no
distinct climates (Yetemen et al. 2010; Munyati et al. 2009).

Remote sensing is, as a powerful and precise tool in
researching vegetation patterning, ideal for quantifying factors
which are effective in spatial distribution of vegetation in large
areas. It is conducted through NDVI (Couteron et al. 2014;
Purkis and Klemas 2011; Yang and Chen 2010) which is
derived from the reflectance of the planet in visible and
near-infrared parts (De jong et al. 2011). Because of its lower
sensitivity to topographic changes, NDVI is used inmountain-
ous area (Matsushita et al. 2007).

In mountainous basins, soil and land resources have such
limitations as high erodibility, high and very high sediment
production, steep slopes, lots of vicissitudes, and the existence
of shallow soils. Considering the fact that Kharestan moun-
tainous area is one of the basins of the Doroudzan Dam, sed-
imentation is a significant factor in this basin. Located in north
of Fars province, Doroudzan Dam is one of the Iranian strate-
gic areas for agricultural production which is fraught with the
problem of over-extraction of water, land degradation, and
increasing desertification. On the other hand, poor vegetation
and shortage of forage are somemajor drawbacks of the grass-
lands in that region. Taking the role of vegetation as one of the
main elements of ecosystem and its effect on other variables of
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the existing ecosystem as well as on soil and water conserva-
tion, the vegetation patterning of the study area of this research
has so far been investigated only in terms of field observation,
while a few studies have explored vegetation variations via
remote sensing and GIS. This study, therefore, investigated
vegetation variations using satellite imagery and GIS. As the
study area is mountainous, the vertical distribution of its cli-
mate is clear and topography plays a major role in the climate
of the region. However, the influence of long-term environ-
mental factors on vegetation has not been studied much. Most
of the studies have focused merely on the effects of climate on
NDVI, trying to make a connection between climatic factors
and vegetation to describe spatial features of vegetation.
Although the findings of these studies are important as well,
they rarely discuss the relationship between various factors
and NDVI values. Moreover, many studies have paid less
attention to the concurrent investigation of the effect of the
variations of different factors such as slope, aspect, elevation,
temperature, precipitation, land type, etc. on vegetation and
how they exert such an influence. Therefore, given the limited
numbers of research on the relationship between multiple fac-
tors and vegetation, this case study was carried out. In order to
investigate the effect of multiple factors including slope, as-
pect, elevation, temperature, precipitation, and land type on
NDVI variations, a model was used. In this study, all variables
were concurrently taken into account and multivariate regres-
sion was used to develop the NDVI regression formula.

Given the importance of vegetation on promoting sustain-
able ecological and socioeconomic development, understand-
ing and identifying vegetation variations and factors affecting
them are important but challenging subjects. Considering the
mountainous nature of the study area, climatic and topograph-
ic factors are expected to play a major role in the distribution
and dynamics of vegetation. Therefore, Landsat data for the
time period of 2017–2017 were used in the present study to
investigate temporal and spatial variations of NDVI. Also,
factors affecting the distribution and dynamics of vegetation
were investigated in this study. The findings of this study
could be useful in identifying how terrain and other regional
features may influence ecosystem’s response to climate
change. This research could provide a scientific reference for
investigating soil and water conservation, the status of ecolo-
gy, forest ecosystems, wildlife sanctuaries, reconstruction and
management of the environment, sustainable development,
and environmental protection in southwestern Iran.

Materials and method

The studied area

Kharestan basin is one of the watersheds of the Doroudzan
Dam in Fars Province which is located at the geographical

range of 51° and 47 °C and 9° east longitude and 30°, 47°′
and 30″ north latitude. The area of this region is 12,300 m2 in
which its minimum and maximum heights and its average
slope are 1900 m, 3040 m, and 11%, respectively.

Geologically, the study area consists of 6 types of forma-
tions: Hormuz salt (Hz) is located in the southwest of Iran and
it is composed of inter-layers of marl, blade-like lime, and a
set of marls from white to yellow. Another formation ob-
served in the south of the study area is called Hormuz
Complex (Z-C) which is composed of white, yellow, and gray
marls; tuff, anhydrite, black lime; and red, gray, and green
sandstones. Pabdeh-Gurpi (Pa-Gu) formations are some other
formations located at the west and southeast part of the study
area. The Gurpi Formation is composed of dark gray marls,
shale, and some limes, and the Pabdeh Formation is composed
of thin-layer clay lime with some alternating gray shales.

At the east of the study area, we found Bakhtiari
Conglomerate Formation (Bk) which is composed of spheri-
cal limestone and a small amount of dark brown chert. Most of
the study area is composed of Kashkan (Kn) and Asmari (As)
formations. The Kashkan Formation is composed of conglom-
erate, sandstone, red siltstone, and marl from east to north-
west, while the Asmari Formation was centrally composed
of strong, hard, prominent, and massive brown lime stones.
The river sediments in the study area were negligible (Fig. 1b).
Figure 2a and b indicate the precipitation and temperature in
the area for an 18-year period; the averages of which are
430 mm and 14.4 °C, respectively. Based on De Martonne
climatic classification, the climate of the region is semi-arid.

Dataset

To explore the vegetation of the area, multi temporal images
which had been taken in cloud-free conditions by Landsat 7
ETM with 163 and 39 Row/path were downloaded from
https://earthexplorer.usgs.gov website. To precisely calculate
the NDVI values, images with spatial resolution of 30 m were
chosen. With regard to the time period of the study (2000–
2017), 144 NDVI images were collected (with 16-day inter-
val). As the vegetation of the study area (including indigenous
and domestic ones) reveals its maximum annual vital activity
from May to September, the NDVI values of those months
were used for evaluation of the vegetation (Jin et al. 2009b).
Digital elevation model (DEM) with the spatial resolution of
30 m was downloaded from https://gdex.cr.usgs.gov/gdex
website.

The climate factors used in this study were the average
annual precipitation, weather temperature, ground surface
temperature, and potential evapotranspiration (PETR). The
meteorological data for the time period of the study (2000–
2017) were collected from 17 local meteorological stations on
a monthly basis.
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Methods

Image processing

Different types of initial pre-processing of the images includ-
ing atmospheric and geometric corrections were performed

via ENVI software version 5.3. Vector analysis was made
by Arc GIS version 10.3. Table 1 shows the classification of
NDVI. Monthly NDVI was calculated through the combina-
tion of two NDVIs with a 16-day interval. The NDVI value
was considered greater and lesser than 0.05 for vegetation and
non-vegetation areas, respectively.

a

b

DEM (meter)

Fig. 1 Geographical Location of the study area in southwestern Iran (a) and Map of Geological formations in the studied area (b)
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Normalized difference vegetation index (NDVI)

NDVI index is regarded as one of the most important indices
used in vegetation. It could be used as a basic index to deter-
mine other vegetation parameters. According to the definition
offered by Rouse et al. (1974), NDVI formula is worked out as
follows:

NDVI ¼ Pnir−Pred

Pnir þ Pred
ð1Þ

In this formula, Pnir stands for the reflectance of near infra-
red band (0.7–1.3 μm) and Pred stands for the reflectance of
red band (0.6–0.7 μm). The index values vary from − 1 to + 1.
High values of this index indicate a high vegetation density in
the area; however, clouds, snow, and water are marked with
negative values (Li et al. 2009).

Methodology for determining environmental factors

Climatic factors

As there is no weather station in the area studied in this re-
search, the data collected from nearby weather stations were
used to identify climatic factors. The precipitation, tempera-
ture, and potential evapotranspiration maps were extracted
based on monthly data via IDW algorithm using ArcGIS

software version 10.3 (Fig. 3). The earth surface temperature
was recorded through satellite images. As for the consistency
with NDVI data, the climate data were also calculated
annually.

PETR values were used as climate predictors. PETR is the
value of PET in proportionate with annual precipitation, indi-
cating the combined effect of temperature and precipitation
(Postw et al. 1982). In most cases, PET is calculated based
on meteorological data. In this study, PET was calculated
according to the Thornthwaite method through the following
formula:

PET ¼ 16
L
12

� �
N
30

� �
10Td

I

� �α

ð2Þ

Where, PET is the estimated potential evapotranspiration
(mm/month), Td is the average daily temperature (degrees
Celsius; if this is negative, use 0) of the month being calculat-
ed,N is the number of days in the month being calculated, and
L is the average day length (hours) of the month being calcu-
lated.
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Fig. 2 Variations of precipitation (a) and temperature (b) during the last 18 years in the study area

Table 1 The correlation between
NDVI and climatic factors
(precipitation, temperature, and
PETR)

NDVI Precipitation Temperature PETR

Pearson correlation NDVI 1.000 0.585 − 0.689 − 0.702
Precipitation 0.585 1.000 − 0.942 − 0.803
Temperature − 0.689 − 0.942 1.000 0.884

PETR − 0.702 − 0.803 0.884 1.000

Sig. (1-tailed) NDVI . 0.000 0.000 0.000

Precipitation 0.000 . 0.000 0.000

Temperature 0.000 0.000 . 0.000

PETR 0.000 0.000 0.000 .
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I is a heat index which depends on mean temperatures of
every individual months of a year.

Topographic factors

Elevation, slope, aspect, and CTI were the main topographic
factors investigated in this study. Using DEM, slope, aspect,
and elevation maps were extracted from ArcGIS software. In
this study, the elevation was divided into seven categories with
a distance of 200 m, and the slope was divided into 5 classes,
namely, < 2, 2–6, 6–15, 15–25 and > 25° According to the Four

Way method, the study area was divided into four aspects in-
cluding sunny, shady, semi-sunny, and semi-shaded aspects.

CTI or soil steady state wetness index is a function for
special surface and the watershed slope which is calculated
according to the following equation:

CTI ¼ ln
As

Tanβ

� �
ð5Þ

In the above equation, As (2) is the watershed’s special
surface, andβ is the slope gradient which was utilized to show
the spatial distribution of water flow and its static state
throughout the study area (Irvin et al. 1997).

Fig. 3 Maps of precipitation (a), temperature(b), and potential evapotranspiration (c) using the IDW method
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Data analysis

Taking monthly climatic data into consideration, the average
precipitation, temperature, and potential evapotranspiration
were extracted. The correlation between NDVI and the afore-
mentioned variables was analyzed. The maps regarding NDVI
values, geology, topography, and climatic factors were trans-
formed into the same geographical coordinate system. The 330-
m Fishnet network was used to display the spatial patterns of
NDVI along with climatic factors and geological map. Totally,
5400 points were collected from the network and used as sam-
ple points. The variations of NDVI under the influence of cli-
matic and topographical factors were analyzed, using partial
correlation, F, Variance Inflation Factor (VIF), GWR, and
PCA tests in SPSS version 14 and Statgraphics version 17.

Principal component analysis (PCA)

Principal component analysis (PCA) is a mathematical proce-
dure that transforms a number of (possibly) correlated vari-
ables into a (smaller) number of uncorrelated variables.
Accordingly, PCA can be used to reduce the dimension of
data, thus preserving components of the data set that have
the most effect on variance. The calculated model for PCA
is calculated as follows:

Y ¼ AX þ B ð6Þ

In this equation, the main component is A, the p × p and E
matrices are a random vector.

It should be noted that in this study, the principal component
analysis(PCA)was,regardingthehugebulkofcollecteddata,used
toreducethecomplexityoftheanalysisoftheinitialvariablesofthe
problem so that better interpretations could be made. In general,
PCAwas used here for identifying the most important factors af-
fectingtheNDVI,detectingthemainsourceofchangesmadebythe
mainandmostimportantvariables,developingthebestlinearcom-
position through the main variables, and using these variables for
linear regressionanalysis,whilemultiple linear regressionwasap-
pliedusedtodeterminetherelationshipbetweenNDVI-dependent
variableandasetofclimaticand topographicvariables, and finally
the relationshipbetween thesevariableswaspresentedasamodel.

Results

The relationship between climatic factors and
elevation in the study area

Figure 4a shows the relationship between precipitation and
elevation. The results indicate a positive correlation between
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Fig. 4 The relationship between precipitation, temperature, and potential evapotranspiration with elevation
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precipitation and elevation; the equation of which is as fol-
lows:

P ¼ 0:0432H þ 301:81 ð7Þ
where P is the average annual precipitation (mm), and H is
elevation (m). As found in the equation, the average annual
precipitation increases by 4.32 mm with the rise of every
100 m. Figure 4b shows the variations of temperature with
elevation. The findings indicate that there is a negative corre-
lation between temperature and elevation, the equation of
which is as follows:

T ¼ −0:0017H þ 18:207 ð8Þ

where T is the average annual temperature (°C), and H is the
elevation (meter). As shown in equation No. 7, with the rise of
every 100 m in elevation, the temperature decreases by
0.17 °C.

Moreover, Fig. 4c shows the variations of potential evapo-
transpiration in proportionate with elevation. The findings of
the study in this regard indicate that there is a negative corre-
lation between potential evapotranspiration and elevation; the
equation of which is as follows:

Fig. 5 NDVI and climate factors (precipitation, temperature, and potential evapotranspiration)
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PETR ¼ −0:2765H þ 1302:4 ð9Þ

In this equation, PETR is the annual potential evapo-
transpiration (millimeters), and H is the elevation (meter).
As shown in the equation, the potential evapotranspiration
decreases by 27.65 mm with an increase in every 100 m
of the elevation.

Relationship between NDVI and climatic factors

In this study, partial correlation was applied to determine the
relationships between NDVI variations and precipitation,
PETR, and average annual temperature; the results of which
indicated that there was a positive correlation between NDVI
and average precipitation, and there were negative correlations

Fig. 6 The relationship between
NDVI and geological formations
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between NDVI and temperature, PETR, and the surface of the
ground temperature (Table 1). The partial correlation coeffi-
cients of NDVI with precipitation, PETR, and annual average
temperature were 0.585, 0.689, and 0.702, respectively
(P < 0.01). Taking these correlations into account, y = ax +
by + .... + c could elaborate on the relationship between
NDVI and the three factors mentioned. The abovementioned
results could be summarized as follows:

NDVI ¼ 0:271718

þ 0:000442337*R−0:0405248*T−0:000421022*P
ð10Þ

In the above equation, NDVI is the average vegetation
indicator, R is the annual precipitation, T is the average annual
temperature, and P stands for PETR. As for the equation, F
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test (F = 5.99) was reported as significant at 0.95 level
(P < 0.05), and VIF and tolerance values were calculated as
1.31 and 0.78, respectively. It should be noted that multi-
collinearity exists only when VIF is greater than 5 (VIF > 5)
and tolerance is either less than 0.1 or much larger than 1 on
average (Fang and Zhang 2013). As total collinearity contra-
dicts the classical assumptions of the regression model, this
study did not use multi-collinearity. The findings of the study
indicate that NDVI has a positive correlation with precipita-
tion and PETR, and a negative correlation with the
temperature.

Figure 4a shows the relationship between NDVI and pre-
cipitation during the time period of the study (2000–2017).
Greater values of NDVI (NDVI > 0.15) have been highlighted
in green, red, and blue, with the blue color being related to the
irrigated farmlands. Figure 4a, excluding the farmlands, indi-
cates a similar trend for NDVI and precipitation, both of
which getting increased from the east to the west and the
north. It should be noted that 15% of the lands in the northwest
of the study area has low NDVI value which is inconsistent
with the precipitation. Moreover, it was found that there was
an inverse relationship between NDVI (except for the
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agricultural areas) and average annual temperature, with the
NDVI getting decreased as the temperature increased
(Fig. 4b). Figure 4c shows the spatial variations of NDVI in
proportionate with PETR, with the NDVI value decreased as
PETR increased from the south and the southeast to the west
and the north (Fig. 5).

Distribution of vegetation and geological formations
in the study area

Figure 6 shows the overview of NDVI for each geological
formation. According to Fig. 6, the maximum and mini-
mum densities of NDVI were reported in Kashkan and the
Bakhtiari formations, respectively. Moreover, the maxi-
mum and minimum NDVI values were 0.57 and 0.03
which were observed in Kashkan and Pabdeh-Gurpi for-
mations, respectively.

Relationship between vegetation and topographic
factors in each geological formation

As indicated by the spatial vegetation of different geological
formations, vegetation could be found in all geological forma-
tions located at elevation range of 1900 to 2900 m. From
among the formations existed in the study area, the highest
vegetation density was found in Kashkan formation and the
lowest one was observed in Hormoz formation (Fig. 7).
Moreover, the maximum and minimum NDVI values were
found, respectively, at the elevation of 2050–2100 m in
Kashkan formation and the elevation of 2200–2400 m in the
Pabdeh-Gurpi formation. It should also be noted that the
greatest rates of growth and distribution of vegetation were
found at the initial elevations (2050–2100) of the study area
which were mostly related to the farmlands.

As the overall results indicate, the northern aspects are
suitable for vegetation growth. It was also found that except

for Bakhtiari conglomerate formation, shaded and semi-
shaded slopes were more suitable for vegetation growth in
all other six geological formations investigated in this study
(Fig. 8). While the greatest NDVI value was observed in
Kashkan formation and in shaded slopes, its lowest values
were found in Pabdeh and Gurpi formations. It could, there-
fore, be concluded that the vegetation growth in each forma-
tion in Kharestan depends on the changes made in geological
locations. Moreover, it could be argued that the growth of
vegetation in various aspects is influenced by changes in the
angle of solar radiation.

Figure 9 shows the relationship between NDVI and slope.
In all six types of geological formations investigated, the
highest percentage of the area covered by slope classes
belonged to 6–15°slopes. In all formations, NDVI values in-
creased up to 15° slope and decreased in slopes more than 16°.
The highest and lowest NDVI values were observed, respec-
tively, in 6–15°slopes at Kashkan formation and 15–25°
slopes at Pabdeh and Gurpi formations. As the soil in areas
with gentle slope absorbs more water, vegetation grows more
there than in areas with precipitous slopes. Moreover, maxi-
mum NDVI values differed in the formations due to the dif-
ference in their materials and permeability. Figure 10 shows
the percentage of vegetation in different geological formations
according to which high NDVI values are observed in
Kashkan and Asmari formations.

Spatial non-stationarity among the relationships

One simple method to identify the relationship between
NDVI and the relevant factors is to use local R2 which is
derived from GWR model. The range of local R2 varies
from 0 to 1; the low values of which indicate the poor
performance of the model. Figure 11 shows the GRW-
drawn parameters of slope and local R2 for NDVI and
topologic variables. As reported in Table 2, there is a
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significant correlation between NDVI and elevation (r =
0.60, P < 0.01). However, according to Fig. 11a, there
exist both positive and negative correlations between
NDVI and elevation in the study area, with the negative
ones observed mainly in the east and the west, and the
positive ones found mostly in the center of the area.
Figure 11b shows the values for Local R2, NDVI, and
elevation, according to which there is a strong correlation
between NDVI and elevation in 17.7% of the study area.
Similarly, in contrast with the negative correlation be-
tween NDVI and slope (r = − 0.011, P < 0.01), a positive
correlation was found between the two in GWR model
(Fig. 11c). Moreover, the strongest correlation between
NDVI and slope was observed in the center of the study
area. As the Local R2 in Fig. 11d shows, there is 17.2%
correlation between NDVI and slope in the study area
which is very significant. Contrary to the negative corre-
lation between NDVI and aspect (r = − 0.034, P < 0.01), a
positive correlation was observed in the southeast farm-
lands of the study area, using GWR model (Fig. 11e). The
local R2 between NDVI and slope in Fig. 11f indicates a
strong 5.5% correlation between the two parameters.
Furthermore, despite a low correlation between CTI and
NDVI, both positive and negative correlations were found
between the two in the study area (Fig. 11g), with the
strong one found in the north and the negative one found
in the center of the area. It should also be noted that most
of the points with strong negative correlations usually
have high local R2 values (Fig. 11g and h).

The relationship between NDVI and soil moisture index,
elevation, slope, and aspect has been illustrated in Fig. 10.
Taking Fig. 10 and Table 2 into consideration, the following
equation has been introduced:

NDVI ¼ −0:14843þ 0:00140011*C−0:0000434089*A

−0:000877129*S þ 0:00012885*E

ð11Þ

In this equation, NDVI is the average vegetation index,C is
the soil moisture index, A is the aspect, S is the slope, and E is
elevation. Furthermore, VIF tolerance statistics were reported
as 1.359 and 0.78 respectively, indicating the lack of multiple
collinearities between NDVI and topographic factors
(Table 2).

Regression analysis of NDVI and multi-factors

To avoid instability when creating the regression equation, the
impact of the factors affecting NDVI was investigated through
PCA. In this study, KMO (Kaiser Meyer Olkin index) statis-
tics were obtained as 0.75, indicating the appropriateness of
the data for factor analysis. The results of Bartlett’s test of
sphericity also turned out to be significant, showing a positive
correlation between the variables (Table 3).

NDVI ¼ −0:128CTI−0:125Precipitation

þ 0:009Temperatureþ 062PETR

þ 0:978Aspectþ 0:032slope

þ 0:076Elevation ð12Þ

According to Table 4, while there are significant correla-
tions between NDVI and elevation, PETR, temperature, and
precipitation, the other three topographic factors have weak
correlations with NDVI. The stepwise regression model of
NDVI was calculated as follows:

NDVI ¼ 0:224047þ 0:000303135*CTI
þ0:000289835*Precipitation−0:034088*Temperature

−0:0000320768*Aspect−0:00079407*slope

þ0:0000360153*Elevationþ 0:000335999*PETR
ð13Þ

Fig. 12 shows the relationship between NDVI values
which have been measured via image and model (R2 =

Table 2 VIF and tolerance
statistics between NDVI and
topographic factors using Ridge
regression

Parameter Estimate Variance Inflation Factor Tolerance statistic

CONSTANT − 0.14843
Aspect − 0.0000434089 1.01201 0.988

slope − 0.000877129 1.68172 0.594

Elevation 0.00012885 1.05889 0.944

CTI 0.00140011 1.6834 0.594

MEAN 1.359 0.78

Table 3 Kaiser-Meyer-Olkin (KMO) and Bartlett’s test

Kaiser-Meyer-Olkin measure of sampling adequacy 0.750

Bartlett’s test of sphericity Approx. chi-square 5.366E3

df 28

Sig. 0.000
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0.71). As the results show, more than 95% of the study area
was covered with less than 30% vegetation, and the re-
maining 5% of the area that belonged to farmlands and
agricultural areas was covered with more than 30% vege-
tation. Having been located at upper 2500-m elevation and
thus receiving more precipitation than other regions, the
north and west parts of the study area have more vegetation
than the other ones. The south and the east parts of the area,
which are located at lower than 2000-m elevation and have
less precipitation and higher temperature in comparison
with the higher aspects, are covered with less than 15%
of vegetation. It should also be noted that the lowest per-
centage of vegetation belongs to the areas in which poor
human management has destroyed vegetation.

Discussion

This study investigated the effect of elevation on precipitation
and proved that there was a significant correlation between
elevation and relevant topographic factors. Accordingly, it
could be argued that with the rise of elevation, the

precipitation increases while the temperature and PETR de-
crease (Zeng and Yang 2008). Furthermore, the findings of
the study indicated a significant correlation between tempera-
ture variations and PETR which was consistent with what
Kosa (2009) found in his study on Sri Songkhram basin in
Thailand. The investigation of the effect of climate factors on
NDVI proved their influence on vegetation (Kayiranga et al.
2017). The findings of also indicated that there was a positive
correlation between NDVI and precipitation and a negative
correlation between NDVI and temperature. As water is con-
sidered the main restrictive factor for the plant’s growth in arid
and semi-arid regions, an increase in precipitation, therefore,
leads to an increase in vegetation, creating a positive correla-
tion between the two variables, while an increase in tempera-
ture leads to the decrease in vegetation, making a negative
correlation between the two (Shi et al. 2019). These results
are consistent with those of the Runnstorm’s study (2003)
who proved that precipitation and its distribution patterns
were effective on NDVI variations.

In this study, NDVI and precipitation were found to have
similar trend, with their values increased from the east to the
west and north; a fact that shows the positive role of

Table 4 Relevant statistical
parameters of NDVI‘s Ridge
regression analysis and multi-
factors (ridge coefficient =
0.1088)

Parameter Estimate Variance inflation
factor

Tolerance
statistic

Partial correlation
coefficient

Constant 0.224047

CTI 0.000303135 1.09357 0.914 0.006

Precipitation 0.000289835 1.49248 0.67 0.589

Temperature − 0.034088 1.15498 0.8658 − 0.689
Aspect − 0.0000320768 0.843147 1.186 − 0.046
slope − 0.00079407 1.08946 0.917 − 0.011
Elevation 0.0000360153 1.56741 0.637 0.6

PETR 0.000335999 1.61682 0.618 − 0.7
mean 1.26 0.83

y = 0.9893x 0.0108
R² = 0.7144
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precipitation in vegetation distribution especially in semi-arid
regions. Fang and Zhang (2013), also, reported that in their
study NDVI increased with the decrease of precipitation from
the east and southeast to the west and northwest of the grass-
land of Ordos region in China. On the other hand, in our study,
a reverse correlation was found between NDVI and PETR in
most of the investigated areas; thus, as higher PETR means
more dryness, the NDVI values (in the study area) decreased
with an increase in PETR. A similar correlation between
NDVI and PETR has previously been reported by Gao et al.
(2012) in Qinghai-Tibet Plateau. In contrast, we observed a
positive correlation between NDVI and PETR in some parts
of the study area, the reason of which could be attributed to the
rise of agricultural lands and cultivated gardens which
significantly contribute in increasing PETR. These findings
are consistent with the results found by Jin et al. (2009a, b)
regarding the effect of PETR variations on the accessibility of
water resources in Zangi arid region in China.

Using GWRmodel, this study investigated the relationship
between the topographic factor and vegetation. The findings
of the study indicate that there a both positive and negative
correlations between NDVI and topographic factors; accord-
ingly, it could be argued that the effect of elevation on human
activities and climate may be attributed respectively to the
positive and negative correlations between NDVI and eleva-
tion. The main reason for the positive and negative correla-
tions between NDVI and elevation is the variations of temper-
ature and precipitation in proportionate with elevation (Tang
et al. 2017). Elevation as the most important topographic fac-
tor affects hydrology, temperature, light, wind, and conse-
quently the vegetation growth (Moeslund et al. 2013).
Regarding the positive correlation of elevation with precipita-
tion and relative humidity, and the negative correlation be-
tween elevation and temperature in mountainous regions, it
could be argued that NDVI values increase with the rise in
elevation which is usually due to the variations of precipita-
tion, agricultural activities, and proximity to surface water
resources. However, in high altitudes where the temperature
decreases with the rise in elevation, temperature is regarded as
the most influential factor on vegetation dynamics (Hu et al.
2019).

As for the positive and negative correlations between veg-
etation and slope in our study area, it could be said that on
steeper slopes, human activities (cutting and browsing dam-
age) usually occur less, and the NDVI is, therefore, higher and
this could be the reason for the positive correlation between
slope and NDVI (Gao et al. 2012). On the other hand, as the
soil on lower slopes has more horizons and depth, it can re-
serve more water while on higher slopes, much of the water
gets out of the reach of the plants as it is turned into runoff; a
fact that could be regarded as a reason for the negative corre-
lation between NDVI and slope (Fu and Gong 2015; Shao-fu
et al. 2013).

That the vegetation grows more in shaded aspects than in
the sunny ones in the study area of this research indicates that
vegetation growth depends on the variations found in geo-
graphical locations. As shaded aspects have low temperature
and evaporation rates, they provide a much better ground for
the distribution and growth of vegetation (Jin et al. 2009a, b;
Shao-fu et al. 2013). Sunny hills receive more sunlight than
the shaded ones which enhances the photosynthetic ability of
the plants to grow, resulting in a positive correlation between
NDVI and aspect (Zapata-Rios et al. 2015).

In ecosystems, proper location for the establishment and
development of the plants’ root system is a very significant
factor in providing sufficient moisture for the plants through-
out the dry seasons. The fissures within the rock and their
permeability, or in other words, the type of formation, play
an important role in the establishment of the plants that’s why
the plants are mostly developed on formations with accessi-
bility to water.

Having observed the highest NDVI values in Kashkan and
Asmari formations, we found in this study that the materials of
a formation and their permeability are effective on NDVI (Fig.
9). As mentioned earlier, this could be attributed to the mate-
rials of a formation, as the upper parts of Kashkan formation
are composed of conglomerate and siltstone-interbedded
sandstone with medium permeability. Moreover, this forma-
tion has many springs that, quantitatively and qualitatively,
are considered moderate/good water resources. It should be
noted that in those formations that can preservemore water for
the plants, vegetation grows more. Furthermore, any change
in a geological formation will change the physical and chem-
ical properties of soil, geomorphic face, and finally the vege-
tation (Vogiatzakis et al. 2003).

Asmari formation is composed of calcareous, massive,
durable, and jagged rocks, and due to its structural features
such as being equipped with plenty of fractures, faults, and
joints, it could desirably influence the basin water resources
both qualitatively and quantitatively and preserve a
considerable amount of precipitations. The findings of this
study confirm the ones found by Soleimani et al. (2008)
who argued that the changes in vegetation were mainly influ-
enced by the type of soil and geological formation. Various
other studies including the Fang and Zang (2013) and Huang
et al. (2008) have also reported that geological faults and the
materials of the substrata play an important role in the evolu-
tion, diversity, and distribution of vegetation in semi-arid
regions.

The current study also found a significant correlation be-
tween the NDVI values measured from image and the estimat-
ed values of the model (R2 = 0.71). The findings of this study
are comparable with some other studies carried out in the same
regard. For instance, Wu et al. (2017) argued that NDVI was
the most appropriate index for investigating the distribution
and changes of vegetation. Moreover, in another study
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conducted by Baugh and Groeneveld (2006) in Colorado
(which is regarded as an arid land), USA, it was found that
the accuracy of NDVI in estimating the vegetation percentage
was higher than those of other similar indexes. However, land-
cover indices might be used as independent factors in multiple
regression equations so that NDVI could be measured more
accurately through a factor analysis.

Conclusion

In this study, vegetation variations in Kharestan basin
were investigated using Landsat ETM7 NDVI data for
the time period of 2000–2017. Climatic and topographic
factors in each geological formation were explored as the
main forces affecting vegetation variations. The distribu-
tion of high values of NDVI was mainly observed in the
central and low- NDVI areas located at the upstream and
downstream of the basin. There was a correlation be-
tween NDVI and precipitation, temperature, and evapo-
transpiration. As a result, vegetation patterning was de-
pendent on climatic factors and increased with the rise of
precipitation to the west and north of the study area,
whereas it showed a reverse trend with temperature, indi-
cating the significance of topographic factors in vegeta-
tion patterning. At elevations below 3000 m of the study
area, NDVI increased with the rise in elevation, with the
highest vegetation growth observed at low elevations.
With the rise in slope up to 15 degrees, NDVI increased
too. The distribution of vegetation was more in the shad-
ed hills than the sunny ones. Moreover, maximum NDVI
was observed in Kashkan and Asmari formations which
could be due to their nature and permeability. Because of
the heterogeneous topography of mountainous regions,
vegetation is affected by topographic factors there. It
could be argued that each single parameter of height,
slope, aspect, CTI, precipitation, temperature, and evapo-
transpiration potential alone has no significant correlation
with NDVI, but if they are considered concurrently as the
effective factors on NDVI, they would show a stronger
relationship with it. From among the factors mentioned,
precipitation, temperature, and evapotranspiration poten-
tial had the strongest correlation with NDVI. It could
generally be stated that topographic (elevation, aspect,
and slope), as well as geological factors (such as the type
of formation, rocks fissures, and their permeability),
should, in addition to climatic conditions, be taken into
account in the investigation of vegetation patterning.
Differences of geological formations result in differences
in the population and processes of ecosystems which in
turn lead to the development of different strategies for
their conservation and management.
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