
ORIGINAL PAPER

Applications of nuclear magnetic resonance (NMR) logging in tight
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Abstract
Tight sandstone reservoir evaluation and characterization faced great challenge by using conventional well logging data due to
the complicated pore structure. To improve tight sandstone reservoir identification, the pore structure should be first character-
ized. In this study, using the tight Chang 8 Formation of Pengyang Region, west Ordos Basin as an example, 20 core samples
were drilled for laboratory nuclear magnetic resonance (NMR) and mercury injection capillary pressure (MICP) experiments. A
model, which was used to construct capillary pressure (Pc) curves from NMR data, was proposed, and the corresponding models
were established based on classified power function (CPF) method to classify formations into three types. Based on these
relationships, the NMR T2 distributions were transformed as pseudo Pc curves and pore throat radius distributions. After these
relationships were extended into field applications, consecutive pseudoPc curves were acquired, and the pore structure evaluation
parameters and permeability were also predicted. Comparisons of predicted parameters with core-derived results illustrated the
reliability of our proposed model and method.

Keywords Tight sandstone reservoirs . Pore structure . Nuclear magnetic resonance (NMR) data . Mercury injection capillary
pressure (MICP) curve

Introduction

With the conventional reservoirs, which contained high po-
rosity and permeability, further developed, the hydrocarbon
potential was decreased. The unconventional reservoirs, such
as shale oil/gas and tight oil/gas, had become the hotspot in oil
and gas exploration due to the unlimited potential (Zou et al.
2012; Jia et al. 2016; Li et al. 2020a, b). The Chang 8
Formation of Ordos Basin, which was a typical tight sand-
stone reservoir (Fig. 1a–c), was recently ardently developed.
To improve the development quality, accurately reservoir
identification and evaluation were of great importance (Gao
and Hu 2018; Liu et al. 2019; Zhu et al. 2019; Li et al. 2020a,
b). However, plenty of field researches illustrated that tight

reservoir identification and evaluation of Chang 8 Formation
are in-effective because it contained complicated pore struc-
ture. Many potential hydrocarbon-bearing formations were
considered as dry layers or water saturated reservoirs (Xiao
et al. 2011; Lis-Sledziona 2019). On the contrary, plenty of
reservoirs, which were identified as water-bearing zones, were
good hydrocarbon-bearing layers in production (Newberry
et al. 1996; Ghafoori et al. 2009). To decrease these misdiag-
noses, the pore structure of tight reservoirs should be first
evaluated (Ge et al. 2014; Ge et al. 2015; Xiao et al. 2016a,
b; Fournier et al. 2018; Puskarczyk et al. 2018; Krakowskal
2019; Zhang et al. 2019; Zahid et al. 2019; Xiao et al. 2020).

Plenty of methods were proposed to evaluate formation pore
structure (Volokitin et al. 2001; Looyestijn 2001; Ouzzane et al.
2006; Olubunmi and Chike 2011). The most effective method
and material of effectively characterizing formation pore struc-
ture was mercury injection capillary pressure (MICP) curve
(Xiao et al. 2016a, b). From the MICP curves of core samples,
many valuable information, such as the pore throat size distri-
bution, the average pore throat radius, the maximal pore throat
radius, and the threshold pressure, can be acquired. Based on
these parameters, formations can be classified into several types,
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and many hydrocarbon potential formations could be identified
(Ge et al. 2015). Although the MICP curves were effective for
pore structure evaluation, the quantity was limited because core
samples were not consecutively drilled. Only limited core sam-
ples were drilled in the potential intervals. This led the pore
structure cannot be consecutively characterized, and many un-
cored wells also cannot be evaluated.

The nuclear magnetic resonance (NMR) data was another
valuable material to evaluate formation pore structure (Coates
et al. 2000; Dunn et al. 2002). From the NMR transverse relax-
ation time T2 distribution, the pore size and distribution can be
qualitatively observed. However, the NMR data cannot be di-
rectly used to quantitatively characterize formation pore struc-
ture, because the pore throat size, but not the pore size, is the
main factor that controls formation quality. To use the NMR
data to characterize formation pore structure, many researchers
pointed out that the NMR T2 distribution should be processed
and transformed as the pore throat radius distribution, and then
pseudo-capillary pressure (Pc) curve (Volokitin et al. 2001;
Xiao et al. 2012). To transform the NMR T2 spectrum as pseu-
do Pc curve, several methods had been proposed. The most
widely used methods contained linear scale function proposed
by Volokitin et al. (2001) and nonlinear power function pro-
posed by Xiao et al. (2016a, b). The linear scale function was
easily used but the processed results were not reliable; the small

pore throat size cannot be reappeared. Xiao et al. (2012) also
proposed another method based on the J function; several re-
stricted conditions made it cannot be well used in field applica-
tion. In this study, we tried all these methods in field
applications, and the nonlinear power function proposed by
Xiao et al. (2016a, b) was verified to be the most optimal.

Method and model

Relationship between T2 time and Pc

Based on the principle of NMR logging, the transverse T2
relaxation time is constructed by three parts: the bulk relaxa-
tion time T2B, the surface relaxation time T2S, and the diffu-
sion relaxation time T2D (Coates et al. 2000). The relationship
among them can be expressed as follows:

1

T2
≈

1

T2B
þ 1

T 2S
þ 1

T 2D
ð1Þ

The relative importance of these three relaxation mecha-
nisms depended on the property of saturated fluid in the pore
spaces, pore size, surface relaxation strength, and rock surface
wettability (Coates et al. 2000). Generally, for a water-
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Fig. 1 The core-derived
porosities (a), permeabilities (b),
and pore throat radius statistical
histograms (c) of the Chang 8
Formation in Pengyang Region,
west Ordos Basin in China. These
three figures illustrated that the
porosities of the Chang 8
Formation ranged from 4.36 to
19.20%, the permeabilities ranged
from 0.008 to 5.38 mD, and the
pore throat radius mainly
distributed from 0.01 to 0.87 μm.
These illustrated that the Chang 8
Formation of our target region
was a typical tight sandstone
reservoir
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wettable rock, and fully saturated with brine, the values of T2B
and T2D were ignored, and T2 was dominated by T2S. The
value of T2S was usually controlled by the pore size of rock.
Hence, the T2 relaxation time can be simplified as follows:

1

T2
≈

1

T2S
¼ ρ2

S
V

� �
por

ð2Þ

where ρ2 was the proportionality constant between 1/T2 and
surface to volume ratio of the pore; S was the surface area of
rock pore; V was the volume of rock pore; and S/V was called
as the surface relaxivity. The subscript por stood for rock pore.

If rock pore shape was assumed as regular, Eq. 2 can be
rewritten as follows:

1

T2
¼ ρ2

S
V

� �
por

¼ FS
ρ2
rpor

ð3Þ

Based on the theory of capillary pressure, the relationship
between capillary pressure and pore throat radius for air-
mercury system can be expressed as follows (Purcell 1949):

Pc ¼ 0:735

Rc
ð4Þ

where Rc was the pore throat size in micrometer.
If we assumed that the pore throat radius was related to the

pore size, it can be expressed as follows:

rpor ¼ m� Rc ð5Þ

Combining Eqs. 3 and 4, a derived equation could be writ-
ten as follows:

Pc ¼ C � 1

T2
ð6Þ

or

Rc ¼ CT2−rc ⋅T2 ð7Þ

where C ¼ 0:735n
ρ2�Fs

� �
was the transformation coefficient of Pc

and T2, andCT2−Rc ¼ ρ2�Fs

n was the transformation coefficient
of Rc and T2.

Equations 6 and 7 illustrated that the T2 relaxation time
associated with Pc or Rc. The NMR T2 relaxation time could
be transformed as the Pc curve or pore throat radius distribu-
tion once the transformation coefficient C was first
determined.

Establishment of model for constructing pseudo Pc
curve from NMR data

To calibrate the value of C involved in Eq. 6 or 7 to construct
pseudo Pc curve from NMR data, 20 core samples, which

were drilled from the Chang 8 Formation of Huangjiang
Region, west Ordos Basin, were applied for NMR and
MICP measurements. The experimental parameters were
listed as follows: wait time (TW) 6.0 s, inter-cho spacing
(TE) 0.2 ms, the number of echoes per echo train (NE)
4096, and the scanning number 128. The experimental results
are listed in Table 1.

Swirr was the irreducible water saturation, Rmax stood for
the maximal pore throat radius, Rm was the average pore
throat radius, R50 was the median pore throat radius, Pd was
the threshold pressure, and P50 stood for the median pressure.

Based on the experimental results, the NMR T2 distribu-
tions and MICP curves of the 20 core samples were acquired
and displayed in Figs. 2 and 3, separately. These two figures
illustrated that their pore structures were complicated. It was
difficult to obtain a single function to establish the relationship
between NMR and Pc curves. To establish a reliable relation-
ship to relate Pc with T2, we tried to classify these core sam-
ples into three types based on the difference of rock physical
properties. Three types of NMR T2 spectra and the corre-
sponding Pc curves are displayed in Figs. 4a–c and 5a–c,
respectively.

Figures 4 and 5 illustrated that the shapes of T2 distribu-
tions and MICP curves for every type of core samples were
similar after they were classified into three types. In this con-
dition, we could calculate an average T2 distribution and
MICP curve to represent all core samples within the same
type.

In Figs. 6 and 7, we displayed the average T2 spectra
and MICP curves for the three types of core samples. From
these two figures, we observed that the shapes and posi-
tions were correlated. For the first type of core samples,
which represented the best pore structure, the NMR T2
distribution lied to the right, and the large pore was dom-
inated; the corresponding Pc curve lied to the bottom. As
the pore structure deteriorated, the NMR T2 distributions
moved to the left, and the Pc curves raised to the top. This
meant the core samples were reasonably classified. These
three average T2 spectra and Pc curves can be used to rep-
resent all 20 core samples.

To establish the transformational relation between NMR
data and Pc curves, the NMR T2 distributions were first proc-
essed and normalized to acquire the inverse cumulative
curves, which contained similar shapes with the Pc curves.
Figure 8 shows the three types of average inverse cumulative
curves, those corresponded to the NMR distributions
displayed in Fig. 6. Comparing Figs. 7 and 8, we observed
that the shapes of the three types of average inverse cumula-
tive curves were similar with those of the average Pc curves.
However, their order of magnitudes were absolutely different.
To transform the NMR T2 distributions as pseudo Pc curves,
relationships between Figs. 7 and 8 should be established,
specifically.
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To establish the relationship between Pc and T2 time, the
equisaturation principle was used to extract the T2 time that
corresponded to every Pc value under the same non-wettable
saturation. Figure 9 displayed the principle of the
equisaturation method.

By using the method displayed in Fig. 9, three types of
average NMR inverse cumulative curves were processed,

the those T2 times corresponded to every Pc value were ac-
quired and cross plotted with the Pc values, and the results
illustrated that good power function relation existed among
them. Meanwhile, based on the relationship between Pc and
Rc displayed in Eq. 4, the relationship between Pc and T2 was
converted to Rc and T2, as is shown in Fig. 10.

By using the relationships displayed in Fig. 10, the NMR
data can be processed and transformed as pseudo Pc curve.

Table 1 The NMR and MICP
experimental results of 20 core
samples

Core
no.

The NMR experiments The MICP experiments

Permeability
(mD)

Porosity
(%)

T2 cutoff
(ms)

Swirr
(%)

Rmax
(μm)

Rm
(μm)

R50
(μm)

Pd
(MPa)

P50
(MPa)

T1 7.62 18.19 2.38 54.52 5.33 0.91 0.32 0.14 2.32

T2 31.25 16.82 11.10 51.52 13.36 2.94 0.60 0.06 1.24

T3 0.79 12.17 8.70 72.30 2.22 0.42 0.16 0.33 4.59

T4 2.80 15.46 4.20 65.77 2.22 0.45 0.18 0.33 4.11

T5 0.39 12.58 13.05 84.14 1.07 0.20 0.08 0.69 9.30

T6 0.02 5.90 1.15 82.81 0.54 0.10 0.02 1.37 45.94

T7 0.24 10.14 4.94 81.59 1.55 0.31 0.08 0.48 9.67

T8 4.55 12.59 5.35 55.28 3.85 0.69 0.20 0.19 3.75

T9 0.08 9.55 5.81 83.12 0.54 0.12 0.07 1.37 11.14

T10 0.01 4.75 3.29 81.83 0.36 0.08 0.04 2.05 16.70

T11 0.01 4.32 3.29 83.70 0.27 0.05 0.03 2.75 22.97

T12 0.37 14.68 12.03 84.64 1.58 0.27 0.06 0.47 12.67

T13 4.99 17.96 2.58 75.21 2.19 0.33 0.06 0.34 11.67

T14 0.001 3.82 6.83 92.74 0.11 0.03 0.02 6.87 49.00

T15 0.50 10.30 3.87 66.99 1.58 0.33 0.15 0.47 4.90

T16 0.97 15.36 6.29 76.30 0.71 0.19 0.09 1.03 7.99

T17 0.18 7.94 1.35 69.71 0.36 0.08 0.03 2.05 21.62

T18 0.71 10.57 2.03 67.63 2.27 0.41 0.13 0.32 5.49

T19 3.59 13.59 3.57 56.82 2.16 0.50 0.17 0.34 4.43

T20 0.59 10.42 6.29 88.15 0.73 0.14 0.07 1.01 10.35
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Fig. 2 The NMR T2 distributions of 20 core samples. This figure
illustrated that the small pore sizes were dominated in the Chang 8
Formation of Pengyang Region, west Ordos Basin, China
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Fig. 3 The MICP curves of 20 core samples. The threshold pressures
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Once they were extended into field applications, field NMR
logging can be processed, and consecutive pseudo Pc curves
could be acquired in the intervals with which field NMR log-
ging was acquired.

In Fig. 11, we displayed a field example of constructing
pseudo Pc curves from field NMR logging in the Chang 8
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Formation, Huangjiang Region, west Ordos Basin. In the first
three tracks in Fig. 11, we displayed the conventional well
logging curves; they were used for identifying effective for-
mation, estimating porosity, and indicating hydrocarbon-
bearing formation. In the fourth track, we displayed the
NMR T2 distributions; the NMR data were acquired from
Schlumberger’s CMR-Plus tool. In the fifth and sixth tracks,
the constructed pseudo Pc curves and pore throat radius dis-
tributions were displayed. We displayed the comparison of
permeabilities predicted from three different methods in the

seventh track. PERMSWAN was the predicted permeability
based on the Swanson parameter model established by Xiao
et al. (2014). PERM was the estimated permeability curve
from porosity based on the routine crossplot of core-derived
porosity and permeability, and CPERM was the core-derived
permeability. This comparison illustrated that the
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PERMSWAN was coincided with the core-derived perme-
ability much well, while the permeability estimated by using
the routine method was underestimated. The reason was that
the PERMSWAN was predicted based on formation pore
structure characterization (Xiao et al. 2017; Daigle et al.
2020). This meant that pore structure should be precisely char-
acterized to predict permeability in tight sandstone reservoirs.
In the last two tracks, we compared the predicted maximal
pore throat radius (RMAX) and the median pore throat radius
(R50) from pseudo Pc curves and derived from laboratory
experimental results of core samples (CRMAX and CR50,

separately). The results illustrated that these two formation
pore structure evaluation parameters were consistent. This
meant that the constructed pseudo Pc curves were accurate
and indirectly verified the reliability of the proposed method
in this study.

Conclusions

Tight sandstone reservoirs cannot be directly estimated by
using conventional methods due to the complicated pore
structure. To improve tight sandstone reservoir evaluation,
the pore structure should be first evaluated. The NMR logging
was effective in evaluating formation pore structure once it
was first transformed as the pseudo Pc curve.

The relationship between the T2 time and the pore throat
radius Rc was not a simple linear function, but a non-linear
power function. To acquire reliable Pc curves from NMR
logging, the classified power function method should be used.
In the method, formation was first classified into three types,
and for every type of rock, the power function was used to
establish the relationship of T2 time and pore throat radius.

In this study, 20 core samples recovered from the Chang 8
Formation in Huangjiang Region, west Ordos Basin, were
used to calibrate the involved parameters in the proposed
model, and a well was processed to verify the reliability.
The result illustrated that the proposed method was available;
it can be used to consecutively construct pseudo Pc curves
from NMR logging in the intervals with which field NMR
logging data was acquired.

2450

2440

2460

Fig. 11 A field example of constructing pseudo Pc curves and characterizing tight sandstone reservoir pore structure from NMR logging data by using
the proposed method
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