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Abstract
Drought is not specific to a particular region and is affecting different parts of the world, one of these areas being the western half
of Iran, which has been suffering from this phenomenon in the recent years. The western half of Iran has been affected by natural
hazards in the recent decades. One of these natural hazards is reduced rainfall, which manifests itself in the form of drought. The
effects of drought in the different parts of the human society have been strongly felt in the recent years. Therefore, it is important
to address this issue. The purpose of this study is to monitor and analyze drought in the western part of Iran. To do this, the
MODIS satellite data, the NDVI (normalized difference vegetation index), and the TRMM (Tropical Rainfall Measurement
Mission Project) satellite were used from 2000 to 2018, and for better analysis, they were compared with the fuzzy index of
T.I.B.I (combined index based on four indices: SET, SPI, SEB, and MCZI) neural network. To calculate the T.I.B.I index, the
ground climate parameters of precipitation, temperature, sunshine, minimum relative humidity, and wind speed were used; to
extract satellite data and images, Google Earth Engine was used. The results of the study indicate that drought has started to
weaken in the western part of Iran since 2010, and in 2016 and in the recent years, it has reached its peak. The northern and central
regions of the study area were more prone to drought than elsewhere. Approximately 69.80% of the area is subject to severe
drought. In order to deal with the catastrophe caused by drought that has many dangerous effects, it requires careful planning in
the future.
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Introduction

Problems with water scarcity were caused by natural and hu-
man factors. They can have irreversible effects on human life,
other living things, and the environment at the regional and
trans-regional levels. Creating and exacerbating water scarcity
crises can have adverse effects on the economy, society, and
agriculture (Sobhani and Safarianzengir 2019a; Sobhani et al.

2019b). The frequency, severity, and extent of drought are
very important aspects. Given the issues and problems caused
by drought, monitoring and prediction for precision preven-
tion and planning to control the risk of future drought in the
region and its probability of occurrence by using precise mod-
el and method are essential. The southwestern and western
parts of Iran are some of the areas that have not been protected
from this risky phenomenon in the recent years. Studying this
risky phenomenon in these areas is of great importance
(Sobhani et al. 2019a; Sobhani et al. 2018; Feng et al. 2019).
Among these climate-related extremes, droughts are a major
threat, which have chronic, unpredictable, and random char-
acteristics (Li et al. 2015; Zhang and Zhang 2016; Yuan et al.
2017). Drought is the most important disaster that reduces
grain production in China, which has been affected by global
warming in the recent years (Harrison et al. 2014; Piao et al.
2010; Campana et al. 2018; Yao et al. 2018; Feng et al. 2019).
Hazard is defined as the potential occurrence of a natural or
human-induced physical event or trend or physical impact that
may cause loss of life, injury, or other health impacts, as well
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as damage and loss to property, infrastructure, livelihoods,
service provision, ecosystems, and environmental resources
(IPCC 2014). Dozens of indices have been developed to quan-
tify the duration, intensity, severity, and spatial extent of the
drought hazard. These indices can be divided into two catego-
ries including univariate and multivariate (and bivariate) indi-
ces (Liu et al. 2019). The coincidence of the peaks of the
scaling exponent with drought events suggests the increase
of the persistence of the hot pixel time series during the driest
periods (Stosic et al. 2015; Safarianzengir et al. 2019;
Safarianzengir and Sobhani 2020). More intense and
prolonged droughts will result in ecological degradation
(Han et al. 2018). Variations in water fluxes are in large part
due to the changes in evapotranspiration (ET), which is water
loss via soil surface evaporation (E) and plant transpiration (T)
(Fisher et al. 2008; Zhang et al. 2016; Han et al. 2018). More
intense and persistent droughts are projected to cause major
shifts in key processes in the water cycle, which in turn will
affect the carbon and nitrogen cycles in terrestrial ecosystems
(Corners et al. 2016; Sobhani and Safarianzengir 2020;
Sobhani et al. 2020). When surface water availability is re-
duced during the dry seasons, groundwater demand increases
(Thomas et al. 2019; Sobhani et al. 2019c). A recent study
(Borromeo et al. 2018) estimated that a rainfall decrease could
lead to a 10% decline in the agricultural gross domestic prod-
uct (GDP) and a 5% decline in the overall regional GDP. This
study estimated greater negative impacts among poorer house-
holds. When drought occurs, these vulnerable populations are
highly reliant on groundwater supply to meet their basic
needs, typically by utilizing boreholes pumping deep ground-
water (Worqlul et al. 2017, Okotto et al. 2015; Thomas et al.
2019; Sobhani and Safarianzengir 2019b; Sobhani et al.
2020b; Tadesse et al. 2005; Jiao et al. 2019a, 2019b). There
is an increasing need for comprehensive and reliable drought
monitoring to aid planning and mitigation of drought impacts
since the frequency and consequences of droughts are expect-
ed to intensify under climate change (Halwatura et al. 2017;
Keyantash and Dracup 2004; Wilhelmi and Wilhite 2002;
Zhou et al. 2012; Jiao et al. 2019a, b). More recently, global
and near-real-time observations of remote sensing technology
open the door for comprehensively characterizing drought
conditions regionally and globally, especially in regions with
limited sampling gauges (Jiao et al. 2019a, 2019b; Lu et al.
2016a, 2016b; Wang et al. 2012; Wu et al. 2013; Zhang et al.
2017; Jiao et al. 2019a, 2019b). Model data suggested that
drought-related declines in LUE (living unit equivalent) for
fluorescence and photosynthesis in areas of mixed forest pro-
duce losses in solar-induced fluorescence (SIF) and gross pri-
mary production (GPP) (Yoshida et al. 2015a, b). Satellite
measurement of SIF from chlorophyll has emerged over the
last few years as a different method to monitor vegetation
globally from space (e.g., Frankenberg et al. 2011; Guanter
et al. 2007, 2012; Joiner et al. 2011, 2012; Yoshida et al.

2015a, 2015b). Droughts and heatwaves have been and will
continue to bring large risks to terrestrial ecosystems.
However, the understanding of how plants respond to drought
and heatwave over broad spatial scales is still limited (Wang
et al. 2019). Drought and heatwave, which are associated with
below-normal precipitation or above-normal air temperatures
sustained for months to years, have substantial impacts on
agriculture, water resources, and human society. The occur-
rence and duration of droughts and heatwaves have substan-
tially increased as a consequence of climate change (Dai 2013;
Trenberth et al. 2014; Wang et al. 2017a, 2017b; Wang et al.
2019). In Amazon, the drought induced by a strong El Niño
event during 2015 and 2016 strongly decreased the GPP and
resulted in reductions in the net carbon uptake of terrestrial
ecosystems (Qian et al. 2019; Yang et al. 2018; Wang et al.
2019). Satellite-based SIF data have also been shown to be
more sensitive to environmental stress than greenness-based
VIs (Guan et al. 2016; Lee et al. 2013; Sun et al. 2015;
Yoshida et al. 2015a, b). Global food security is negatively
affected by drought. Climate projections show that drought
frequency and intensity may increase in the different parts of
the globe (Zambrano et al. 2018). Although increased levels
of carbon dioxide in the atmosphere may increase the water
use efficiency of crops (Donohue et al. 2013; Lu et al. 2016a,
b), the combined effects of global mean temperature (Zhao
et al. 2017) and drought occurrence (Dai 2012) are expected
to cause an overall reduction in global crop yields (Ray et al.
2015; Zhao et al. 2017) and may have a negative impact on
cropping frequency and sown area (Cohn et al. 2016;
Zambrano et al. 2018). The most commonly used vegetation
index for this purpose is the NDVI (normalized difference
vegetation index; Rouse Jr. et al. 1974) from which multiple
anomaly measures have been derived (Jiao et al. 2016; Kogan
1990; Peters et al. 2002a, 2002b; Sandholt et al. 2002) and
applied for monitoring agricultural drought (Cunha et al.
2015; McVicar and Jupp 1998; Rojas et al. 2011; Zambrano
et al. 2016; Zhang and Jia 2013; Zambrano et al. 2018). Other
satellite-derived products that have relevance for drought
monitoring include estimates of soil moisture and evapo-
transpiration (Hao and AghaKouchak 2013; Mu et al.
2013; Sheffield et al. 2004; Tsakiris et al. 2007). The un-
timely onset and uneven distribution of southwest monsoon
rainfall lead to agricultural drought (Swapnil et al. 2015).
The normalized difference vegetation index (NDVI)
(Tucker 1979) is often used for monitoring drought.
Reduction in seasonal NDVI was found to have a strong
link with higher drought severity (Bajgirana et al. 2008;
Thenkabail et al. 2004). There are also other indices used
such as vegetation health index (VHI) (Kogan 2001), en-
hanced vegetation index (EVI) (Kogan 1997; Swapnil et al.
2015), vegetation temperature condition index (VTCI)
(Wang et al. 2004), standardized vegetation index (SVI)
(Peters et al. 2002a, b), and vegetation condition albedo
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drought index (VCADI) (Ghulam et al. 2007). Since the
effects of drought show up over time and slowly, its effects
may be minimized. However, this atmospheric phenome-
non has a long and severe effect on plants, animals, and
people. The effects of drought are more significant in three
areas, which have many detrimental effects: society, econ-
omy, and environment. Therefore, it is important to address
this issue. According to these studies, the purpose of the
present study is to monitor and forecast drought in the
western part of Iran.

Materials and methods

Study area

In the present study, 36 synoptic stations in the western part of
Iran were studied It has 30 years of terrestrial climate data and
19 years of data satellite. In 10 provinces (East Azerbaijan,
West Azerbaijan, Ardabil, Zanjan, Kurdistan, Hamedan,
Kermanshah, Ilam, Lorestan, and Khuzestan), between the
coordinates 30° 06′ 52″ to 39° 48′ 55″ North and 44° 04′
43″ to 49° 50′ 76″ East. The location of the study area and
the stations are presented in Fig. 1. To calculate the T.I.B.I
)combined index based on four indices: SET, SPI, SEB, and
MCZI) ,climatic parameters (precipitation, temperature,

sunshine, minimum relative humidity, and wind speed) were
used.

The standardized precipitation evapotranspiration
new fuzzy index (T.I.B.I)

The new fuzzy climatic index T.I.B.I )combined index based
on four indices: SET, SPI, SEB, and MCZI) is presented to
correct some of the disadvantages of the SPEI (combining
indicators: SPI and SEI) index. The fuzzy index (T.I.B.I)

Fig. 1 Map of the study area showing the western part of Iran

Table 1 Classification of drought and wet year severity based on fuzzy
modeling of T.I.B.I index

Drought classes The index value of T.I.B.I

Very severe drought 0.96–1

Severe drought 0.87–0.96

Moderate drought 0.74–0.87

Mild drought 0.59–0.74

Normal drought 0.44–0.59

Mild wet season 0.29–0.44

Moderate wet season 0.15–0.29

Severe wet season 0.06–0.15

Very severe wet season 0–0.06
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was obtained by combining the four indices of SET (standard-
ized evapotranspiration torrent white index), SPI (standard-
ized precipitation index), SEB (standardized evapotranspira-
tion Blanney Creedal FAO Index), and MCZI (Modified CZI
Index) in the fuzzy inference system. To calculate the T.I.B.I
index, the first four indices were calculated. After calculating
the four indices according to the method described in T.I.B.I
(Table 1), they were evaluated; the architecture of the fuzzy
model of drought monitoring is shown in Fig. 2.

ANFIS (adaptive neuro-fuzzy inference system) neural
network model

In this step, the possibility of modeling and prediction of dust
was studied in the study area using the ANFIS model (Ansari
et al. 2010). In this study, the drought phenomenon in a series
of time (276 months) was considered in one model of ANFIS
neural networks in each station. The fuzzy system is a system
based on the “conditional result” logical rule that, using the
concept of linguistic variables and fuzzy decision-making

process, depicts the space of input variables on the space of
the output variables. A Sogno fuzzy system (this inference
system is mostly used in control systems and in areas where
mathematical calculations are required) with four inputs, one
output, and two laws and an equivalent ANFIS system were
presented. This system has two inputs x and y and one output
(Ahmadzadeh et al. 2010). In the end, the error rate of the
resulting models is compared and the function that obtains
the lowest error rate at the lowest analyzing time was selected
as a membership function (Konarkuhi et al. 2010). The model
structure of the ANFIS (adaptive neuro-fuzzy inference sys-
tems) is shown in Fig. 3. The branches of this graph are
encoded with circles. These circles specify the type of rules
(or and or). The last node on the left is the input and the last
node on the right is the output. The five-layer ANFIS structure
described above is visible in this structure. In the surface view-
er, different modes of output index in the form of fuzzy mem-
bership functions are displayed as well as changes in the
values of the input index classes and can give more details
of the level of changes in the new index between 0 and 1.

Fig. 2 The general architecture of
the fuzzy model of drought
monitoring

Fig. 3 ANFIS model structure
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Satellite datasets

MODIS is an extensive program that provides images in 36
spectral bands between 0.405 and 14.385 lm using sensors on
two satellites—Terra and Aqua (Srivastava et al. 2013).
MODIS images can be downloaded from the website https://
lpdaac.usgs.gov/lpdaac/ products/modis_products_table.
Global MODIS vegetation indices are designed to provide
continuous spatial and temporal information of vegetation
conditions (Lunetta et al. 2006). Global MOD13Q1 data are
available on every 16 days basis at 250-m spatial resolution. It
is a gridded level 3 product in the sinusoidal projection. The
other important datasets required for any drought monitoring
program is precipitation. For more accurate three-dimensional
precipitation retrievals, the first-ever space-borne active mi-
crowave sensor, the precipitation radar (PR), was deployed
along with the TRMM microwave imager (TMI) in 1997
(Huffman et al. 2007; Iguchi et al. 2000). TRMM 3B43 algo-
rithm combines 3-hourly integrated high-quality data, infrared
(IR) estimates, (3B42) with the monthly accumulated climate
assessment monitoring system (Huffman et al. 1997, 2007). It

has a limited earth view covering only the 38° N to 38° S (Gao
et al. 2006). In this study, TRMM 3B43 multi-satellite precip-
itation analysis (TMPA) products were used to obtain the
monthly data during the period of 1998–2008 in American
Standard Code for Information Interchange (ASC2) format
(Yaduvanshi et al. 2015; Rizky Aulia et al. 2016). Google
Earth Engine combines a multi-petabyte catalogue of satellite
imagery and geospatial datasets with planetary-scale analysis
capabilities and makes it available for scientists, researchers,
and developers to detect changes, map trends, and quantify
differences on the Earth’s surface.

Results and discussion

Monitoring of drought fluctuations based on four
integrated indices in T.I.B.I

In order to investigate the effect of drought fluctuations on
the conditions of the stations, it is possible to analyze the
changes in the indicators (SET, SPI, SEB, and MCZI) as

Fig. 4 The fluctuation of the indices at Tabriz station in the 6-month scale and statistical period of 2000–2018

Fig. 5 The fluctuation of the indices at Tabriz station in the 12-month scale and statistical period of 2000–2018
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appeared in the T.I.B.I. index. Considering a large number
of stations, for the sake of better understanding, only the
drought series graph of Tabriz station was presented in both
6- and 12-month scale (Figs. 4 and 5) (in these figures, the
cross-sectional red line shows drought margin on a 6-month
and more scale with the amount of 0.74 and a 12-month and
more scale with the amount of 0.74). The analysis of these
figures shows that at the 6- and 12-month scale at Tabriz
station, the amount of evapotranspiration was similar in
drought conditions, which decreased from March 1994 to
July 1998, and after this month an increase was observed,
while the impact of rainfall on a 6-month scale is weaker
than the 12-month scale. It means that from April 1996 to
December 2004, an increasing trend occurred and after that
followed by the same pattern. The indicators (SET, SPI,
SEB, and MCZI) affect the T.I.B.I. index and show some-
how a trend, indicating that the new T.I.B.I fuzzy index
reflects the four indicators well. The T.I.B.I index at the
12-month scale shows a sharper shape than the 6-month
scale. According to the results of the new T.I.B.I fuzzy
model, the intensity of drought is increasing in most of the
studied stations. Also, based on the output of the mentioned
model, the frequency of drought in the northwestern stations
and the central part of the study area is high. Stations in the
southern parts and the semi-eastern strip of the study area
have lower drought intensity and frequency.

Analysis and monitoring of drought using MODIS and
TRMM satellite data

In this section, due to the large study area, we divided it into
three parts: the northern region (Ardabil, East and West
Azerbaijan provinces); central (Zanjan, Kurdistan,
Kermanshah, and Hamadan); and the southern (Khuzestan,
Ilam, Lorestan). Then, for each part of drought monitoring,
two indices—NDVI (normalized difference vegetation index)
and Dev-NDVI (deviation from normalized difference vege-
tation index)—were evaluated. The product and images ex-
tracted from the MODIS and TRMM satellite for the years
2000 to 2018 were presented only for the month of April each
year due to the high frequency. Monitoring in the northern
part of the study area, based on NDVI and Dev-NDVI drought
estimation indices, indicates increased drought stress. The in-
tensity of the drought fluctuates from 2011 until 2018. This is
visible in the drought oscillation chart in the northern part of
the study area based on NDVI and Dev-NDVI index shown in
Fig. 6. It is worth noting that the increase in drought estima-
tion index of NDVI and Dev-NDVI is an increase in drought
and a decrease in cropmoisture and an increase in drought and
conversely, the lower the drought estimation index of plants.
The decreased moisture content of plants indicates a drought.
The index used to monitor drought in the study area indicates
this. Droughts have occurred in accordance with modelling.

Fig. 6 Drought oscillation chart based on NDVI and Dev-NDVI index in the northern part of the study area (April 2000–2018)

Fig. 7 Drought oscillation chart based on NDVI and Dev-NDVI index at the central part of the study area (April 2000–2018)
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Fig. 8 Drought oscillation chart based on NDVI and Dev-NDVI index in the southern part of the study area (April 2000–2018)

2000 2001 2002 2003

2004 2005 2006 2007

Fig. 9 The spatial pattern of drought in the study area based on NDVI and Dev-NDVI index extracted from MODIS and TRMM satellite data (April
2000–2018)
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Fig. 9 (continued)
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The obtained data can show the drastic fluctuation of droughts
based on arable land estimation index. Especially in the recent
years, from 2017 to 2018, its values have reached 0.79. This
means that drought has occurred in the study area. This is
visible in the drought oscillation chart in the central part of
the study area based on NDVI and Dev-NDVI index shown in
Fig.7. Drought spraying in the study area was based on NDVI
and Dev-NDVI index. This drought index is more severe than
the two study areas. That is, the drought range based on NDVI
and Dev-NDVI index has been rising from 0.25 to 1 in most
months of the year. And this increase indicates a decrease in
the moisture content of crops and an increase in drought. This
is visible in the drought oscillation chart in the southern part of
the study area based on NDVI and Dev-NDVI index shown in
Fig.8. According to the results of the TRMM satellite imagery
data and MODIS sensor based on the two indicators (NDVI
and Dev-NDVI), in the northern part of the study area during
the study period 2000–2018, it had a high drought for 4 years
(2000–2003). The southern basin of Lake Urmia had drought
intensity levels close to 0.96–1%. While the drought has been
partially reduced between 2004 and 2011, the drought has
risen sharply again in 2010. During this period, i.e. 2004–
2011, the northern and central part of the study area had a
higher drought intensity than the other study area.
Meanwhile, in the period from 2012 to 2018, the intensity of
the drought has increased. In 2012, most areas except the
southern part of the region were experiencing severe drought.
While in 2016, the intensity of drought in the northern and
eastern parts of the central part of the country has increased
(refer to Fig. 9 for a visual overview of the satellite images of
drought oscillation based on data from the Terra satellite and
the MODIS sensor).

Conclusions

Drought has dramatic effects on the different parts of human
life including economics, agriculture, environment, and so
on. The results of the present study showed that the output
of the high-level T.I.B.I fuzzy model corresponded with the
MODIS and TRMM satellite image data output. The output
of the T.I.B.I model reflects severe drought in the northern
and central part of the study area. Satellite data outputs in
April showed that since 2001 the intensity of the drought
has begun and in 2010 its intensity has increased. The
MODIS satellite output had a high accuracy compared with
the TRMM satellite in the study area. Precipitation charac-
teristics represent the highest amount of rainfall in the west,
south, and east the study area is larger. Further, it was ob-
served from the temporal variations of NDVI and Dev-
NDVI that the agricultural drought had significantly influ-
enced the northwestern as well as the central portion of the
area of the study. The results of this study showed that

TRMM and MODIS are reliable in output and monitoring
in meteorological and agricultural drought assessment. This
can be very effective in extracting endangered areas.
According to the outputs of the TRMMandMODIS satellite
products, the highest drought intensity is on the margins of
Lake Urmia. The highest amount of precipitation and hu-
midity in April was in 2006, 2008, 2009, and 2018.
According to the findings of the T.I.B.I fuzzy model and
the output of TRMM satellite images, the affected areas
were characterized by high drought intensity which can be
seen in Fig. 9. The results of the present study can be used in
managing crises and natural hazards for officials and man-
agers and reduce the damage caused by it.

In this research, we studied on monitoring and
investigating the possibility of forecasting drought in the
western part of Iran. This method has been used in many
studies and it has been considered as a suitable method for
monitoring, analysis, and comparison, for example, Alizadeh
et al. (2017) in their research on the modeling of dispersion of
droughts due to climate change in Iran by using a dynamical
system; Zeinali and SafarianZengir (2017) in a study on
drought monitoring in the Lake Urmia Basin using the fuzzy
index that it had an acceptable; Fathizadeh et al. (2017) in a
research on the relationship between meteorological drought
and solar variables in some of Iran’s interconnection stations
and verified the efficiency of the models; Safarianzengir et al.
(2019) in a study on modeling and monitoring of drought for
forecasting it, to reduce natural hazards in the western and
northwestern part of Iran; Sobhani et al. (2020a) in a study
on investigating the effects of drought on the environment in
the northwestern province of Ardabil, Iran, using combined
indices; and finally Safarianzengir and Sobhani (2020) in a
research on simulation and analysis of natural hazard phenom-
enon, drought in the southwest of the Caspian Sea. However,
models in the present study were useful in monitoring and
investigating the possibility of forecasting drought in the west-
ern part of Iran.
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