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Abstract
The fractal dimension analysis provides more appropriate evolution of several solar phenomena related to the sun and its
environment. The novelty of this research is to use self-similar fractal dimension (FDS) and self-affine fractal dimension
(FDA) to calculate fractal parameters including universal parameter such as the exponent scale β, spectral exponent (α), and
fractal autocorrelation coefficient (C∇). First, the mean monthly data of each sunspot cycle from 1755 to 2008 (23 cycles) is
analyzed separately. Then, the total data of 24 cycles is analyzed. The study focuses on finding an adequate value of the wave-
spectral exponent α for which the cycles are more strongly correlated with each other. Self-similar fractal dimension is found to
bemore persistent and positively correlated as compared to self-affine fractal dimension. The fractal parameters are found to exist
on a significant scale. The exponent scale β is calculated by both of the fractal dimensions FDS and FDA. Both the fractal
dimensions are also related to the wave-spectral exponent αwhich is calculated by the Hurst exponent (HE). The self-similar and
self-affine spectral exponents αS and αA are used to determine whether the value of α is greater than 2 or not. The spectrum for
sunspot cycles is considered to be Gaussian if the value of α is greater than 2. This demonstrates that the cycles are strongly
correlated to other cycles. The self-similar fractal autocorrelation coefficient (C∇) is found to be more persistent and correlated as
compared to the self-affine fractal dimension. It can be concluded that the fractal approach can study more rigorously the local
and global aspects of the dynamical processes and activities associated with the sun and its climate.

Keywords Spectral analysis . Rescaled range analysis . Spectral exponent . Self-similar

Introduction

A sunspot has an intense magnetic field and cool temperature,
and the center temperature of a sunspot is 6400 °F. Galileo
made drawings of sunspots in 1612 (TJO News 2006).
Sunspots are associated with active regions, which are areas
of locally increased magnetic flux of the sun (Kevin et al.
2014). A maximum number of sunspots are known as solar
maximum. Sunspots often appear near 30–35° north and south

of the sun’s hemisphere with higher latitudes. The solar activ-
ity or sunspot is generated due to geomagnetic disturbances.
Two types of magnetic lines are associated with sunspots. One
is open whereas, the other is closed. Open lines extend out to
long distances from the sun. The closed lines form loops and
return back to the sun (Enfield et al. 1991).

Sunspots consist of cycles, and each cycle has a different
duration. The average duration of sunspot cycles is slightly
greater than 11 years. In each cycle, the number of sunspots
varies from a maximum to minimum and again back to maxi-
mum. Cycle 1 consists of 11.3 years, cycle 2 has 9 years, cycle
3 (9.3 years), cycle 4 (13.7 years), cycle 5 (12.6 years), cycle 6
(12.4 years), cycle 7 (10.5 years), cycle 8 (9.8 years), cycle 9
(12.4 years), cycle 10 (11.3 years), cycle 11 (11.8 years), cycle
12 (11.3 years), cycle 13 (11.9 years), cycle 14 (11.5 years),
cycle 15 (10 years), cycle 16 (10.1 years), cycle 17 (10.4 years),
cycle 18 (10.2 years), cycle 19 (10.5 years), cycle 20 (11.7
years), cycle 21 (10.3 years), cycle 22 (9.7 years), cycle 23
(11.7 years) and cycle 24 is proceeding which is started in
January 2008 and will last until 2018.
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As for the fractal dimensions are concerned, two basic
types of fractals exist. One of the self-similar and the other is
self-affine. In the self-similar type, the geometric object is
composed into a union of rescaled copies of itself with uni-
form in all directions or rescaling isotropic. Whereas in the
self-affine type, the geometric object is described as the union
of rescaled copies of itself depending on the direction or
rescaling anisotropic. The self-similarity and self-affinity both
are linear transformations.

A commonly used method to calculate the fractal dimen-
sion is the Hausdorff-Besicovich method. Alternative
methods such as a box counting method, rescaled range anal-
ysis, and Higuchi’s method are also frequently used. Box di-
mension or box counting method is more appropriate than the
methods mentioned above (Michael 1988). Fractal dimension
describes the roughness and smoothness of the data. In the
case of the sun, it is used to determine the correlation between
solar cycles (Gayathri and Selvaraj 2010). Fractal geometry
plays an active role in the study of topography and spatial
analysis. The fractal concept plays an essential role in the
scaling symmetry. Scaling symmetry is defined as the geomet-
ric object size reduced or expanded, whereas the new object is
the same as that of the original object characteristics. The
fractal analysis is a common approach for self-affine struc-
tures. The fractal parameters are evaluated by using three
methods that include scaling analysis, spatial correlation anal-
ysis, and spectral analysis (Chen 2010). In spectral analysis,
the energy spectrum and correlation function are able to con-
vert into another Fourier transform (Chen 2009). The relations
among different fractal parameters are calculated by using
spectral analysis, which is based on correlation functions.

n this paper, we intend to explore the relationship between
two methods of fractal dimension: one is the self-similar (FDS)
which is calculated by the box counting method, and another is
the self-affine (FDA) which is calculated by rescaled range anal-
ysis of sunspot cycles. The second part consists of the wave-
spectrum scaling equations for calculating fractal dimensions of
sunspot which are presented. The third section pertains to the
discussion regarding the fractal geometry parameters of sunspot
cycles and the fourth section is a conclusion.

Mathematical models and fractal dimension
relations

In this section, brief information about certain qualities of
universal scaling laws is explored.

Spatial correlation dimensions

Fractal dimension can be measured with a characteristic scale.
Three basic concepts regarding the fractal dimension of sun-
spots can be described as follows.

The plane of sunspots has Euclidean dimension d = 2.
The smallest unit of the sunspot is considered as a point, so
the topological dimension of sunspots is considered to be
dt = 0. So the fractal dimension of sunspots ranges from dt
= 0 to d = 2. Fractal analysis of sunspot time series pre-
sented here is based upon the existence of correlation
among sunspot cycles. Therefore, this study is associates
fractal analysis with correlation analysis. In this sense, the
generalized fractal dimension is often called the correlation
dimension (Chen and Jiang 2010; Grassberger and
Procaccia, 1983). Fractal dimension can be used to study
time series data using the relationship between fractal di-
mension and Hurst exponent:

FDS ¼ 2−HES ð2:1Þ

FD equal to 1.5 indicates that the events are unpredictable
and no correlation exists between two successive events. The
process becomes more and more predictable as the value of
the fractal dimension approaches to 1. Fractal dimension rang-
ing from 1 to 1.5 indicates that the process is persistent. A rise
in the value of the fractal dimension above 1.5 means that the
process is anti-persistent. The value of FD = 1.5 indicates that
the data is random, whereas FD = 1 reveals that the time series
data is purely deterministic (Shaikh et al. 2008).

The length of each sunspot cycle and FDS is related by the
following equation:

δ Cð Þ ¼ δ1CFDs−d ¼ δ1C–β ð2:2Þ

where δ1 is the proportionality coefficient and β = d − FDS

is the scaling exponent. Note that FDS < d (Frankhauser
1998). If the value of FDS lies between 1 and 2, then scaling
exponents range forms 0 to 1. If FDS < 1 or FDS > 2, then the
value of β > 1 or β < 0, respectively. For the solar cycle, the
fractal dimension FDS can be considered as a one-point cor-
relation dimension which indicates a zero-order correlation
dimension. A correlation of zero order indicates that no rela-
tionship exists between cycles.

The wave-spectrum relation of sunspots

This section stresses upon the calculation of spectral exponent
and spatial autocorrelation coefficient (spatial scaling). These
two play an important role to study the spatial behavior of
data. The data under consideration comprises 23 sunspot cy-
cles. To perform spatial scaling, the correlation function asso-
ciated with data is changed into an energy spectrum using
Fourier transform (Chen 2009). In addition to other methods,
Fourier transform can also be used to study similarity. In this
method, relations of fractal parameters are determined by cal-
culating spectral exponents. For this purpose, the following
scaling law is used:
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f λρð Þ ¼ λβ f λð Þ ð2:3Þ

Where λ denotes the scaling factor, β describes the scaling
exponent (β = d − FDS), and ρ is called the length variable of
each cycle.

Applying Fourier transform to 2.3, the following scaling
relation is obtained:

F λγð Þ ¼ F f λρð Þ½ � ¼ λ− 1−βð Þ F f ρð Þ½ �
¼ λ− 1−βð Þ F γð Þ ð2:4Þ

where F is known as the Fourier operator and γ denotes the
wave number, whereas F (γ) is the image function of f (λ).
Equation 2.4 finally gives the following wave-spectrum rela-
tion:

S γð Þ∝γ−2 1−βð Þ ð2:5Þ

Relation 2.5 provides a numerical relation between fractal
dimension and the spectral exponents by taking β = d – FDS

(Eq. 2.2), thus:

S γð Þ∝γ−2 1−dþFDsð Þ ¼ γ−2 FDs−1ð Þ ¼ γ–α ð2:6Þ

Here,

α ¼ 2 FDS−1ð Þ ð2:7Þ

where α is the spectral exponent and considered to be a
constant. When the range of fractal dimension is 1 < FD < 2,
then the spectral exponent correlation dimension is said to be a
point-point correlation dimension. This means that there exists
a spatial correlation between two adjacent points of each cy-
cle. Spatial correlation describes the correlation between a
spot’s spatial direction and the average receiving spot again.
Equation 2.7 gives the required relation between FD and α.
FD and α possess one-point correlation dimension and the
point-point correlation dimension, respectively. The one-
point correlation shows the spatial correlation between the
given spot and other spots of the cycle. The relation between
the fractal dimension (FD) and spectral exponent (α) was
introduced by Higuchi (1988) and is described by the follow-
ing relation:

FD ¼ 5−αð Þ=2 ð2:8Þ

The relation among fractal dimension (FD), spectral expo-
nent α, and Hurst exponent HE is given by Burlaga (Burlaga
and Klein 1986; Turcotte 1992) as given by Eq. 2.9.

α ¼ 5−2FD ¼ 2HEþ 1 ð2:9Þ

α = 0 describes a white noise-like system. It means that the
system is uncorrelated and the power spectrum is independent

of the frequency. α = 1 is known as flicker or 1/f noise system
which indicates a moderate correlation. α = 2 is called a
Brownian noise-like system, which shows a strong correla-
tion. In general, the fractal dimension FD lies in the range (0
< FD < 2), but the fractal dimension in the range (1 < FD < 2)
indicates that the state under consideration is highly random
and irregular. In such case, spectral exponents range as (1 < α
< 3) (Mandelbort and Van Ness 1968).

The parameters to determine the fractal dimension can be
calculated by using two methods: self-similarity and self-
affinity; consequently, two different fractal dimensions are
obtained viz. Self-similar fractal dimension (FDS) and Self-
affine fractal dimension (FDA). Here, the wave-spectrum scal-
ing is performed by calculating both the fractal dimensions,
viz. FDS and FDA. Earlier, this sort of analysis was performed
by Liu and Liu (1992) andMandelbrot (1999) using FDA. The
Hurst exponent (HEA) can be calculated by the method of
rescaled range analysis (Hurst et al. 1965); H is described by
the power function R(τ)/S(τ) = (τ/2)H (Feder 1988). The Hurst
exponent (HES) can be calculated by the method of box
counting technique. The relationship between FDS and FDA

can be described from Eq, 2.7 and 2.9 giving 2.10:

FDS ¼ 7

2
−FDA ð2:10Þ

The situation can be expressed logically by the following
flowchart (Figure 1).

The spatial activity of sunspots is supposed to be expressed
as a fractal Brownian motion (fBm); thus, the value of FD of
each cycle of sunspots lies between 1 and 2.

The relation between spatial autocorrelation coefficient
(C∇) and HE based on fBm can be given as follows:

C∇ ¼ 22HE−1−1 ð2:11Þ

where C∇ represents the spatial autocorrelation coefficient,
which is based on the multiple-lag 1-dimension spatial auto-
correlation. Spatial autocorrelation is used to measure the cor-
relation of spots with itself through the active region. It should
be noted that the value of HE = ½ means that C∇ = 0 which is
considered to be the Brownianmotion. If HE >½, then C∇ > 0
representing that positive spatial autocorrelation exists. HE <
½ implies that C∇ < 0 which indicates that the spatial auto-
correlation is negative.

The numerical relationship between different fractal param-
eters like FDS, FDA, HES, HEA, αS, αA, CA∇, and CS∇ can be
computed by using Eqs. 2.9, 2.10, and 2.11. The results de-
scribed in Table 1 shows that all values are within a significant
scale. FDS ranging from 1 to 1.5 shows that the number of spots
is correlated to each other and has linear behavior. The Hurst
exponents (HE) ranging from 0.5 to 1 indicate the persistence of
sunspot cycles. Relation 2.10 is theoretically valid when the
fractal dimension FDS values range from 1.5 to 2.
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Results and discussions

This study attempts to evaluate the fractal dimensions of sun-
spot data using scaling analysis and spectral analysis. Also,
the cycle-wise spatial data correlation is determined. It is
found that the correlation function is 1-dimensional (linear
relation). Fractal parameters are calculated in a significant

range using self-similar fractal dimension (FDS) and self-
affine fractal dimension (FDA). Table 1 indicates that the
values of FDS and FDA in each cycle exist in a range from 1
to 1.5 which indicate that cycle is persistent, correlated, and
predictable. The value of FDA was found to be greater than
FDs in all cycles. Similarly, both self-similar Hurst exponent
HES and self-affine Hurst exponent HEA values range from

Fig. 1 A sketch map among the
relationship of different fractal
parameters

Table 1 The numerical relationship between different fractal dimensions, Hurst exponent, autocorrelation coefficient and spectral exponents can be
express as

Cycles Duration FDS FDA HES HEA αS αA CS∇ CA∇

1 Aug 1755 - Mar 1766 1.181 1.367 0.819 0.633 2.638 2.266 0.556 0.202

2 Mar 1766 - Aug 1775 1.27 1.407 0.73 0.593 2.246 2.186 0.376 0.138

3 Aug 1775 - Jun 1784 1.327 1.587 0.672 0.413 2.344 1.826 0.269 -0.114

4 Jun 1784 - Jun 1798 1.318 1.446 0.682 0.554 2.364 2.108 0.287 0.078

5 Jun 1798 - Sep 1810 1.099 1.380 0.901 0.620 2.802 2.240 0.744 0.181

6 Sep 1810 - Dec 1823 1.136 1.363 0.864 0.637 2.728 2.274 0.656 0.209

7 Dec 1823 - Oct 1833 1.177 1.163 0.823 0.837 2.646 2.674 0.565 0.595

8 Oct 1833 - Sep 1843 1.296 1.223 0.704 0.772 2.408 2.554 0.327 0.458

9 Sep 1843 - Mar 1855 1.275 1.470 0.725 0.530 2.45 2.060 0.366 0.042

10 Mar 1855 - Feb 1867 1.267 1.313 0.733 0.687 2.466 2.374 0.381 0.296

11 Feb 1867 - Sep 1878 1.298 1.347 0.702 0.653 2.404 2.306 0.323 0.236

12 Sep 1878 - Jun 1890 1.165 1.463 0.835 0.537 2.67 2.074 0.591 0.053

13 Jun 1890 - Sep 1902 1.252 1.376 0.748 0.624 2.496 2.248 0.410 0.188

14 Sep 1902 - Dec 1913 1.141 1.400 0.859 0.600 2.718 2.200 0.645 0.149

15 Dec 1913 - May 1923 1.235 1.479 0.765 0.521 2.53 2.042 0.443 0.030

16 May 1923 - Sep 1933 1.149 1.391 0.851 0.604 2.702 2.218 0.627 0.155

17 Sep 1933 - Jan 1944 1.206 1.526 0.794 0.474 2.588 1.948 0.503 -0.035

18 Jan 1944 - Feb 1954 1.194 1.373 0.806 0.627 2.612 2.254 0.528 0.193

19 Feb 1954 - Oct 1964 1.266 1.410 0.734 0.590 2.468 2.180 0.383 0.133

20 Oct 1964 - May 1976 1.193 1.355 0.807 0.645 2.614 2.290 0.530 0.223

21 May 1976 - Mar 1986 1.198 1.187 0.802 0.813 2.604 2.626 0.520 0.543

22 Mar 1986 - Jun1996 1.225 1.436 0.775 0.563 2.55 2.128 0.464 0.091

23 Jun 1996 - Jan 2008 1.213 1.451 0.787 0.549 2.574 2.098 0.489 0.070

24 Aug 1755 - Jan 2008 1.002 1.354 0.998 0.649 2.996 2.110 0.994 0.229
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0.5 to 1 which reveals that each cycle is persistent. HES are
found to be greater than HEA. Since the fractal dimension lies
between 1 and 2, the scaling exponent β ranges from 0 to 1.
This range for β confirms its validity. The value of β shows
that the data has a 1-point correlation dimension and the dy-
namical behavior of the data is linear. Table 1 describes the
numerical relation between the spectral exponent (α) and au-
tocorrelation coefficient (C∇) which are calculated by using
both the self-similar fractal dimension and the self-affine frac-
tal dimension. If 1 < DF < 2, then the spectral exponentα has a
range from 1 to 3. α = 0 indicates a white noise-like system
which describes uncorrelated behavior.α = 1 is called a flicker
which represents a moderately correlated behavior. α = 2 is
called a Brownian noise-like system and shows a strong cor-
relation. Self-similar spectral exponent (αS) and self-affine
spectral exponent (αA) are calculated by using relation 2.8.
Values of αS and αA reveal that the cycles behave like a
Brownian noise. If 1 < FDS < 2, then the spectral exponent

α describes a point-point correlation. It is to mention that there
exists a relationship between one-point correlation dimension
FDS and the point-point correlation dimension (α). The auto-
correlation coefficient (C∇) describes the multiple-lag 1-di-
mension spatial autocorrelation of sunspot cycles. The auto-
correlation coefficient (C∇) is calculated by relation 2.11. C∇
= 0 if HE = ½ which indicates a Brownian motion. If HE > ½,
then C∇ > 0 which indicates a positive spatial autocorrelation.
If HE < ½, then C∇ < 0 which represents the negative spatial
autocorrelat ion. The autocorrelat ion coeffic ients
(CS∇and CA∇) show positive spatial autocorrelation except
in case of CA∇ in cycle 3 and cycle 17 where the negative
correlation appears. Figure 1 indicates a sketch map of the
relationship of different fractal parameters. Figure 2 repre-
sents the combined behavior of each solar cycle in one
diagram. Figure 3 describes the compression between the
self-similar fractal dimensions and self-affine fractal di-
mensions in each cycle.

-0.5
0

0.5
1

1.5
2

2.5
3

3.5

Au
g 

17
55

 -…
M

ar
 1

76
6 

-…
Au

g 
17

75
 -…

Ju
n 

17
84

 -…
Ju

n 
17

98
 -…

Se
p1

81
0 

-…
De

c1
82

3 
-…

Oc
t1

83
3 

-…
Se

p1
84

3 
-…

M
ar

18
55

 -…
Fe

b1
86

7 
-…

Se
p1

87
8 

-…
Ju

n1
89

0 
-…

Se
p 

19
02

 -…
De

c1
91

3 
-…

M
ay

 1
92

3 
-…

Se
p 

19
33

 -…
Ja

n 
19

44
 -…

Fe
b 

19
54

 -…
Oc

t 1
96

4 
-…

M
ay

19
76

 -…
M

ar
19

86
 -…

Ju
n1

99
6 

-…
Au

g1
75

5 
-…

Compara�ve studies of Wave-Spectrum Scaling 
parameter of Self-Similar and Self-affine of each 

Sunspot Cycles   

FDS FDA HES HEA αS αA CS CA

Fig. 2 Comparative studies of
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Fig. 3 Compression of self-
similar and self-affine fractal
dimension of sunspots cycles
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Conclusion

This study investigates the relationship between self-similar
fractal dimensions (FDS ) and self-affine fractal dimensions
(FDA). FDS is calculated by using a box counting method, and
FDA is calculated by rescale range analysis method. Hurst
exponents are calculated by self-similar Hurts exponent
(HES) and self-affine Hurts exponent (HEA). Spectral expo-
nents are calculated using relation 2.8. Respective values of
αS and αA are compared using Eq. 2.9. For the calculation of
autocorrelation coefficient, Eq. 2.11 is used. Table 1 exhibits
the numerical values of Hurst exponents, spectral exponent,
and autocorrelation coefficient using self-similar and self-
affine techniques. Sunspot cycles are overall persistent and
correlated. HES values are greater than HEA. All values of
the spectral exponent (αS and αA) of each sunspot cycles
behave like a Brownian noise. The autocorrelation coefficient
in both cases lies in a valid range. Self-similar fractal dimen-
sions (FDS) and self-affine fractal dimensions (FDA) obtained
by using relation 2.10 failed to give a well-defined relation-
ship. This is because the method is useful only in case the
fractal dimension ranges between 1.5 and 2. Here, the fractal
dimensions of sunspot cycles are less than 1.5.
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