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Abstract
The paper describes effects of anisotropic mechanical properties of rock masses on elastic behaviour of a circular tunnel under
both hydrostatic and non-hydrostatic in situ stress states. This study is based on field data obtained from two actual case studies.
In both cases, the rock masses have transversely isotropic structures. Hence, a 2D finite element modelling based on the
equivalent continuum approach is used for the analysis. The tunnel deformation behaviour has been investigated for both
isotropic and transversely isotropic conditions. To evaluate the degree of anisotropy of rock mass, an “anisotropy index” and
a “normalized displacement ratio” have been defined. The effect of orientation of the isotropic planes is further investigated. The
results show that in a hydrostatic stress state, the maximum displacement always occurs in a direction perpendicular to the
isotropic planes. In this case, three empirical equations have been developed to compute the normalized displacement ratio, the
deviation, and the direction of displacement vector at any arbitrary point on the tunnel periphery. The results further show that if
the anisotropy index increases, the displacement difference (the difference between the maximum and the minimum displace-
ments) on the tunnel walls increases too. For the non-hydrostatic stress state, simultaneous effects of stress ratio, anisotropy
index, and orientation of isotropic planes on normalized displacements have been investigated. In this case, the location of
maximum displacement inclines towards the direction of major principal stress. This effect is more noticeable when the isotropic
planes are oriented at an angle of 90° relative to the direction of the major principal stress. The paper also provides an empirical
equation to determine the location ofmaximum displacement on the tunnel walls. Finally, the practical application of the results is
further illustrated by an actual case study.
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Introduction

Most of rocks have structural defects such as bedding planes,
foliations, fracturing or joints. Presence of these defects leads
to a significant change in mechanical properties in different
directions, known as anisotropy. Anisotropy is observed on
different scales, from small intact rock specimens to large
blocks of jointed rock mass. This phenomenon plays an im-
portant role in various earthwork engineering activities such

as rock slope stability (Al-Karni and Al-Shamrani 2000;
Majdi and Amini 2008, 2011) and stability of underground
openings (Majdi and Hassani 1989; Satici and Ünver 2015).
In such cases, the differences in mechanical properties of rock
strata in different directions can affect the deformation behav-
iour of the aforementioned rock structures.

As a customary rule for design and construction of under-
ground openings, the existence of uniform ground conditions,
i.e. homogeneity and isotropy, around the tunnels is an advan-
tage for their permanent stability. However, the anisotropy of
rocks surrounding the tunnel change the corresponding in-
duced stresses relative to the isotropic conditions, which re-
sults in stress concentration/relaxation on the tunnel periphery.
This in turn produces a non-uniform deformation on tunnel
walls. Evidently, this affects the deformation behaviour of
both temporary and final lining of the tunnel as well. Hence,
the anisotropy has a dominant influence on deformation be-
haviour of an underground opening.
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It is apparent that recognizing the aforementioned effects is
essential for a safe and economic design and construction of
underground openings. Hence, in this paper, the effects of rock
mass anisotropy on elastic deformations of a circular tunnel are
investigated. Due to the dominant effect of the in situ stress
field, analyses have been carried out in various hydrostatic and
non-hydrostatic stress states. The behaviour of the rock con-
sidered in this paper is transversely isotropic. Existence of a set
of structural planes, which are called “isotropic planes”, is the
characteristic of transversely isotropic rocks. Parallel to these
planes, the deformability is the same in all directions, but they
often exhibit a significantly lower deformability perpendicular
to these planes than parallel to them (Wittke 2014). For the
analysis, it is assumed that the longitudinal axis of the tunnel is
parallel with the isotropic planes. Hence, a two-dimensional
finite element modelling based on the equivalent continuum
approach has been used. The tunnel wall deformations in dif-
ferent anisotropic situations and various stress conditions are
further investigated. The results are compared with the isotro-
pic condition, and then, the deformation changes are studied.
Based on the results, some empirical relations are proposed to
estimate the variations of the magnitude and the direction of
the tunnel wall displacement vectors. Furthermore, the effect of
rotation of the isotropic plane on tunnel wall displacement has
been considered.

A brief literature review

Mechanical anisotropy of rocks

Anisotropymay be due to either the intrinsic nature of the rock
or the extrinsic factors such as environmental effects. The
primary factors are associated with the origin of the rock; in
other words, the weak planes are related to rock formation
processes (e.g. foliation, schistosity and cleavages). The sec-
ondary factors include existence of fractures and or sequences
of different rock layers.

The rocks’ anisotropy can be categorized based on the
shape of the uniaxial compressive strength, σcβ, curve relative
to the angle between the weakness planes of the specimen and
the maximum applied stress, β. This classification identifies
two kinds of anisotropy (Ramamurthy 1993): (1) cleavage or
planar and (2) bedding plane. This classification is based on
three factors: maximum and minimum σc at β = 0° to 90°, and
the shape of the anisotropy curve (σcβ vs. β). The details of
this classification and the induced anisotropies are given in
Table 1. Variations of σcβ versus β for different types of
anisotropy are given in Fig. 1.

The degree of anisotropy has been introduced as an indica-
tor for describing the anisotropy of rocks, quantitatively.
Several methods are available to determine the degree of an-
isotropy. Ramamurthy (1993) defined an index, represented

by Iσc , as the ratio of the maximum uniaxial compressive
strength to the minimum uniaxial compressive strength of
intact rock. Based on this index, he divides the rocks into five
classes ranging from isotropic to very highly anisotropic.
Franklin (1985) defined the strength anisotropy index, Ia(50),
based on the ratio of point load strength index in parallel with,
Ia(50)∥, and perpendicular to, Ia(50)⊥, the bedding planes. Also,
in 1997, an index of velocity anisotropy, VA, was proposed by
Tsidzi based on ultrasonic wave velocity ratio in two perpen-
dicular directions (Saroglou and Tsiambaos 2007). Saroglou
et al. (2003) and Saroglou and Tsiambaos (2007) investigated
the inherent anisotropy of metamorphic rocks to determine the
degree of anisotropy. The current anisotropy criteria used in
literatures are summarized and presented in Table 2.

Current studies on tunnel excavation in anisotropic
rocks

One of the most important problems associated with tunnel-
ling is to determine the deformation produced during tunnel
excavation. On the other hand, one of the most common as-
sumptions that apply to majority of analytical solutions is that
the ground is considered as an isotropic medium (e.g. Bobet
2002; Exadaktylos and Stavropoulou 2002; Zareifard and
Fahimifar 2016). The rock surrounding the tunnel may how-
ever be anisotropic (Wang and Wang 2013). Anisotropy af-
fects the stress distribution and deformation within the rock
mass, significantly (Amadei 1996). These, in turn, affect the
deformation of the tunnel, as the excavation proceeds, and the
loads on lining are redistributed (Tonon and Amadei 2002).
Rock mass anisotropy yields a non-uniform displacement on
the tunnel wall, even though the far-field loading is hydrostat-
ic (Bobet 2011).

There are some valuable analytical solutions to consider the
influence of mechanical anisotropy of rock mass on the sta-
bility of underground structures. For example, Majdi and
Hassani (1989) incorporated the in situ structural defects and
strength parameters of surrounding strata in the analysis of
convergence of access tunnels in longwall mining. Hefny
and Lo (1999) have presented a detailed analytical solution
to determine the radial and tangential displacements of a cir-
cular tunnel in an elastic transversely isotropic rockmedium in
which the isotropic planes are horizontal. This closed-form
solution is summarized and presented in Table 3. Zhang and
Sun (2011) have presented an analytical solution for a deep
tunnel in a transversely isotropic rock mass with the assump-
tion that the cross section of the tunnel is parallel with the
plane of isotropy. They found that the problem in this case is
the same as the isotropic case. Bobet (2011) has presented
closed-form solutions for the elastic stresses and displace-
ments of a circular tunnel excavated in a transversely isotropic
rock medium. The solution has shown that the direction of the
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isotropic planes with respect to the major in situ stress is a
significant parameter that affects the non-uniformity of dis-
placements. One of the simplified assumptions in analytical
solutions is circular cross section of the tunnel. Manh et al.
(2014) have developed closed-form solutions for stresses and
displacements around deep tunnels with arbitrary cross sec-
tions. This solution is applicable for a homogeneous, trans-
versely isotropic and linear elastic ground with non-
hydrostatic in situ stress state. Despite the development of
numerous analytical methods, due to the complexity of the
anisotropic effect of rock mass on behaviour of underground
excavations, generally, numerical methods are frequently used
to determine the distribution of stresses and displacements
around the tunnels (Konietzky et al. 2001; Tonon and
Amadei 2002, 2003).

In recent years, many researchers have used numerical
methods to investigate the behaviour of tunnels in
anisotropic and transversely isotropic rock masses. Wang
et al. (2012) simulated the failure mechanism of circular tun-
nels in transversely isotropic rock masses by using RFPA
(Realistic Failure Process Analysis) numerical code. They
have investigated the 2D failure process and failure modes

of tunnels in foliated rock masses. Physical model tests and
numerical analysis, conducted by Zhang et al. (2012) to inves-
tigate the behaviour of stratified rock masses during under-
ground excavations, have indicated the significant role of the
dip angle of stratifications. These analyses showed that the
deformations around an underground excavation increase
with the dip angle of stratification. Also, the more the dip
angle, the more the asymmetric distribution of deformations.
Fortsakis et al. (2012) have investigated the ground response
to tunnel excavation within stratified rock masses based on a
two-dimensional FEM numerical analysis. They have shown
the mechanism of deformations in stratified rocks and the
differences between isotropic, anisotropic and transversally
isotropic approaches. Kolymbas et al. (2012) analysed the
behaviour of a stratified rock mass for sets of elastic constants
of orthotropic and transversely isotropic media based on an-
isotropic linear-elastic and elasto-plastic numerical calcula-
tions. Wu and Kulatilake (2012) investigated the stability of
a tunnel in a limestone rock mass using both an equivalent
continuum/discontinuum model and a fully discontinuum
model through three-dimensional stress analyses. This inves-
tigation on the tunnel stability under different in situ stress

Table 1 Classification of types of anisotropy (The information extracted from Ramamurthy 1993; Singh and Singh 1998; Hudson and Harrison 2002)

Type of anisotropy Origin Type of structural
defects

Shape and characteristics of
anisotropy curve

Example

Inherent
anisotropy

Bedding plane
anisotropy

Sedimentary rocks Existence of bedding
planes

Shoulder type
Max. σcβ at β=0°
Min. σcβ at β=20°–40°
(See Fig. 1a, curve I)

Sandstone and shale

Cleavage or planar
anisotropy

Metamorphic and
chemical rocks
whose particles
crystallized in specific
directions

One set of cleavage U-shaped
σcβ at β=90° is greater than

β=0°
(See Fig. 1a, curve II)

Slates

More than one set of
cleavage

Wavy
σcβ at β=90° is greater than

β=0°
(See Fig. 1a, curve III)

Coal, biochemical
diatomite

Induced
anisotropy

Fractured rock masses One set of fractures U-shaped
(See Fig. 1b)

Massive igneous rock
with one joint set

Fractured rock masses More than one set of
fractures

Ripple-shape
(See Fig. 1c)

Sedimentary layered rock
with joint sets

σcβ

Isotropic planes 
of intact rock 0 90

I

II

III

σ cβ

σ cβ σ cβ

β

σcβ

Single set of 
fractures 0 90β

More than one 
set of fractures

σcβ

0 90β

(a) (b) (c)

Fig. 1 Possible variations of σc versus β for a intrinsic anisotropy (After Nasseri et al. 2003) and b, c induced anisotropies (Hudson and Harrison 2000)
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states revealed that the maximum x-displacement on the tun-
nel rib increased with stress ratio, while the maximum z-dis-
placements on the roof and floor decreased with stress ratio. A
2D semi-analytical solution has been presented by Vu et al.
(2013) for stresses and displacements around a circular tunnel
excavated in a transversely isotropic rock. This solution is
based on the numerical integration of the equilibrium
equations using the transfer matrix technique. Wang and
Huang (2014) studied the joint-induced anisotropic deforma-
tion of a circular tunnel. The analysis was through a nonlinear
constitutive model for a rock mass containing sets of

ubiquitous joints and the associated numerical implementation
which was previously developed by the same authors (Wang
and Huang 2009). They concluded that the orientation and
strength of joints, the tunnel overburden, and the stress ratio
are the main factors affecting the deformations surrounding
the tunnel. Simanjuntak et al. (2016) investigated the mechan-
ical and hydraulic behaviour of pressure tunnels embedded in
elastic transversely isotropic rocks subjected to non-
hydrostatic in situ stresses by means of a 2D finite element
model. It was concluded that the in situ stress ratio and the
orientation of isotropic planes affect the load sharing of the

Table 3 Closed-form solutions for determining the elastic radial and tangential displacements of the periphery of a circular tunnel in transversely-
isotropic rock where the isotropic planes are horizontal (summarized after Hefny and Lo 1999)

Radial displacements:
ur ¼ R

2 γ1−γ2ð Þ P0 γ2ρ1−γ1ρ2ð Þ þ Q0 ρ1−ρ2ð Þ þ P0 γ2δ1−γ1δ2ð Þ þ Q0 δ1−δ2ð Þ½ �cos2θp
� �

Tangential displacements:
ut ¼ R

2 γ1−γ2ð Þ P0 γ1δ2−γ2δ1ð Þ þ Q0 δ2−δ1ð Þ½ �sin2θp
where R is the tunnel radius, θp is the angle measured from horizontal line, counter-clockwise, and the other parameters are as follows.

Hydrostatic (P0) and deviatoric (Q0) components of initial stress:
P0 ¼ σhþσv

2 , Q0 ¼ σh−σv
2

where σh and σv are horizontal and vertical in situ stresses, respectively.

Functions of the elastic constants:
γ1 ¼ α1−1

α1þ1, |γ1| < 1

γ2 ¼ α2−1
α2þ1, |γ2| < 1

α2
1α

2
2 ¼ S11

S22
, α2

1 þ α2
2 ¼ 2S12þS33

S22
ρ1 = (1 + γ1)β2 + (1 − γ1)β1, ρ1 = (1 + γ2)β1 + (1 − γ2)β2
δ1 = (1 + γ1)β2 − (1 − γ1)β1, δ1 = (1 + γ2)β1 − (1 − γ2)β2
β1 ¼ S12−S22α2

1, β2 ¼ S12−S22α2
2

Deformation coefficients related to material parameters:

S11 ¼ 1−ν21
E1

, S22 ¼ 1−ν12ν21
E2

, S12 ¼ S21 ¼ − ν21 1þν1ð Þ
E2

, S33 ¼ 1
G21

in which:
E1 and E2 are Young’s modulus in the isotropic plane and in the direction normal to the isotropic plane, respectively,
ν1 is the Poisson’s ratio in the isotropic plane, ν12 is the Poisson’s ratio for the effect of stress in the isotropic plane on the strain in the direction normal to

the isotropic plane, ν21 is the Poisson’s ratio for the effect of stress normal to the isotropic plane on the strain in the isotropic plane, andG21 is the shear
modulus normal to the isotropic plane.

Note that the following relationships among the elastic parameters must be satisfied:
E2
ν21

¼ E1
ν12
, 1 − ν1 > 0, 1 + ν1 > 0, 1 − ν1 − 2ν12ν21 > 0

Table 2 The current anisotropy criteria of rocks

Base of classification UCS UCS Point load strength Ultrasonic wave velocity Ultrasonic wave velocity
Designated index Iσc I *σc Ia(50) VA (%) Ivp
Reference (Ramamurthy 1993) (Saroglou and

Tsiambaos 2007)
(Franklin 1985) By Tsidzi (Saroglou and

Tsiambaos 2007)
(Saroglou and T
siambaos 2007)

Isotropic 1.0–1.1 1.0–1.1 1.0 < 2.0 –

Fairly anisotropic 1.1–2.0 1.1–2.0 1.0–2.0 2.0–6.0 ≤ 1.5
Moderately anisotropic 2.0–4.0 2.0–3.0 6.0–20.0 1.5–2.0

Highly anisotropic 4.0–6.0 3.0–5.0 2.0–4.0 20.0–40.0 > 2.0

Very highly anisotropic > 6.0 > 5.0 > 4.0 > 40.0 –
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rock mass and the lining, significantly. Also, Schubert and
Mendez (2017) presented some recommendations for excava-
tion and support strategies based on numerical simulations
andmonitoring data from tunnels in foliated anisotropic rocks.

The abovementioned studies have mostly investigated the
overall effects of rockmass anisotropy on the stability (includ-
ing stress and deformation aspects) of tunnels. However, it
would be worthy to consider the influences of the rock anisot-
ropy on the tunnel wall’s displacements as a vector quantity.
Therefore, this paper has focused on variations of direction
and magnitude of displacement vectors of a circular tunnel
located in a transversely isotropic rock medium. Based on
the outcomes of both analytical and numerical analyses, the
most influencing factors affecting the ground response to tun-
nel excavation in transversely isotropic rocks can be listed as
follows:

- The orientations of isotropic planes with respect to major
principal in situ stress,

- The ratio of horizontal to vertical in situ ground stresses,
K,

- The degree of anisotropy of rock media.
Hence, the roles of these factors are investigated by a set of

numerical analysis and is represented in the following.

Numerical analysis- input data and model
construction

In this paper, the equivalent continuum approach is used to
analyse the effect of rock mass anisotropy on tunnel walls’
deformations. Therefore, anisotropic laboratory/field data are
required to define the equivalent continuum. The required data
were extracted from two actual case studies reported by
Wittke (1990). The cases consist of two anisotropic jointed
clay-slates with an axis of symmetry (transversely isotropic)
with the equivalent parameters given in Table 4. The criteria
for selection of these cases was their obvious difference in the
mechanical parameters of rock mass. Therefore, this selection
provides the possibility to investigate the effect of varying
rock mass parameters.

To investigate the effect of different anisotropy conditions
on tunnel wall deformation requires determination of the rock
mass parameters for each degree of anisotropy. For this pur-
pose, an anisotropy index, IE, is defined as the ratio of the
maximum to the minimum values of Young’s modulus of
elasticity, i.e. IE = E1/E2. Hence, based on the data presented
in Table 4, the anisotropy indices of the rock samples under
present consideration will be equal to 4 and 5, respectively.
Subsequently, to determine the required rock mass parameters
for the desired range of anisotropy indices, the values of E1

and ν1 (Poison’s ratio) are taken as constants and equal to that
given in Table 4. Then, with regard to IE = E1/E2, the values of
E2 for different anisotropy conditions are calculated and

illustrated in Fig. 2. Next, for when IE = 1, the corresponding
shear modulus, G, is calculated based on G21 = G1 = G = E/2
(1 + ν). Furthermore, with regard to the values ofG21 in actual
conditions that were given in Table 4, then the value ofG21 for
each anisotropy condition can be generated by using an in-
verse ratio of IE, based on Eq. 1 (Fig. 2).

G21 ¼ Gþ
1

IE
−

1

IEð Þactual
1−

1

IEð Þactual

0
BB@

1
CCA� G−Gactualð Þ ð1Þ

in which,G is the shear modulus for isotropic condition when
IE = 1, and Gactual is the shear modulus for actual condition,
(IE)actual. Similarly, Poison’s ratio, ν21, values are also calcu-
lated for each anisotropy condition.

To study the effect of orientation of isotropic planes, the
angle from the vertical-up to the isotropic plane, measured
clockwise, is called the angle of orientation and is represented
by θIP. Also, the location of any arbitrary point on the tunnel
periphery is defined as the angle θ from the vertical-up to the
considered point, measured clockwise (Fig. 3a). Next, a two-
dimensional finite element program, Phase2, has been used to
analyse the numerical models for which a circular tunnel with
a diameter of 5 m is assumed. So that, dimensions of the
numerical models are considered 50m × 50m. The numerical
model is consisted of graded 3-noded triangular elements, and
its boundary conditions are depicted on Fig. 3b. The nodes on
the tunnel periphery are used as the monitoring points to re-
cord the x- and y-displacements. For each case, the results of
the analyses are checked with the prescribed Hefny and Lo
analytical solution (Table 3) at a benchmark condition as will
be shown later. Then, the established models are used for
further analysis.

To account for the effect of different in situ stress fields,
analyses were carried out in two different stress states: hydro-
static and non-hydrostatic. Then, to investigate the effect of
different in situ stress levels, a range of 5 to 15 MPa was used
for the analysis.

Tunnel wall deformation analysis

Analysis under hydrostatic in situ stress field

Based on Heim’s hypothesis, the earth gravitational stresses,
consisting of two components of vertical and horizontal, in-
crease with depths. These components tend to equalize at high
depths, which is known as hydrostatic in situ stress state
(Jaeger 2009). Hence, the effects of rock mass anisotropy on
magnitude and direction of displacement vectors of the tunnel
wall under this stress state were investigated and presented in
this section.
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Effects of anisotropy index

In this section, to study the effect of degree of anisotropy, 9
different anisotropy indices have been used to determine the
model parameters, including IE = 1, 1.25, 1.6, 2, 2.5, 3, 4, 5
and 6. Then, for each IE, the model parameters have been
extracted from Fig. 2 for cases 1 and 2 as was introduced
before. To evaluate the effect of ground stresses, each case
has been investigated under two different hydrostatic stress
levels, namely, 5 and 10 MPa for case 1 and 5 and 15 MPa
for case 2. Hence, 36 models have been constructed and
analysed. To establish a common base of comparison, the
isotropic planes are considered horizontal in all models. The
tunnel wall peripheral displacements are summarized and
shown in Fig. 4a–d, for IE values of 1, 2, 3, 4, 5 and 6. In this
figure, the peripheral displacements of the tunnel are illustrat-
ed on a polar coordinate system. So that, the radii of each
diagram denote the points on the periphery of the tunnel wall
within 360°, while the concentric circles within each diagram
represent the tunnel wall displacements. The peripheral dis-
placements are measured and plotted on the diagram and
forming a displacement contour. In the case of isotropic con-
dition, the displacements are equal in all points on the tunnel
walls. Therefore, the all-round displacement contour becomes
a circle. However, in the case of anisotropic condition, due to
non-uniform peripheral displacements, the displacement con-
tours diverge from the circular to a bottle-neck shape. In the
later condition, the non-circular displacement contour follows

the degree of anisotropy. Also, in this figure, the numerical
results of each case considering the actual data (Table 4) are
compared with those calculated by using the closed-form so-
lution given by Hefny and Lo (1999). For this purpose, the
total displacements are calculated by the relation

D ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2r þ u2t

p
. As can be seen from Fig. 4a–d, the numerical

results for all four cases fit the analytical results, suitably,
which implies the validity and the applicability of the imple-
mented numerical approach.

Comparison of Fig. 4a with Fig. 4b, and also Fig. 4c with
Fig. 4d, illustrate the effect of varying stress levels. It can be
seen that the magnitudes of displacement contours for case 1
under 10 MPa stress (Fig. 4b) are 2 times the displacement
contours for the case under 5 MPa stress (Fig. 4a). The same
relation can be seen from Fig. 4c and d. So that, the displace-
ment contours expand 3 times by increasing the ground stress
from 5 to 15MPa. This is in compliance with the linear elastic
behaviour of the modelled rockmasses. Furthermore, compar-
ing Fig. 4a and c, which are both under a hydrostatic stress
level of 5MPa, illustrates the effect of varying rock’s mechan-
ical parameters. As it is expected, the displacements for case 2
are less than those for case 1 under the same stress level, due to
its higher rock mechanical parameters (see Table 4).

To suitably evaluate the results, a “normalized displace-
ment ratio, D/Di,” is defined as the ratio of the total displace-
ment in anisotropic condition, D, to the total displacement in
isotropic condition, Di. The normalized displacement ratios
have been calculated for the aforesaid cases as illustrated in
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Fig. 2 Variations of mechanical
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anisotropy index. a Case 1, b case
2

Table 4 Input parameters used
for numerical analysis (data
extracted from Wittke 1990)

Case Rock type Intact rock parameters Rock mass parameters

φ C σt E1 E2 G21 ν1 ν21
(deg) (MPa) (MPa) (MPa) (MPa) (MPa)

1 Clay slate 28 7.5 2 4000 1000 480 0.25 0.06

2 Clay slate 30 10 1 10000 2000 1300 0.25 0.02

φ friction angle,C cohesive strength, σt tensile strength, E1maximummodulus of elasticity parallel with isotropic
plane, E2 minimum modulus of elasticity perpendicular to isotropic plane, G21 shear modulus perpendicular to
isotropic plane, ν1 Poisson’s ratio parallel with isotropic plane, ν21 Poisson’s ratio for effect of stress normal to
isotropic plane on strain in isotropic plane

547    Page 6 of 17 Arab J Geosci (2020) 13: 547



(d)

(c)

Anisotropy 
Index, IE

0

5

10

15

20
D (mm)

180

90

270

Analytical solution

(a)

0

10

20

30

40
D (mm)

90
270

180

(b)

0

5

10

15

20
D (mm)

180

90

270 0

1

2

3

4

5
D/Di

180

90

270

Isotropic plane

(e)

0

5

10

180

90

270

D (mm)

1

2

3

4

5

6

Fig. 4 Tunnel wall displacements under different anisotropy conditions at different stress levels. a, b Case 1, under 5 and 10 MPa hydrostatic stress,
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Fig. 3 aDefinition of orientation angle of isotropic planes, θIP, and location of any arbitrary point on the tunnel periphery, θ. bNumerical model used for
the analysis
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Fig. 4e. It is noteworthy that the contours obtained for each
value of the anisotropy index are the same in all investigated
cases. Hence, the changes of normalized displacement ratios
relative to the anisotropy index are the same in all cases irre-
spective to the rock’s mechanical parameters and the stress
levels. According to Fig. 4e, when IE = 6, the maximum and
the minimum displacements are 5 and 2.2 times the isotropic
conditions, respectively.

Effects of orientation of isotropic planes

To study the effects of orientation of isotropic planes on tunnel
wall displacements, four models have been constructed and
analysed with the isotropic planes at the angles of 0°, 45°, 90°
and 135°. The rock mass parameters are taken from case 1 of
Table 4, where IE = 4. The normalized displacement contours
in each of these orientations are shown in Fig. 5. For a quan-
titative characterization of the contours, the following defini-
tions are given:

– The location of maximum displacement was defined as
the angle between the vertical-up and the long axis of
displacement contour, measured clockwise, and has been
represented by θDmax. Actually, the maximum displace-
ment occurs at two opposite points on the tunnel walls at
θDmax and θDmax ± 180°.

– As well, α was defined as the angle between the location
of maximum displacement and the isotropic plane, i.e. α
= θDmax − θIP.

By the aforesaid definitions, α is always equal to 90°
for the hydrostatic stress condition. In other words, the
maximum and the minimum displacements always occur
in directions perpendicular to and parallel with the iso-
tropic planes, respectively. It is sensible to mention that
the magnitudes of the displacements are equal in all
cases and only the direction of the axis of the displace-
ment contours varies (Fig. 5).
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Variations of the normalized displacements

The range of variations of the normalized displacements were
extracted from the results of aforementioned analyses and are
depicted in Fig. 6. According to this figure, the normalized
displacements are a non-linear function of the anisotropy in-
dex, so that, it can be expressed as follows:

1:023 I0:4155E ≤
D
Di

≤1:0723 I0:888E ð2Þ

It is evident that the upper and the lower bounds of Eq. 2
represent the maximum and the minimum normalized dis-
placements, respectively. However, the upper and the lower
bounds diverge as the anisotropy index increases. This is the
reason for the bottle-neck shape of displacement contours.
Indeed, the increase of normalized displacements relative to
anisotropy index is different in various directions. So that, the
difference leads to a non-uniform growth of displacements
and the aforementioned shape of displacement contours, as
well (Fig. 4).
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Evaluating direction of displacement vector

The tunnel wall displacement is a vector quantity
whose direction, in addition to its magnitude, plays a
vital role under different anisotropic conditions. It is
well understood that in the case of isotropic rock mass
and hydrostatic in situ stress, the displacement vector
at any point on tunnel periphery is perpendicular to the
tunnel wall. However, rock mass anisotropy may de-
viate the direction of displacement vector, significant-
ly. Hence, in this section, the effect of rock mass an-
isotropy on the direction of displacement vector has
been investigated. For this purpose, two parameters
were defined to describe the direction of displacement
vector and its deviations at any arbitrary point on the
tunnel periphery (Fig. 7a):

– Direction of the displacement vector, θu, as the angle
measured from the vertical-up to the displacement vector,
clockwise.

– Deviation angle of the displacement vector, ω, as the an-
gle between the normal to the tunnel wall and the dis-
placement vector. Notice that ω is positive if measured
from the normal clockwise, and negative if otherwise.

These parameters were obtained from the models exe-
cuted and presented before in this paper. Additional
models were built to cover the orientation of the isotropic
planes from 0° to 180°. The results of numerical models
for the two cases, θIP = 90° and θIP = 60°, are illustrated
in Fig. 7b, d, respectively. The anisotropy indices in both
cases are the same and equal to 6. It can be seen from the

IE
Stress Ratio (K)

0.33 0.67 1 (hydrostatic Stress Field) 1.5 3

1 
)ciportosI(

2

4

6

Orientation of isotropic plane (θIP, deg)    0 45 90 135

Fig. 8 Normalized displacement, D/Di, contours in different combinations of stress ratios, K, and anisotropy index, IE, for various isotropic planes
aligned at angles 0°, 45°, 90° and 135°
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figures that the displacement vector is a function of ori-
entation of the isotropic planes. For the aforementioned
cases, variations of the direction of displacement vectors,
θu, versus the anisotropy index, IE, for θ = 0° to θ = 90°
with an interval of 15°, are illustrated in Fig. 7c, e. It can
be seen that the displacement vector of the points which
are located at an angle of │θ − θIP│ = 0° or 90° show no
deviation, i.e. θu is constant and independent of IE.
However, the displacement vectors for the other values
of │θ − θIP│ are deviated towards the direction perpen-
dicular to the isotropic plane.

The results obtained from the abovementioned models
were further analysed to calculate the deviation of the dis-
placement vector, ω, at any arbitrary point on the tunnel pe-
riphery. This led to the following relations:

For 0° ≤ θ ≤ 180°:

ω ¼ B γ I
− 501:3−0:26γ−0:06γ2ð Þ=1000
E −1

� �
ð3Þ

in which

B ¼ þ1
−1

�
θ≤θIP
θ > θIP

ð4Þ

and

γ ¼ θ−θIP þ 90°
θIP−θþ 90°

�
θ≤θIP
θ > θIP

ð5Þ

For 180° < θ ≤ 360°:
For any point which is located within the range of θ =

180°–360°, ω can be obtained by applying an opposite sign

to the value that is calculated for the angle of θ − 180° using
Eq. 3.

Subsequently, the direction of the displacement vector, θu,
can be computed by using the following relationship:

θu ¼ θþ ωþ 180∘ 0∘ < θ≤180∘
θþ ω−180∘ 180∘ < θ≤360∘ ð6Þ

Analysis under non-hydrostatic in situ stress field

Generally, the ground stress states at low depths or under the
effect of tectonic activities are non-hydrostatic. The difference
in the components of ground stresses affects the deformation
behaviour of underground spaces. The higher the difference in
ground stresses components, the more the non-uniformity of
the tunnel wall displacements. Combination of rock mass an-
isotropy and non-hydrostatic stress state increases the com-
plexity of the underground structure’s behaviour. Therefore,
these effects are investigated in this paper and presented
hereafter.

Effects of anisotropy index

To study the effect of anisotropy index, 125 different numer-
ical models have been constructed and analysed with anisot-
ropy indices ranging from 1 to 7. In these models, the isotropic
planes have been considered with different orientation angles:
0°, 45°, 90° and 135°. The stress ratios of 0.33, 0.67, 1, 1.5
and 3 have been applied in models. In all cases, 15 MPa was
used as the maximum stress, whereas the minimum stress was
calculated based on the stress ratio, K. The results are summa-
rized in terms of normalized displacement,D/Di, and shown in
Fig. 8 for the cases of IE = 1, 2, 4 and 6.

Figure 8 illustrates the simultaneous effects of the three
parameters: K, IE, and θIP on the normalized displacements.
Hence, the effect of each of these parameters can be described
as follows:

– In the case of hydrostatic stress field, the shapes of
the normalized displacement contours are the same
for isotropic planes oriented at any angles. In this
case, as the anisotropy index increases, the displace-
ment contours, due to the displacements’ increase,
becomes larger.

– At any given stress ratio and degree of anisotropy, the
changes in orientation of the isotropic planes cause
significant changes in size and direction of the dis-
placement contours. This change of orientation greatly
affects the maximum and the minimum displacements.
For example, for K = 0.67 and IE = 6, the maximum
normalized displacements are 3.3, 4.3 and 5.0 for the
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Fig. 9 The normalized displacement, D/Di, contours and the location of
maximum displacement, θDmax, for the orientation of isotropic plane θIP =
45°, IE = 5, K = 0.33 to K = 1 and α = θDmax − θIP
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isotropic planes oriented at angels of 0°, 45° and 90°,
respectively.

– At any given stress ratio and orientation of isotropic
planes, an increase in anisotropy index will increase the
size of the displacement contour. In this case, the direc-
tion of the contour does not change significantly. For
example, when K = 1.5 and θIP = 0°, the increase of
anisotropy index from 2 to 6 increases the maximum
and the minimum normalized displacements from 2.25
and 0.76 to 5.03 and 1.36, respectively.

– At any given anisotropy index and orientation of isotropic
planes, the change of stress ratio affects both the size and
the alignment of the displacement contours, significantly.
For example, when IE = 5 and θIP = 45°, the increase of
stress ratio from 0.33 to 1 changes the value and the
location of the maximum normalized displacements from

3.71 to 4.45 for θDmax = 168° to θDmax = 135°, respective-
ly (Fig. 9). It must be born in mind that, in all cases, α =
θDmax − θIP.

Furthermore, in the case of non-hydrostatic stress field, the
difference between the maximum and the minimum displace-
ments is higher than that of the case of hydrostatic stress field.
On the other hand, irrespective to the stress ratio, the normal-
ized displacement increases with the increase of the anisotro-
py index. Therefore, in all, the following concluding remarks
can be drawn:

– An increase in anisotropy index will increase the amount
of normalized displacements, irrespective to the stress
ratio, K.
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Fig. 10 Graphical determination of the maximum displacement location on tunnel wall under three different anisotropy conditions
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– An increase/decrease of the stress ratio compared to the
hydrostatic stress conditions leads to a larger difference
between the maximum and the minimum displacements
on tunnel walls.

Effects of orientation of isotropic planes

The effects of orientation of isotropic planes on tunnel wall
displacements under non-hydrostatic stress conditions are also
illustrated in Fig. 8. As it can be seen, the variations of the
stress ratios have significant effects on the alignment of defor-
mation contours. In this case, an increase/decrease of the K
value compared to the hydrostatic stress condition increases
the deviation of the displacement contours relative to the hy-
drostatic stress condition. Therefore, these effects are investi-
gated by 90 further numerical models. The numerical models
have been built and analysed with different combinations of
stress ratios and anisotropy indices for isotropic planes orient-
ed at θIP = 45°, 60° and 75°. Based on the results of these
analyses, α can be stated as follows:

α ¼
180°−θIPð Þ � I0:64 K sinθIP−1ð Þ

E K < 1
90° K ¼ 1

90°−θIPð Þ � I−0:43 K*cos θIPð Þþ0:86
E K > 1

8<
: ð7Þ

Then, the location of maximum displacement, θDmax, can
be determined by:

θDmax ¼ αþ θIP ð8Þ

It must be reminded that the maximum displacement oc-
curs on two opposite points on the tunnel wall at θDmax and
θDmax ± 180°.

The tunnel-induced displacements in three cases of anisot-
ropy indices under a non-hydrostatic stress field are illustrated
in Fig. 10a–c. In these cases, the orientations of isotropic
planes, θIP = 75°. However, the anisotropy index is different
for each case, so that, IE = 3, 4 and 5. Then, a graphical
representation is given to determining the location of maxi-
mum displacement that occurs on the tunnel walls at an angle
of θDmax as shown in the Fig. 10d diagram. In this diagram, the
radial axis represents the anisotropy index, IE, while the angu-
lar axis represents the location of maximum displacement on
the tunnel wall, θDmax. As it can be seen, the maximum dis-
placements for these cases occur at θDmax = 125°, 143° and
150° whose corresponding α = θDmax − θIP are 50°, 68° and
75°. In other words, the location of maximum displacement
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deviated 40°, 22° and 15° for the cases in Fig. 10a–c with
regard to the hydrostatic stress condition, respectively.

Furthermore, three diagrams are given in Fig. 11 to
demonstrate the determination of the maximum displace-
ment location for the orientations of isotropic planes at θIP
= 45°, 60° and 75°. The figure illustrates that, when the
stress ratio, K = 1, the location of maximum displacement
is always perpendicular to the isotropic plane, as was stat-
ed in the previous sections and in Eq. 7. However, for K ≠
1, the location of the maximum displacement tends to-
wards the direction of the maximum stress. So that, for
K < 1, the location of maximum displacement tends to
move towards the vertical direction, and, for K > 1, the
location of the maximum displacement tends to move

towards the horizontal direction. However, as the anisot-
ropy index increases, these effects will diminish. So that,
by increasing the anisotropy index, the tendency of the
location of maximum displacement towards the maximum
stress becomes less significant. Also, it can be inferred
that these effects become more significant as the orienta-
tion of isotropic planes tends to an angle of 90° with the
direction of maximum stress. For example, compare the
curve of K = 0.33 in Fig. 11a–c, where the angle between
the isotropic planes and maximum in situ stress (which is
vertical due to K < 1) are 45°, 60° and 75°, respectively.
This comparison illustrates that the abovementioned ten-
dency of the location of maximum displacement towards
the direction of maximum stress becomes more significant
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Fig. 12 Geographical location and general layout of Kaniguizhan dam and its structures, Kurdistan, Iran
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when the isotropic planes are aligned at a right angle
relative the maximum stress.

Practical applications

To illustrate the practical application of the obtained formula-
tions, an actual case study is presented in this section. The
field data are taken from Kaniguizhan dam site under study
to be constructed in northwest of Iran. The earth dam with a
height of 122 m from the foundation will have a reservoir
capacity of 133 million cubic meters. The general layout of
the dam and its components is represented in Fig. 12. A wide
area of the dam site is composed of Cretaceous metamorphic
phyllites, which is the oldest rock unit in the dam site area. The
body and reservoir of the dam, along with its related struc-
tures, are located on this rock unit. The metamorphosis pro-
cesses on these phyllites resulted in forming the foliations.

The diversion tunnel of Kaniguizhan dam with a length of
485 m is located in the left abutment, where the foliations of
the phyllite are oriented at a dip/dip direction of 37°/N39°W.
Thus, with regard to the azimuth of the tunnel route (51° ±
180°), its longitudinal axis is almost parallel with the folia-
tions, which are in fact the isotropic planes of the understudy
rock. Therefore, the angle of orientation of isotropic planes,
θIP, in a cross section perpendicular to the tunnel axis is 53°.
The maximum thickness of overburden on the tunnel is about
130m. The results of laboratory uniaxial compressive strength
and Young’s modulus of the transversely isotropic phyllite on
oriented rock samples are shown in Fig. 13. According to Fig.
13a and Table 2, this rock is categorized as ‘moderately an-
isotropic’. Also, the curve fitted to laboratory data of Young’s
modulus (Fig. 13b) demonstrates that the anisotropy index, IE,
is equal to 3 for the understudy rock.

By means of the developed equations, a primary esti-
mation of the state of deformations on the periphery of
the tunnel has been made. To take the uncertainties into
account, a sensitivity analysis has been conducted on
stress ratio, K. Based on Eq. 2, in the case of hydrostatic
stress field, the normalized displacement ratio, D/Di, is
in the range of 1.61 to 2.84. This means that the dis-
placements that occur in the direction perpendicular to
the foliations (θ = 143° ± 180°) could be 1.76 times the
displacements in the direction parallel with them (θ =
53° ± 180°). Also, by implementing Eqs. 5–7, the devi-
ation of the displacement vectors, ω, have been calculat-
ed. The highest deviation can be seen in the displace-
ment vectors of the points which are located at angles
of θ = 17° ± 180° and θ = 88° ± 180° on the tunnel wall.
At these points, the displacement vector deviates 16°
relative to the normal to the tunnel wall. Furthermore,
the locations of maximum displacements for a range of
K values from 0.5 to 1.5 were estimated by using Eqs. 7
and 8 and are shown in Fig. 14. As it can be seen, in the
considered range of stress ratio, the maximum displace-
ments may occur at angles 115°–170° (± 180°). This in-
formation can be used to provide a design guide for rock
tunnel lining and monitoring design.

Conclusion

In this paper, the anisotropic effects of rock mass on elastic
behaviour of a circular tunnel have been investigated.
Displacement analysis have been performed by numerical
modelling of a circular tunnel under both hydrostatic and
non-hydrostatic in situ stress states for different stress levels.
The influences of most contributory parameters of a trans-
versely isotropic rock medium such as anisotropy index and
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the orientation of isotropic planes have been considered. In all,
about 300 numerical models have been performed for the
analysis. The displacements of the tunnel walls have been
computed, and their contours in different conditions have been
constructed in polar coordinates. The following concluding
remarks have been drawn:

– Generally, the tunnel wall displacements in anisotropic
media are more than the isotropic ones.

– The peripheral displacements of tunnel wall in isotropic
rock mass under hydrostatic stress field are uniform, i.e.
the displacement contour is circular. However, due to the
change of anisotropy index and or stress ratio, the dis-
placement contour diverges from a circular form to a
bottle-neck shape.

– Though the displacement is a function of mechanical
properties and stress levels, the changes of the normalized
displacement ratios at any anisotropy index are the same
in all cases.

– An empirical equation has been presented to estimate the
normalized displacement ratio in hydrostatic stress state.

– In hydrostatic stress field, the direction of displace-
ment vector will deviate towards the direction perpen-
dicular to the isotropic plane. However, for the points
which are located at an angle of 0° or 90° relative to
the isotropic plane, the displacement vector will al-
ways be perpendicular to the tunnel wall. Also, an
empirical equation has been presented to calculate
the deviation and the direction of displacement vector
based on the degree of anisotropy and the orientation
of isotropic plane.

– In non-hydrostatic stress conditions, any change in the
orientation of the isotropic planes causes a significant
change in the size and direction of displacement contours.
However, an increase of the anisotropy index only in-
creases the size of the displacement contour.
Furthermore, variations of the stress ratio affect both the
size and the alignment of the displacement contours,
significantly.

– An increase/decrease of the stress ratio with respect to the
hydrostatic stress conditions leads to a larger difference
between the maximum and the minimum displacements
on tunnel walls. The increase of the anisotropy index has
a similar impact on the displacement difference.

– Under hydrostatic stress state, the maximum and the min-
imum displacements always occur perpendicular to, and
parallel with, the isotropic plane, respectively. However,
the location of maximum displacement under non-
hydrostatic stress field tends towards the maximum stress
direction. This tendency becomes more significant as the
orientation of isotropic planes tends towards at an angle
of 90° with the direction of the maximum stress.

– An empirical equation has been presented to determine
the location of maximum displacement on the tunnel
walls as a function of the stress ratio, the anisotropy index
and the orientation of isotropic planes.
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