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Abstract
Based on the measured in situ stress data in China’s coal mines, the relationship among the type of stress field, magnitude of
stress, stress value, and the depth of burial was analyzed. The trends in the changes in side pressure coefficient and side pressure
ratio were regressed and fitted with the increase in depth. This was compared to the Hoek-Brown curve, and the distribution
characteristics and variation laws of underground stress field in China’s coal mines were determined. (1) Generally, in situ stress
increases with burial depth, but the geological structure and lithology render horizontal stress considerable. (2) In 87.72% of
stress fields, which are considered typical tectonic stress fields, the horizontal stress comes into prominence. (3) About 64%
working environment is the middle- and high-stress zones, and low- and ultrahigh-stress zones account for about 18% each. (4)
The ratio of horizontal principal stress was distributed within a range of 1.0~2.5, and it was affected very little by burial depth.
However, the difference increased continuously with burial depth, causing an obviously growing shear failure of coal and rock.
(5) The side pressure coefficient is mostly distributed in 0.9~2.0, and it decreases with burial depth and is gradually close to 1.32.
(6) Most side pressure ratio is in 0.5~1.6. When the burial depth is less than 700~750 m, the horizontal principal stress is lower
than one in the world. Conversely, the magnitude of horizontal principal stress was more pronounced in deeper areas, but it
always plays a leading role in the in situ stress field. (7) The seismic belt has a great influence on coalfield stress fields. Without
affecting the stress field, the direction of maximum principal stress is approximately parallel or perpendicular to the trajectories of
principal stress in China Continental Plate. However, under the composite effect of geological structure, the direction changed
visibly. There is no apparent relationship between the two and no law to follow. The statistics of in situ stress are important
reference values for understanding stress distribution in China’s coal mines, and it also has a practical guiding significance for
safely and efficiently mining underground.

Keywords Coal mines . The original rock stress measurement . Stress field . Distribution characteristics and laws . Regression
analysis . Seismic belt

Introduction

In situ stress is a natural stress that occurs in rock formations
and is not affected by engineering projects. It is also known as
the initial stress of rock or original rock stress. Because it is an
internal stress, it is formed in the rock’s long geological evo-
lution and a multiple stacking result of gravity field and tec-
tonic stress fields. Consequently, the rock’s stress state is very
complex and changeable.

The stress field is mainly composed of gravity fields and
tectonic stress fields. The gravity field is caused by the weight
of overlying strata and it is relatively simple. Its magnitude
can be estimated by the weight of overlying strata in the unit
area and burial depth. The tectonic stress fields are not only
related to burial depth but also closely associated with
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geological structure and its movement. The horizontal move-
ment of geological structure has an especially great influence
on the formation and distribution of stress fields (Cai et al.
2002; Li et al. 2008; Wang et al. 2010a, b, c; Zhao et al.
2007). The factors affecting tectonic stress fields are very
complex, and they include the type, scale, time, space evolu-
tion, activity status, and number of times of tectonic move-
ment (Han and Cai 2007; Jiang et al. 2011a, b; Kang et al.
2012; Miao et al. 2012; Samuel et al. 2015). So the distribu-
tion of tectonic stress field is very uneven in space. It changes
constantly over time. Time and space both have a certain
effect on the nonstable stress field (Leont’ev et al. 2013;
Tian et al. 2015; Zhao et al. 2007). It is currently very difficult
to describe the functions of the distribution characteristics and
variation laws of tectonic stress fields. A relatively reliable
and feasible method is site measurement. Based on the mea-
sured data, statistics and analysis can be performed to search
for stress distribution laws suitable for guiding engineering in
practice (Huang et al. 2014; Kang et al. b; Liu et al. 2014a, b,
2016; Li et al. 2014a, b; Suman and Rima 2011a, b; Talebi
et al. 2015; Wang et al. 2012, Wang et al. 2014; Zhao 2014;
Zhao et al. 2012, 2013).

In situ stress is a fundamental power causing the deforma-
tion of surrounding rock and failure of underground engineer-
ing projects, such as coal mines. It is also an important base
parameter for mine design, the layout and optimization of
roadways, and the dynamic design of roadway support
(Huang 2012; Li et al. 2013a, b; Ptacek et al. 2015; Pu et al.
2005; Wang 2012; Yin 2012; Yang 2012; Zhang and Han
2006; Zhang et al. 2008).

It is also one of the main causes for rock bursts (Song et al.
2012; Tang et al. 2002; Zhou et al. 2004) and the outburst of
coal, rock, gas, and water (Cai et al. 2009; Dariusz 2009; Han
et al. 2012; Mortimer et al. 2011; Miao et al. 2016; Qin et al.
2014; Yang et al. 2014; Yang et al. 2012; Yin et al. 2015;
Zhang and Ma 2002). As a consequence, understanding the
distribution characteristics and laws of in situ stress is highly
relevant to the safety and efficient operation of coal mines.

China’s coalfields vary significantly. Because of the influ-
ence faults, folds, collapse columns, even seismic belts, and
the tremendous difference of mining conditions in each min-
ing areas, the stress distribution of coal-bearing strata is very
complex (Kuznetsov and Trofimov 2003; Kang et al. b; Liu
2011a, b; Suchowerska et al. 2014). Take the burial depth of
coal seam for instance. The mining depth of some western
mines is only tens of meters, but it has reached 1600 m in
East China, leading to a dramatic discrepancy in stress size
and distribution and an essential difference in the deformation
and failure pattern of the surrounding rock.

In recent years, the scale of underground coal mines in
China has been expanding and coal has been mined at greater
depths. Naturally, the influence of in situ stress on mine safety
has become increasingly prominent (Cai et al. 2012; Liu et al.

2014a, b). In this way, the measurement and study of the
distribution of in situ stress in coal mines are vital to mine
construction and safe operation.

Measurement of in situ stress in China

China has focused on the measurement of in situ stress later
than other countries. It was in the late 1950s that the Institute
of Geological Mechanics led by S.G. Li and Three Gorges
Bedrock Research Group led by Z.J. Chen began to explore
the related fields. In 1964, the first stress relief measurement,
whose measurement depth was 80 m, was implemented by
Wuhan Institute of Rock and Soil Mechanics at the Chinese
Academy of Sciences at the Daye iron mine in Hubei
Province. In March 1966, a piezomagnetism stress meter
was successfully developed for the detection of absolute stress
at the Institute of Geology of the Chinese Academy of
Geological Sciences, and stress observation stations were set
up in succession in Longyao, Hebei Province, in total 21
provinces, municipalities, and autonomous regions. In the
1970s, the measurement of in situ stress was mainly used by
the department of water conservancy and hydropower. In the
early 1980s, the hydraulic fracturing method was introduced
from the USA by the Institute of Crustal Stress. Later, a stress
measurement device of a hollow inclusion strain gauge was
brought in again, and an in-depth research was done. Finally,
various hollow inclusion strain gauges, which were complete-
ly designed and manufactured by China, were developed, and
they were fully applied to site measurement. In the 1990s, the
technology for the measurement of in situ stress continued to
mature, and it became widely applied in geotechnical and
underground engineering. In the early years of the twenty-
first century, the measurement of in situ stress in coal mines
underwent rapid development, and a good deal of site mea-
surement has been carried out (Li 2014; Liu 2014; Qiao 2014;
Wang 2014).

There are currently several methods of measuring in situ
stress. Because of the geological structures and the destruction
conditions of underground rock strata, different methods have
their own limitations (Liu 2014; Qiao 2014). At present, the
stress relief method, hydraulic fracturingmethod, and acoustic
emission method are widely used to measure in situ stress in
coal mines in China. And the characteristics of these methods
are shown in Table 1.

Analysis of in situ stress in China’s coal mines

Based on the existing measurement of in situ stress in China’s
coal mines, 578 sets of data were collected in this paper in total
(Bai 2010; Bai et al. 2005; Cai 2007; Chang 2010; Cai et al.
2004, 2006, 2008, 2009; Chen et al. 2011; Cui et al. 2011;
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Diao 2002; Dai et al. 2003; Fan et al. 2007; Gong et al. 2008;
Gou and Zhang 2002; Huang 2012; Han and Cai 2007; Hu
et al. 2012; Han and Zhang 2009; Han et al. 2008; Jiang et al.
2011a, b; Jin and Xian 1994; Jiang et al. 2011a, b; Kang et al.
2009a; Kou and Lv 2012; Kong et al. 2003, 2005, 2007,
2009b, c, 2010a, 2012; Liu 2011a, b; Luo 2009; Liu 2009;
Li and Ding 1992; Li et al. 2002; Li and Li 2006, 2011; Li and
Lin 2005; Liu and Liu 2012; Liu and Li 2006; Liu et al. 2009;
Li et al. 2013a, b; Liu et al. 2011a; Liu et al. 2011a, b; Li et al.
1998; Li et al. 2008; Liang et al. 2010; Li et al. 2004; Meng
et al. 2011; Meng and Wang 2011; Ma et al. 2011; Ma et al.
2010; Nan et al. 1998; Ni et al. 2008; Peng et al. 2011; Pan
et al. 2010; Pang et al. 1991; Pu et al. 2005; Qi and Tang 2011;
Qu and Han 2011; Qi et al. 2010; Ren 2005; Sun 2012; Sui
et al. 2009; Song et al. 2012; Tan 2013; Tang et al. 2002; Tian
andWei 1990;Wang 2011;Wang et al. 2013;Wei et al. 2007;
Wang and Lei 2012; Wang and Liu 2010; Wang et al. 2010a,
b; Wu et al. 2008; Wang and Su 2009; Wu et al. 2004; Wang
et al. 2010c; Wang et al. 2011; Wu et al. 2006; Xu 2010a, b;
Xie 2012; Yin 2012; Yang and Fu 1999; Yu et al. 2010; Yan
et al. 2013; Zhang 2012a, b, c; Zheng 2010; Zhu 2007; Zhang
2010; Zhang et al. 2004; Zhou et al. 2004; Zhang and Han
2006; Zhang et al. 2008; Zhang et al. 2010; Zhang and Lin
1997; Zhou et al. 2005; Zhao et al. 2008; Zheng and Wang
2011; Zhao et al. 2011; Zheng et al. 2008), in which, the
hydraulic fracturing method and stress relief method are more
widely used, accounting for 53.11% and 40.14% of the statis-
tical data respectively, as shown in Table 2. The specific dis-
tribution is shown in Fig. 1.

According to the measurement distribution of in situ stress,
it is necessary to explain something: in the early 2000s, the
measurement research on in situ stress in China’s coal mines
underwent rapid development, and stress was measured at
many mines. Because of factors such as the national exploita-
tion orientation of coal resources, coal occurrence, and coal
reserves, the measurement conditions of in situ stress differ
considerably in different areas.

(1) In 2000~2010 years, coal mining has mainly been con-
centrated in China’s central eastern area. So, a large num-
ber of measured data are basically from these coalfields

including Shandong, Shanxi, Henan, Anhui, and
Xuzhou, accounting for 78.72%. Although the northwest
is rich in coal reserves, the measured in situ stress data is
less (12.98%). With the shift of mining focus, the in situ
stress measurement will be the key basic work in this
area.

(2) In northeastern China, coal mining began in the early
twentieth century. By the end of that century, coal re-
sources were on the verge of exhaustion, so relatively
little measurement (2.27%) had been carried out.

(3) Owing its few coalfields and generally low production,
in situ stress (2.25%) seldom has been measured in the
southwest.

(4) There are no coalfields in southern China, so, naturally,
nothing is related to in situ stress has been done.

(5) 1.1 Type characteristics of in situ stress field

Due to the influence of burial depth and geological struc-
ture, there are considerable differences in the in situ stress
fields of different coalfields and mining areas. These principal
stresses can be divided into the following categories by type of
principal stress: (1) the horizontal principal stress is dominant,
namely σH > σv > σh or σH > σh > σv; (2) the vertical principal
stress is preferential, namely σv > σH > σh. The type statistics
of stress field are shown in Table 3. A total of 87.72% stress
fields are dominated by horizontal principal stress. Those
stress fields, in which tectonic stress plays a dominant role,
are considered typical tectonic stress fields. A small number of
vertical stress fields are intensively distributed in these coal-
fields, such as Xinwen, Qinshui, Hedong, Huoxi, Ningwu,
Huainan, Pingdingshan, and Tuha. The research shows that
the influence of tectonic stress field on mining is often greater
than that of vertical stress field.

Magnitude characteristics of in situ stress

On the basis of the criteria proposed by Prof. Yu, the stress of
0~10 MPa was considered low, 10~18 MPa middle,
18~30 MPa high, and stress over 30 MPa ultrahigh (Yu
et al. 1993). In 578 measurement points, the magnitude statis-
tics of in situ stress is given in Table 4. About 64% of China’s

Table 1 Summary of the popular measurement methods for in situ rock stress

Measurement method Advantage Disadvantage Application scope

The stress relief method High accuracy Limited measurement points and potential
technical difficulty

The existing roadway
and chamber

The hydraulic fracturing method Simple equipment, convenient operation,
great representativeness, strong
adaptability, and big depth

Low accuracy, high cost, and bad direction
of principal stress

Larger scope

The acoustic emission method Low labor intensity, high integrity of study
area, and repeatable measurement

Limited application scope and low accuracy High strength brittle rock
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coal mining operations are in middle- and high-stress zones,
and the low- and ultrahigh-stress zones account for about 18%
each. Low-stress zones are mainly in Qinshui, Huoxi,
Ningwu, Huaibei (part), Jiaozuo, Shenfudongsheng,
Zhunge’er, Ningdong, Tuha, and Zhina, in which coal seams
are shallow-buried. The ultrahigh-stress zones are mainly dis-
tributed in deep coalfields including Juye, Hebi, Xinwen,

Yong Xia, Xuzhou, and Kailuan. Practice has shown that
there are no coal mines with a tendency of rock burst, coal
and gas outburst in low-stress areas, and they may be trans-
formed into the mines with frequent coal and gas outburst
disasters after entering high- or ultrahigh-stress areas; under
the complex high-stress conditions, the support and mainte-
nance of roadway surrounding rock is difficult. According to

Xinjiang

Ningxia

Inner Mongoria

Heilongjiang

Jilin

Liaoning

Shandong

Hebei
Shanxi

Shanxi Henan

Anhui

Jiangsu

Gansu

Guizhou
Hunan

Chongqing

Hegang coalfield(2)

(1)

(13)

(1)

(4)Zhina coalfield(5)

Shenfudongsheng coalfield(9)

Ningdong coalfield(10)

Huating coalfield(25)

Zhunge'er coalfield(4)

Datong coalfield(9)

Jingxi coalfield(4)

Kailuan coalfield(20)

Longkou coalfield(5)

Huainan coalfield(69)

Coalfield:Xuzhou(36), Huaibei(18), Yongxia(5),
                Pingdingshan(30), Hebi(2), Jiaozuo(1)

Coalfield:Xinwen(13), Jining(1)

Coalfield:Juye(67), Yanzhou(20)

Hanxing coalfield(7)

Ningwu coalfield(7)

Coalfield:Huoxi(46), Hedong(8)

Qinshui coalfield(118)

Tuha coalfield(18)
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Hong Kong
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Fig. 1 Statistics and distribution of in situ stress in China’s coal mines

Table 2 Statistics of in situ stress in China’s coal mines

Province Shandong
(18.34%)

Shanxi
(32.53%)

Coalfield Juye Yanzhou Xinwen Longkou Jining Qinshui Huoxi Datong Hedong Ningwu

Quantity 67 20 13 5 1 118 46 9 8 7

Province Anhui
(15.05%)

Henan
(6.57%)

Jiangsu
(6.23%)

Hebei
(5.36%)

Coalfield Huainan Huaibei Pingdingshan Yongxia Hebi Jiaozuo Xuzhou Kailuan Hanxing Jingxi

quantity 69 18 30 5 2 1 36 20 7 4

Province Shanxi, Inner Mongolia
(2.25%)

Gansu
(4.33%)

Ningxia
(1.73%)

Xinjiang
(3.11%)

Guizhou
(0.87%)

Helongjiang
(0.35%)

Liaoning
(2.25%)

Chongqing
(0.69%)

Jilin, Hunan
(0.35%)

Coalfield Shenfudongsheng Zhunge’er Huating Ningdong Tuha Zhina Hegang

quantity 9 4 25 10 18 5 2 13 4 1, 1
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incomplete statistics, the actual repair proportion of
deep roadway is as high as 90% or more. While rock
burst and coal and gas outburst work together, multiple
factors are intertwined. In the process of gestation,

occurrence, and development, they may be inducements
to each other, strengthen each other, or produce reso-
nance effect, which makes disaster prediction and pre-
vention more complicated and difficult.

Table 4 Magnitude statistics of in situ stress

Province Shandong Shanxi

Coalfield Juye Yanzhou Xinwen Longkou Jining Qinshui Huoxi Datong Hedong Ningwu

Quantity 67 20 13 5 1 118 46 9 8 7

≤ 10 3(15) 43 (36.44) 19 (41.3) 7 (100)

10~18 8 (40) 5 (100) 69 (58.47) 21(45.65) 8 (88.89) 2 (25)

18~30 12 (17.91) 9 (45) 4 (30.77) 1 (100) 6 (5.08) 6 (13.04) 1 (11.11) 6 (75)

≥ 30 55 (82.09) 9 (69.23)

Province Anhui Henan Jiangsu Hebei

Coalfield Huainan Huaibei Pingdingshan Yongxia Hebi Jiaozuo Xuzhou Kailuan Hanxing Jingxi

Quantity 69 18 30 5 2 1 36 20 7 4

≤ 10 4 (22.22) 1 (100) 1 (2.78) 1 (14.29)

10~18 19 (27.54) 5 (27.78) 10 (33.33) 5 (13.89) 2 (10) 3 (42.86)

18~30 48 (69.57) 9 (50) 17 (56.67) 2 (40) 1 (50) 17 (47.22) 8 (40) 2 (28.57) 4 (100)

≥ 30 2 (2.9) 3 (10) 3 (60) 1 (50) 13 (36.11) 10 (50) 1 (14.29)

Province Shanxi, Inner Mongolia Gansu Ningxia Xinjiang Guizhou Helongjiang Liaoning Chongqing Jilin, Hunan

Coalfield Shenfudongsheng Zhunge’er Huating Ningdong Tuha Zhina Hegang

Quantity 9 4 25 10 18 5 2 13 4 1, 1

≤ 10 9 (100) 4 (100) 7 (70) 7 (38.89) 3 (60)

10~18 8 (32) 1 (10) 11 (61.11) 2 (40) 2 (15.38) 1 (25)

18~30 17 (68) 2 (100) 8 (61.54) 3 (75) 1 (100), 1 (100)

≥ 30 2 (20) 3 (23.08)

Table 3 Type statistics of in situ stress field

Province Shandong Shanxi

Coalfield Juye Yanzhou Xinwen Longkou Jining Qinshui Huoxi Datong Hedong Ningwu

Quantity 67 20 13 5 1 118 46 9 8 7

H > v 67 (100) 19 (95) 9 (69.23) 5 (100) 1 (100) 99 (83.9) 35 (76.09) 9 (100) 7 (87.5) 3 (42.86)

v > H 1 (5) 4 (30.77) 19 (16.1) 11 (23.91) 1 (12.5) 4 (57.14)

Province Anhui Henan Jiangsu Hebei

Coalfield Huainan Huaibei Pingdingshan Yongxia Hebi Jiaozuo Xuzhou Kailuan Hanxing Jingxi

Quantity 69 18 30 5 2 1 36 20 7 4

H > v 55 (79.71) 18 (100) 20 (66.67) 5 (100) 2 (100) 1 (100) 35 (97.22) 20 (100) 7 (100) 4 (100)

v > H 14 (20.29) 10 (33.33) 1 (2.78)

Province Shanxi, Inner Mongolia Gansu Ningxia Xinjiang Guizhou Helongjiang Liaoning Chongqing Jilin, Hunan

Coalfield Shenfudongsheng Zhunge’er Huating Ningdong Tuha Zhina Hegang

Quantity 9 4 25 10 18 5 2 13 4 1, 1

H > v 9 (100) 4 (100) 23 (92) 10 (100) 15 (83.33) 5 (100) 2 (100) 13 (100) 4 (100) 1 (100), 1 (100)

v > H 2 (8) 3 (16.67)

In A (B), A is the quantity of measurement points under certain condition, and B is the percentage of A accounting for the total statistics; the below text
applies equally
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Relationship between principal stress and burial
depth

As shown in Fig. 2, the principal stresses gradually increase
with the burial depth of measurement points. However, due to
the influence of geological structure (faults, joints, folds, and
collapse columns) and lithology, the horizontal principal
stresses showed considerable discreteness and their distribu-
tion laws were not obvious.

Relationship between horizontal principal stress and burial
depth

With the change in burial depth, the ratio of the maximum
horizontal principal stress and the minimum horizontal prin-
cipal stress (k ¼ σH

σh
) is shown in Fig. 3.

With the depth of measurement points changing, the trend
expression of the ratio of the horizontal principal stress is

k ¼ −0:0002H þ 2:1412 ð1Þ

From formula (1), the ratio of the horizontal principal stress
is concentrated in 1.0~2.5, and the influence of burial depth is
very little. The ratio decreases with burial depth, but the de-
creasing speed is very slow. Under the condition of current
mining depth, the ratio is approximately 2.

Based on the theory of rock mechanics, another kind of
stress is formed by the difference generated by the horizontal
principal stress. It is exactly the stress that causes the coal and
rock to be destroyed. Generally, it is defined as shear failure.
The maximum shear stress is half the difference generated by
the maximum and the minimum principal stress.

τ ¼ 1

2
σH−σhð Þ ð2Þ

The larger the ratio of horizontal principal stress, the great-
er the difference between the two. Accordingly, the shear
stress was also larger and its directivity more conspicuous,
which would result in more severe damage to coal and rock.
On the basis of formula (2), the relationship between the max-
imum shear stress and burial depth was obtained, as shown in
Fig. 4.

As the burial depth increased, the trends in the expression
of the maximum shear stress were fitted as follows:

0:0008H þ 0:4104≤τ ≤0:0101H þ 2:1597 ð3Þ

In formula (3), the maximum shear stress increases with
burial depth. In the shallow-buried areas, the shear stress is
inconspicuous, contributing to coal and rock destroying little.
The destruction effect will gradually become visible as burial
depth increases.

0 5 10 15 20 25
0
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400
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800

1000

1200

1400

k

H
 / 

m

k

k=-0.0002H+2.1412

k fitting

Fig. 3 Relationship between the ratio of horizontal principal stress and
burial depth
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Fig. 2 Statistics of the measured in situ stress
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Fig. 4 Relationship between the maximum shear stress and burial depth
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Relationship between vertical principal stress and burial
depth

he practice indicates that the vertical principal stress is basically
equal to or slightly less than the weight of overlying strata in the
unit area. Referring to the measurement results of in situ stress in
different parts of the world, E.T. Brown and E. Hoek summa-
rized the law between vertical principal stress and burial depth
and it is expressed as follows (Brown and Hoek 1978):

σv ¼ 0:027H ð4Þ

The statistics of vertical principal stress in China’s coal
mines are shown in Fig. 5.

The relationship between vertical principal stress and burial
depth is described as follows:

σv ¼ 0:0247H ð5Þ

Formula (4) was compared to formula (5). Their
growth trends were identical, but formula (5) increased
less than formula (4) did (Hoek-Brown curve), which
makes it clear that the vertical stress in China’s mining
areas is lower than one in the world.

From here, it can be seen that in situ stress increases with
burial depth in China’s mining areas. The greater the burial
depth, the greater the magnitude of the stress and the more
significant the directivity of principal stress, which brings
about more serious shear damage to ore body and rock. So,
as burial depth increased, the difficulty of underground min-
ing operation also increased.

Relationship between side pressure coefficient and
burial depth

The side pressure coefficient is the ratio of the maximum
horizontal principal stress and the vertical principal stress, i.e.,

λ ¼ σH

σv
ð6Þ

The relationship between side pressure coefficient and
burial depth is given in Fig. 6.

The side pressure coefficient is mainly distributed in
0.9~2.0. With the increase in burial depth, its change trend
can be fitted as

λ ¼ 66:53

H
þ 1:32 ð7Þ

Formula (7) tells that the side pressure coefficient decreases
with burial depth. As burial depth increases, the side pressure
coefficient would gradually decrease and be eventually close
to λ = 1.32. It manifests that under the current depth of coal
mining in China, the horizontal principal stress generally
comes into prominence in stress field, being consistent with

the conclusion drawn in the “Type characteristics of in situ
stress field” section.

Relationship between side pressure ratio and burial
depth

The pressure ratio is calculated by the average horizontal prin-
cipal stress and the vertical stress, and it is defined as follows:

κ ¼ σH þ σh

2σv
ð8Þ

Hoek and Brown summarized and analyzed the relevant in
situ stress in the world, the relationship between the side pres-
sure ratio and burial depth was determined, and its expression
is as follows (Brown and Hoek 1978):

κ ¼ 800

H
þ 0:4 ð9Þ

0 5 10 15 20 25 30 35
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1000

1200
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σv fitting
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Fig. 5 Relationship between vertical principal stress and burial depth
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Fig. 6 Relationship between side pressure coefficient and burial depth
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Meanwhile, the inner and outer envelope was also put for-
ward and the formula is as follows:

100

H
þ 0:3≤κ≤

1500

H
þ 0:5 ð10Þ

Combined with the statistics of in situ stress in China’s coal
mines, the relationship between the side pressure ratio and
burial depth and the fitting envelope is given in Fig. 7.

The majority of side pressure ratios are within 0.5~1.6.
With burial depth increasing, its change can be described as
follows:

κ ¼ 202:45

H
þ 1:2 ð11Þ

The inner and outer envelope are fitted as follows:

70:1

H
þ 0:2≤κ≤

334:8

H
þ 2:2 ð12Þ

Formulas (9)~(12) were compared. Overall, the relation-
ship between the side pressure ratio and burial depth in
China’s coal mines is similar to the Hoek-Brown curve.
However, there are some marked differences in numerical
value. When burial depth is less than about 750 m, the side
pressure ratio is below Hoek-Brown. When it is over 750 m,
the opposite is true. The outer envelope is located on the
outside of Hoek-Brown curve. However, the inner envelope
is the outside of Hoek-Brown curve when burial depth is less
than 700 m. It is the inside of the Hoek-Brown curve under
other circumstances. Analysis shows that the magnitude of
horizontal principal stress in China’s coal mines in the
shallow-buried areas is less than one in the world (usually
the burial depth is less than 700~750 m), but it constitutes
an overwhelming superiority in the stress field. In deep areas,
it is opposite about the magnitude of horizontal principal

stress, but the horizontal principal stress still plays a leading
role in the stress field due to a very small decrease.

The cause of these differences may be that the description
of Hoek-Brown curve is the stress distribution characteristics
and laws worldwide, and its measured data came not only
from the sedimentary rocks, but also included a mass of
magmatite rocks and metamorphic rocks. On account of the
influence of region, burial depth, tectonic movement, and
rock’s mechanics performance, very sharp differences are
formed in the characteristics of in situ stress field. For coal
mines, in addition to regional differences, coal and rock are
mainly sedimentary. However, there is a great difference
among the sedimentary rocks, magmatite rocks, andmetamor-
phic rocks in physical and mechanical properties, especially in
coal seams. Whether it is caused by physical or mechanical
properties, it always differs visibly from rock strata. All kinds
of geological structures are present in coal-bearing strata, such
as faults, joints, folds, and collapse columns. They also affect
the size and direction of stress to different degrees. Although
the distribution characteristics and laws of in situ stress in
China’s coal mines are similar to Hoek-Brown’s conclusions,
every in situ stress field also has its own characteristics. For
this reason, some results of other mining areas or industries
cannot simply be compared and applied.

Relationship among the direction of maximum
horizontal principal stress, trajectory of principal
stress, and seismic belt in China

The direction distribution of the maximum horizontal princi-
pal stress in China’s coal mines is shown in Fig. 8. Generally,
the direction of maximum horizontal principal stress is ap-
proximately parallel or perpendicular to the trajectories of
principal stress in China Continental Plate. Nevertheless,
when the coalfield is located in or near a seismic belt, because
of the pushing and restriction impact of the continental plate,
the direction of maximum horizontal principal stress is badly
affected within the region, generating great dissociation and
randomness. The direction of tectonic stress field exists sig-
nificant differences in different coal mines, and they have no
apparent relationship with the trajectories of principal stress.
Because the statistical stresses are concentrated in China’s
central eastern area, also called North China. Further analysis
was performed for this region, as shown in Fig. 9.

The North China seismic belt consists of 4 seismic belts
including Tanlu seismic belt, North China Plain seismic belt,
Fenwei seismic belt, and Yinchuan-Hetao seismic belt. The
eastern coalfields are affected by Tanlu seismic belt and the
Low Yellow River seismic belt, and the direction of tectonic
stress field differed visibly. In the Shandong coalfields, the
direction of maximum horizontal principal stress is NEE,
NNE, and SEE as the dominant. It is respectively NNW,
SEE, and NNE (Huainan) and SEE (Huaibei) in Henan,
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Fig. 7 Relationship between side pressure ratio and burial depth
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Jiangsu, and Anhui, and there is no law to follow. Similarly,
Shanxi coalfield is located mostly within the Jinzhong seismic
belt, under the composite effect of Taihang Mountains, Haihe
(Hebei) Plain seismic belt, and Yanshan seismic belt, and the
environment of stress field is complex and changeable. The
direction of maximum horizontal principal stress is NEE and
NNW, SSE, NNE, NNE, and SEE in the Qinshui, Huoxi,
Datong, Hedong, and Ningwu coalfields. Being in Yanshan
seismic belt and Haihe Plain seismic belt, Hebei coalfield
undergoes the effect of TaihangMountains, Tanlu seismic belt
and part of Low Yellow River seismic belt. And it is respec-
tively SEE and NWW, SEE, and SWW in those coalfields:
Hanxing, Kailuan, and Jingxi. When the coalfield, such as
Ningdong coalfield and Huating coalfield, is affected by the
single seismic belt, the direction of tectonic stress field is
relatively regular and can form a small angle with the trend
direction of seismic belt.

With the reduction and depletion of coal resources, the
mining depth of China’s coal mines will continue to increase,
the high-stress work environment will continue to deteriorate,
and the mines will experience severe underground pressures,
difficult roadway maintenance, increased risk of rock burst,
serious roof fall, and increased gas emission. In order to en-
sure the safe, efficient, and economic production, it is neces-
sary to strengthen in situ stress measurement, and take corre-
sponding support and preventive measures according to the
actual stress state.

Conclusion

In this paper, 578 sets of in situ stress in China’s coal mines
were analyzed and some conclusions were drawn.
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(1) A total of 87.72% stress fields in China’s coal mines
were found to rely mainly on horizontal stress, and tec-
tonic stress was absolutely dominant, so they were treat-
ed as typical tectonic stress fields. About 64% stress
fields belonged to the middle and high-stress zones,
and the low- and ultrahigh-stress zones accounted for
about 18%. Moreover, ultrahigh-stress zones mostly fo-
cused on in eastern coalfields.

(2) In general, the stress in coal mines increases with burial
depth. The correlation of vertical principal stress is pref-
erable, but the discreteness of horizontal principal stress
is big due to the differences from the geological condi-
tions of mining areas.

(3) The ratio of horizontal principal stress is concentrated
within a ratio of 1.0~2.5, and it is affected by burial depth
only slightly. The shear stress increases with burial
depth. Its directivity is increasingly visible, which would
bring about more severe damage extent to coal and rock.

(4) The side pressure coefficient mainly distributes in
0.9~2.0. It continually decreases with burial depth and
finally tends to 1.32. Most side pressure ratios are in
0.5~1.6. As burial depth increases, its changing trend is
almost in accordance with Hoek-Brown curve as a
whole. When burial depth is less than 700~750 m, the
horizontal principal stress is less pronounced than under
real-world conditions. It occupies an absolute superiority
in the stress field. The horizontal principal stress is great-
er, but it is always playing a dominant role in the stress
field.

(5) The distribution characteristics and laws of in situ stress
in China’s coal mines are similar to Hoek-Brown’s con-
clusion, but there are obvious differences about the mea-
surement conditions of statistical data. So the distribution
characteristics of stress field in coal mines should not
simply follow some conclusions from other mining areas
or industries.
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(6) The in situ stress fields in China’s coal mines are greatly
affected by seismic belt. Without an effect of seismic
belt, the direction ofmaximum horizontal principal stress
is approximately parallel or perpendicular to the trajec-
tories of principal stress in China Continental Plate. On
the contrary, there is no well-marked relationship be-
tween the two. When the coalfield is affected by the
single seismic belt, the direction of tectonic stress field,
which can form a small angle with the trend direction of
seismic belt, is relatively regular. When the coalfield
tectonic stress field suffers from the composite effects
of multiple seismic belt, its direction obviously changes
and there is no law to follow.
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