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Abstract
Flood is one of the important destructive natural disasters in the world. Therefore, preparing flood susceptibility map is necessary
for flood management and mitigation in a region. This research was planned to compare the performance of frequency ratio (FR),
adaptive neuro-fuzzy inference system (ANFIS), and random forest (RF) models for flood susceptibility mapping (FSM) in the
Gilan Province, Iran. First, a geospatial database included 220 flood locations and eleven effective flood factors (slope angle,
aspect, altitude, distance from rivers, drainage density, lithology, land use, topographic wetness index (TWI), and stream power
index (SPI)) were produced. According to flood locations, 30–70% of them were used for training and validation of the models,
respectively. Afterward, the mean of Gini reduction was used to determine the priority of effective flood factors. Finally, the
receiver operating characteristic (ROC) curve, area under the curve (AUC), was used to evauate and compare the performance of
the models. The validation results of the models show that FR, ANFIS, and RF models had 68.6, 63.9, and 71.3% accuracy,
respectively. In addition, distance from rivers, altitude, and drainage density was the most important factor for FSM in the study
area. The finding of the current research proved a reasonable prediction performance for the models. Therefore, these models can
be proposed for preparing FSM in similar climatic and physiographic areas and flood susceptibility maps can be used to manage
floodplains in the study area.
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Introduction

According to statistics provided by the United Nations, among
the natural disasters, floods and storms have brought the most
casualties and losses to human societies. Between 2000 and
2008, nearly 99 million people worldwide have been affected
by flooding (Opolot 2013). The flooding trend in recent years

suggests that most of Iran’s regions are exposed to destructive
floods. In addition to financial and psychological damage, floods
cause soil erosion and nutrient loss. The continuation of this
situation entails irreparable damage to water and soil resources.
In the current situation, it is expected that the socio-economic and
environmental consequences of floods will be felt more than ever
in the context of urbanization, increasing deforestation, and sus-
tainability of rainfall because of climate change in the various
regions. Therefore, operation prevention are essential and neces-
sary (Alvarado-Aguilar et al. 2012; Billa et al. 2006; Dang et al.
2011; Huang et al. 2008). One of these measures is to provide a
flood map that is necessary in integrated management for sus-
tainable development (Rahmati et al. 2016b).

Lee et al. (2012) found the accuracy of the frequency ratio
(FR) model with area under the curve (AUC) of receiver operat-
ing characteristics (ROC) of 91.5% for preparing flood suscepti-
bility mapping (FSM) in Busan, South Korea. Tehrany et al.
(2013) and Tehrany et al. (2014) provided FSM for Kuala
Terengganu County in Malaysia using two sets of decision-
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making methods, a combination of FR and logistic regression
(ensemble model), support vector machine (SVM), and weight-
of-evidence (WOE). They found that the accuracy of decision
trees, the ensemble model, SVM, and WOE models were 87%,
90%, 95.67%, and 96.48%, respectively. Youssef et al. (2016b)
prepared FSM for Jeddah County in Saudi Arabia using FR and
logistic regression (LR). They found that the accuracy of FR and
LR models was 89.6% and 91.3%, respectively. Rahmati et al.
(2016b) prepared FSM in Golestan Province, Iran, using FR and
WOEmodels. According to the results, these twomodels had the
same and reasonable efficiency for identifying FSM. Khosravi
et al. (2016) prepared FSM with four different models: FR,
WOE, analytical hierarchy process (AHP), and FR-AHP for
Haraz Watershed, Iran. They found that the accuracy of FR,
WOE, AHP, and FR-AHP models were 96.55%, 96.95%,
94.99%, and 84.69%, respectively. Rahmati et al. (2016c) eval-
uated the accurate and reliable performance of AHP technique in
potential flood hazard zones identification by comparingwith the
results of HEC-RAS hydraulic model in some part of the Bashar
River downstream of Yasooj city in Iran.Mojaddadi et al. (2017)
evaluated the ensemble method of FR and SVM with a radial
basis function kernel in FSM for Damansara River catchment in
Malaysia. Based on the results, the accuracy of FR-SVM model
was 78.9%. Haghizadeh et al. (2017) and Siahkamari et al.
(2018) applied the Shannon’s entropy, FR, and maximum entro-
py models for FSM in the Madarsoo Watershed, Golestan
Province, Iran. Based on the results, the accuracy of Shannon’s
entropy, FR, and maximum entropy models was 73.5, 74.3, and
92.6%, respectively. Shafizadeh-Moghadam et al. (2018) com-
pared eight models in FSM for Haraz Watershed, Iran. Based on
the results, the highest and lowest accuracy values were reported
for boosted regression trees model with 0.975% and generalized
linear model with 0.642%, respectively. Darabi et al. (2019)
applied the genetic algorithm rule-set production (GARP) and
quick unbiased efficient statistical tree (QUEST) models to pro-
duce FSM in Sari city, Iran. Based on the results, the accuracy of
GARP and QUEST models was 93.5 and 89.2%, respectively.
Falah et al. (2019) evaluated an artificial neural network (ANN)
model with the the accuracy of 92.0% in FSM for Emam-Ali
township in Mashhad city, Iran. Chen et al. (2019a) applied the
machine learning-based reduced error pruning trees (REPTree)
with bagging (Bag-REPTree) and random subspace (RS-
REPTree) ensemble models in FSM for Quannan County,
China. Based on the results, the highest accuracy value was
reported for RS-REPTree model with 0.907%. Costache and
Tien Bui (2019) compared six ensemble models by combining
the FR and WOE on the one hand, with ANN, rotation forest
(RF), and classification and regression trees (CART) in FSM for
Putna River Watershed, Romania. Based on the results, all six
ensemble models indicated a high flood prediction performance
from 86.8 to 93.9%. Khosravi et al. (2019) compared three mlti-
criteria decision-making (MCDM) analysis techniques (VIKOR,
TOPSIS, and SAW) along with two machine learning methods

(naive bayes trees (NBT) and naive bayes (NB)) in FSM for the
NingduWatershed, China. Based on the results, all models indi-
cated a high flood prediction capability (> 95%). Mind'je et al.
(2019) evaluated the logistic regression model with the accuracy
of 79.8% in FSM for Rwanda, Africa.

Therefore, the methods used to investigate and map flood
susceptibility in recent years were including FR, multivariate
statistical analyzes, WOE, MCDM, LR, and decision tree. In
recent years, advanced methods in FSM, data mining have
been considered as a useful tool such as ANN (Falah et al.
2019; Costache and Tien Bui 2019), SVM (Tehrany et al.
2014; Mojaddadi et al. 2017), adaptive neuro-fuzzy inference
system (ANFIS) with grid partitioning method and
metaheuristic optimization algorithms (Razavi Termeh et al.
2018; Tien Bui et al. 2018), and random forest model (RF)
(Rahmati and Pourghasemi 2017). ANFIS has showed good
results in modeling non-linear processes. ANFIS has adjusted
the characteristics of the system according to training data and
metadata according to the required accuracy. ANFIS generates
FIS by two methods (grid partitioning and subtractive cluster-
ing methods) (Vafakhah and Kahneh 2016). RF is a new su-
pervised classification method in modeling process. RFmethod
have been used in various studies such as forest fire, landslide
susceptibility mapping (Pachauri et al. 1998; Cevik and Topal
2003; Sidle and Ochiai 2006; Pradhan et al. 2011; Catani et al.
2013; Pourghasemi andKerle 2016; Youssef et al. 2016a; Chen
et al., 2018a, b, c, 2019b, d), ecological studies, and groundwa-
ter potential mapping (Rahmati et al. 2015; Naghibi et al. 2016;
Chen et al. 2019c). Therefore, new ensemble models should be
further investigated.

Given the negative effects of floods, the identification of
flood-prone areas is essential. Therefore, due to the aforemen-
tioned issues and the lack of information and data of appro-
priate quality in most watersheds, ANFIS with subtractive
clustering method and RF models are used due to the good
accuracy in the preparation of FSM and a groundwater poten-
tial mapping, as well as landslide susceptibility mapping. In
addition, there have been no studies, which compare the
ANFIS and RF differences and apply the ANFIS with sub-
tractive clustering method in the preparation of FSM. In the
present study, the effectiveness of these two models was in-
vestigated in the preparation of the FSM in the Gilan Province,
Iran.

Materials and methods

General characteristics of the study area and database

The present study was conducted in the Gilan Province with
an area of 14,100 km2 between the northern latitudes of 36°
34′ 00″ to 38° 27′ 00″ and eastern longitudes of 48° 34′ 00″ to
48° 36′ 00″ at the southern margin of the Caspian Sea. The



Methodology

In this study, eleven effective factors including slope angle,
aspect, plan curvature, profile curvature, altitude, distance
from rivers, drainage density, geology, land use, topographic
wetness index (TWI) (Eq. 1) (Beven and Kirkby 1979), and
stream power index (SPI) (Eq. 2) (Moore et al. 1991) were
used to prepare FSM. Since there are a significant negative

correlation between elevation and rainfall in the study area
(Fig. 3), we used altitude in this study to avoid collinearity.

Fig. 1 Location of the study area

Fig. 2 Map of flood locations in the study area
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Gilan Province is limited to the Caspian Sea from the north, to
the Alborz Mountains from the south, to Mazandaran
Province from the east, and to Ardabil Province from north-
west (Fig. 1). The mean above sea level varies from − 128 m
in coastal areas to 2700 m in mountainous areas. The Caspian
strip is considered a temperate and humid region, under the
influence of the northern Siberian air masses and the western
air masses of the Mediterranean and the Atlantic.

Also, the Alborz Mountain, like a barrier, prevents the out-
flow of moist air masses and floods to the central parts of Iran,
causing significant atmospheric precipitation in northern
provinces. In addition to rangeland cover, the Gilan
Province is often covered with broad-and-hardwood forests.

After collecting spatial information of flood events using
flood database, flood inventory map including 220 flood lo-
cations (Fig. 2) was prepared. Also, the geological map of the
region at the scale of 1:100,000 from the Geological Survey
and Mineral Explorations of Iran (GSI) and topographic map
at 1:50,000 scale from the Iran National Cartographic Center
were obtained. Land use map was prepared using Landsat 8
OLI images (27 Jun 2016).



Raster grid maps with 30 m × 30 m resolution were then
derived for all effective factors. The various stages of the
research are presented in Fig. 4.

TWI ¼ ln
α

tanβ

� �
ð1Þ

SPI ¼ Astan β ð2Þ

where α is the total upslope catchment area draining down-
ward from a point with a slope angle of β and As is the specific
area (local upslope area draining through a certain point per
unit contour length) of a basin (m2/m).

Frequency ratio method

After producing and categorizing each of the effective factors
in the research, the layers were overlaid with flood inventory
map, so that the number of floods in each class could be
attributed to different factors. In the next step, the FR coeffi-
cients of each class/category were determined through Eq. 3.

Fig. 3 Altitude map of the study
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FR ¼ Percent of flooded pixcels in each class

Percent of each factor class pixcels
ð3Þ

Adaptive neuro-fuzzy inference system

There are two methods of grid partitioning and subtractive
clustering to generate FIS. In subtractive clustering, the input
data is divided into several groups by the size of the impact
radius. In this case, the number of linear and non-linear factors
has significantly decreased, which facilitates the process of
network training. In this research, subtractive clustering meth-
od was used to investigate the effect of FIS generation on the
performance of ANFIS model. Data standardization
(Erdirencelebi and Yalpir 2011; Kisi et al. 2013; Sidle and
Ochiai 2006; Vafakhah 2012) was carried out as follows:

X Standardized ¼ X i−Xmin

Xmax−Xmin
ð4Þ

where XStandardized is the standardized value, Xi is the original
value, and Xmin and Xmax are, respectively, the minimum and
maximum value.

After data standardization and determining the input vari-
ables, the data were divided into two parts: training and testing
datasets. Optimal replications and range of influence were
determined in the model using hybrid optimization method.
The range of influence was changed from 0.4 to 0.8 with steps
of 0.01, and the optimal range of influence was determined.

Random forest model

To implement this model, firstly, a large number of decision
trees were determined on the basis of trial and error. Then, all
the trees were combined together for prediction (Cutler et al.
2007). For implementation of RF model, R software and
randomForest” package was used (Naghibi and

Pourghasemi 2015; Pourghasemi and Kerle 2016; Rahmati
et al. 2016a; Youssef et al. 2016a). When predictor variables
and target variables were identified, RF begins with the emer-
gence of a decision tree. This tree does not use all the available
data for the tree, and, instead uses the bootstrap sample, which
only contains 66% of the original data, which is referred to as
the bagging technique (Breiman 2001).

Evaluation of the performance of the models

In this research, 70% and 30% of the flood locations were
used for calibration and validation and performance evalua-
tion of the models, respectively. Then, using the receiver op-
erating characteristics (ROC) curve, the accuracy of the flood
susceptibility map was determined (Pourghasemi et al. 2012).
The area under the ROC curve represents the predicted value



of the system by describing its ability to accurately estimate
events (flood occurrence) and non-occurrence of the event
(absence of flood). Using the ROC curve, the accuracy of
the model was estimated quantitatively. The most ideal model
is the model with the highest the area under the curve (AUC)
and AUC values vary from − 1 to 0.5. If the model cannot
estimate the flood event better than the probable viewpoint,
that is, AUC is less than 0.5, and then the model used does not
have usability for prediction. AUC and the estimation are
classified as 0.5–0.6 weak, 0.6–0.7 moderate, 0.7–0.8 good,
0.8–0.9 very good, and 0.9–1 excellent (Rahmati et al. 2015).

Results and discussion

The present research aims to provide a FSM map using three
models, namely FR, ANFIS, and RF models and to compare
their performance together.

Effective flood factors

Slope angle

A digital elevation model (DEM) by 30-m spatial resolution in
Arc/GIS environment was used to prepare the slope map of
the study area. As can be seen from the Fig. 5, the slope map
was divided into five classes by quantile classification method
(Tehrany et al. 2015). As shown in Table 1, class 2.36–6.21
degrees has the highest FR, subsequently has the highest value
(1.55), which has the most effectiveness on flooding, and class
of 76.01–20.72 degrees has the lowest FR (0.53).

Aspect

The aspect due to evapotranspiration and precipitation direction
has a great influence on hydrological processes and, as a result,
affects weathering and vegetation processes, especially in arid
areas (Sidle and Ochiai 2006). The aspect map was prepared in
9 classes of north, northeast, east, southeast, south, southwest,
west, northwest, and flat directions (Fig. 5) (Rahmati et al.
2016b). As shown in Table 1, the southeastern direction with a
FR of 1.53 has the most effect on flooding and southwest direc-
tion with a FR of 0.6 has the least effect on flood.

Plan curvature

The surface curvature (plan curvature) map can be used to de-
scribe the divergence and convergence of flows in the basins,
trenches, and drainage network (Naghibi and Pourghasemi
2015). The surface curvature map was prepared based on Fig.
5 in three classes including, convex, flat, and concave (Rahmati
et al. 2016b). The study of the surface curvature map indicated
that flat surfaces with a FR of 1.14 has the greatest effect on
flood; in contrast, convex and concave slopes with a FR of
0.91 have the same effect on flood (Table 1).

Profile curvature

The semicircular curvature indicates the ratio of slope gradi-
ents in the direction of maximum slope, which was prepared
in three classes, namely, concave, flat, and convex (Fig. 5).
The study of the profile curvature indicated that the flat sur-
faces with a FR of 1.59 have the greatest effect and concave
slope with a FR of 0.82 has the least effect on flood in the
study area (Table 1).

Flood Inventory Map

Calibration 70% Validation 30%Flood Points

Evaluation of the Models Efficiency 

using ROC

Flood Susceptibility Mapping

Frequency Ratio

ANFISClassification

Random Forest

Most Important Factor

Effective Factors

Slope

Aspect

Plan Curvature

Plan Profile

Altitude

Distance from River

Drainage Density

Rainfall

Lithology

Land use

Topographic Wetness Index

Stream Power Index

Fig. 4 Flow chart of research
method
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Fig. 5 Maps of the flood-conditioning factors (eleven in all): a slope angle, b aspect, c plan curvature, d profile curvature, e altitude, f distance from
rivers, g drainage density, h land use, i geology, j topographic wetness index (TWI), and k stream power index (SPI)



Fig. 5 continued.
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Fig. 5 continued.
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Altitude

Altitude can be considered as one of the effective fac-
tors in flood studies (Tehrany et al. 2015). It is almost
impossible to absorb flood in highlands. Altitude class
map were prepared using the quantile method into 5

categories less than 0, 0–280, 280–687, 687–1558, and
more than 1558 m (Tehrany et al., 2013, 2014, 2015.
As shown in Table 1, the class 0–280 m with a FR of
1.96 has the most effect and the class of more than
1558 m with a FR of 0.43 has the least effect on flood
in the study area (Fig. 5).

Table 1 The frequency ratio of previous flood events and flood-risk parameters

Factor Factor categories Number of
pixel

Pixel
percentage

Area
(km2)

Flood
number

Flood
percentage

Frequency
ratio

Standardized
values

Slope (degree) 0–2.36 3500063 22.6 3150.06 27 17.53 0.78 0.25
2.36–6.21 1941432 12.53 1747.29 30 19.48 1.55 1.00
6.21–12.72 1974087 12.74 1776.68 28 18.18 1.43 0.88
12.72–20.72 2938889 18.97 2645.00 42 27.27 1.44 0.89
20.72–76.01 5135219 33.15 4621.70 27 17.53 0.53 0.00

Aspect Flat 321116 2.07 289.00 2 1.3 0.63 0.03
North 2281913 14.73 2053.72 19 12.34 0.84 0.25
Northeast 2229228 14.39 2006.31 24 15.58 1.08 0.49
East 2054727 13.27 1849.25 17 11.04 0.83 0.24
Southeast 1908850 12.32 1717.97 30 19.48 1.58 1.00
South 1786641 11.53 1607.98 24 15.58 1.35 0.77
Southwest 1518092 9.8 1366.28 9 5.84 0.6 0.00
West 1534676 9.91 1381.21 12 7.79 0.79 0.20
Northwest 1854447 11.97 1669.00 17 11.04 0.92 0.33

Profile curvature Convex 2331987 15.06 2098.79 21 13.64 0.91 0.00
Flat 5900585 38.09 5310.53 67 43.51 1.14 0.99
Concave 7257118 46.85 6531.41 66 42.86 0.91 0.04

Plan curvature Concave 5831819 37.65 2098.79 54 35.06 0.93 0.14
Flat 2781229 17.96 5310.53 44 28.57 1.59 1.00
Convex 6876642 44.39 6531.41 56 36.36 0.82 0.00

Altitude (m) < 0 3069862 19.82 2762.88 23 14.94 0.75 0.22
0–280 3123853 20.17 2811.47 61 39.61 1.96 1.00
280–867 3117052 20.12 2805.35 34 22.08 1.1 0.44
867–1558 3114014 20.1 2802.61 23 14.94 0.74 0.21
> 1558 3064909 19.79 2758.42 13 8.44 0.43 0.00

Distance from rivers
(m)

0–500 2541781 16.41 2287.60 62 40.26 2.45 1.00
500–1000 2321717 14.99 2089.55 31 20.13 1.34 0.47
1000–1500 2101608 13.57 1891.45 9 5.84 0.43 0.04
1500–2000 1877242 12.12 1689.52 17 11.04 0.91 0.27
2000–1500 1614702 10.42 1453.23 13 8.44 0.81 0.22
2500–3000 1355669 8.75 1220.10 9 5.84 0.67 0.15
> 3000 3676971 23.74 3309.27 13 8.44 0.36 0.00

Drainage density
(km/km2)

>1.36 3757335 24.26 13940.7 34 22.08 0.91 0.00
1.36–2.11 4005297 25.86 3604.77 37 24.03 0.93 0.08
2.11–13.34 3866761 24.96 3480.08 39 25.32 1.01 0.44
13.34–17.49 3860297 24.92 3474.27 44 28.57 1.15 1.00

Land use Agriculture 4690060 30.28 4221.05 50 32.47 1.07 0.40
Forest 6061261 39.13 5455.13 55 35.71 0.91 0.34
Range 4195704 27.09 3776.13 37 24.03 0.89 0.33
Settlement 454782 2.94 409.30 12 7.79 2.65 1.00
Water body 87883 0.57 79.09 0 0.00 0.00 0.00

Geology Cenozoic 8656838 55.89 7791.15 76 49.35 0.88 0.26
Mesozoic 6126054 39.55 5513.45 70 45.45 1.15 0.44
Paleozoic 307501 1.99 276.75 6 3.90 1.96 1.00
Proterozoic 399297 2.58 359.37 2 1.30 0.50 0.00

Topographic wetness
index

< 9.25 3639404 23.50 3275.46 20 12.99 0.55 0.00
9.25–10.42 3795007 24.50 3415.51 44 28.57 1.17 0.75
10.42–11.50 3957464 25.55 3561.72 34 22.08 0.86 0.38
11.50–21.51 4097815 26.46 3688.03 56 36.36 1.37 1.00

Stream power index 0–250 4277995 27.62 3850.20 33 21.43 0.78 0.00
250–4494.05 7200935 46.49 6480.84 82 53.25 1.15 0.58
4494.05–29482.15 3514071 22.69 3162.66 32 20.78 0.92 0.22
> 29482.15 496689 3.21 447.02 7 4.55 1.42 1.00



Fig. 6 Flood susceptibility map using FR model
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Distance from rivers

Distance from rivers plays a significant role in the velocity and
extent of flood (Glenn et al. 2012). Map of distance from river
was prepared and classified into seven classes (Fig. 5) (Darabi
et al. 2019). The distance of less than 500 m with a FR of 2.45
has a significant effect on flood in the study area. Also, the
class of more than 3000 m has a FR of 0.36 (Table 1).

Drainage density

Drainage density map was prepared using stream lines in km/
km2 and then classified into four different classes using
quantile classification method (Rahmati et al. 2016b) (Fig.
5). As shown in Table 1, class of 13.34–17.49 with a FR of
1.15 has the highest effect and the class less than 1.36 has the
least effect on flood in the study area.

Land use

Land use directly or indirectly affects some of the components
of hydrological processes such as infiltration, evapotranspira-
tion, and runoff generation (Rahmati et al. 2016b). In the post-
processing part of results, after preparing error matrix, accu-
racy of classification results was done based on overall accu-
racy, kappa coefficient, producers accuracy, and user accura-
cy. As shown in Table 1, residential areas with a FR of 2.56
have a great influence on flood in the study area (Fig. 5).

Geology

Petrology can be considered as an important factor in hydrol-
ogy and sedimentation field of drainage. A petrologic map
was prepared based on geological eras in four classes of
Cenozoic, Mesozoic, Paleozoic, and Proterozoic (Fig. 5). As
shown in Table 1, Paleozoic rocks have the most impact and
the Cenozoic rocks have the least impact on flood in the study
area.

Topographic wetness index

TWI indicates the amount of flow accumulation in each area
from a drainage basin and the trend of water to downward
slope by the force of gravity. TWI map was prepared in four
different classes using quantile classification (Fig. 5). As
shown in Table 1, 11.5–21.52 class with a FR of 1.37 has
the greatest impact, and the class of less than 9.25 with a the
FR of 0.55 has the least impact on flood in the study area.

Stream power index

SWI shows the flow power in terms of erosion. SWI map was
prepared in four different classes using quantile classification

(Fig. 5). As shown in Table 1, the class that is more than
29,482.15 with a FR of 1.42 has the greatest impact and a
class of 0–250 with a FR of 0.78 has the least impact on
flooding.

Flood map results using frequency ratio model

After weighing each effective factor in flood, the weights were
finally summed up in the ArcGIS environment and the final
FSM was prepared and classified into four categories of low,
moderate, high, and very high susceptibility (Fig. 6) using
quantile method (Rahmati et al., 2015; Zabihi et al. 2015).
Based on the results obtained (Table 2), 19.95% of the area
measuring 2780.83km2 were placed with a high sensitivity to
flood.

FR was used to determine the correlation of between flood
points and effective factors. The results of the significant re-
lationship between flood locations and effective factors using
FR were presented in Table 1. The ratio one shows a moderate
relationship between the flood points and the effective factors
(Pradhan et al. 2011). If the value of the ratio is greater than
one, there is high correlation, and if less than one, there is low
correlation between flood points and effective factors (Lee



et al. 2012). For altitude, zero to 280 class with a FR of 1.96
and the class greater than 1558 with a FR of 0.43 had the
highest and lowest effect on flooding in the study area, respec-
tively. This is due to the fact that floods are often formed in
low altitude areas, while flood formation is impossible in high
altitude areas (Rahmati et al. 2016b). Investigating the rela-
tionship between distance from rivers and flood events
showed that distance of less than 500 m with a FR of 2.45
had a significant effect on flooding in the study area. Also, the
class distance between 500–1000 m had a FR of more than
one, which indicated the wide coverage of alluvial flood in the
Gilan Province (Tehrany et al. 2013). Also, the class of more
than 3000 m from rivers with a FR of 0.34 had the lowest
effect on flooding in the study area.

In the case of land use, the analysis of the FR to
residential areas was 2.56, which showed a strong rela-
tionship with flood and residential land use in the study
area. The main reason for this is that residential areas are
often covered with impenetrable surfaces such as asphalt
causing flooding. This finding is consistent with those of
other studies (Lee et al. 2012; Rahmati et al. 2016b;
Tehrany et al. 2014, 2015) and suggests that other land
uses should not be changed to residential land use in the
study area and watershed areas. The FRs obtained for
forest, pasture, and farming land uses were 0.91, 0.89,
and 0.71, respectively. The lower FR of pasture to the
forest can be attributed to their high height, which is
consistent with Rahmati et al. (2016b) results. Due to
the presence of tree cover, forest land use is able to stop
flood and reduces runoff generation and has a much low-
er FR than agricultural land use. As a result, it has a
lower impact on flooding in the study area than the ag-
ricultural and residential land uses. For geology factor,
while the Paleozoic formation forms less than 2% of the
study area, they have the greatest effect on flooding. The
stones of Mesozoic and Paleozoic formations with a FR
of more than one have the most effect on flooding and
the stones of Cenozoic and Proterozoic areas with a FR
of less than one had the least effect on flooding. This
result is consistent with Khosravi et al. (2016) result.
The integration of the geology and river maps of the
study area showed that due to the small area of
Paleozoic rocks, many rivers flow through it, and the
protozoan rocks are mostly found in mountainous areas

with low flood occurrence. The FR of drainage density
factor for different classes of less than 1.36, 1.36–2.11,
2.11–34.13, and 34.13 to 49.17 km2 were 0.91, 0.93,
1.01, and 1.15, respectively. With increasing drainage
density, the FR increases, which has been emphasized
in various studies (Cevik and Topal 2003; Nagarajan
et al. 2000; Pachauri et al. 1998). Once drainage density
increases, penetration decreases and surface runoff in-
creases. As a result, with increasing drainage density,
the risk of flooding increases in the lower lands. The
results showed that the FRs for the south, southeast,
and northeastern directions were more than one and
therefore, they had the most impact on flooding in the
study area. For the other six directions, the FR was less
than one and the direction to the southwest with a FR of
0.6 had the least impact on flooding. These results are
different with the results of Rahmati et al. (2016b). The
reason for this mismatch can be climatic, geomorphic,
and geological differences in two study areas. Slope an-
gel factor can be used as another indicator to prove the
negative relationship between high altitude and flooding.
The lowest FR was 0.53 for class of 20.72–76.01. The
highest FR was obtained for class of 2.36–6.21. As can
be seen from the Table 1, flooding occurred in areas with
high slope, but in lower areas, it occurred more frequent-
ly. The study of plan curvature indicated that the highest
FR was equal to 1.14 for smooth surfaces with the most
impact on flooding. The reason for this can be proved by
the natural properties of flooding, where flooding occurs
more often in flat areas. Overall, according to Lee et al.
(2012), Tehrany et al. (2014), (2015), and Rahmati et al.
(2016b), the most susceptible areas to flooding were the
areas with lowest elevation, minimum slope angle, flat
area, and close to rivers. The lowest FR is related to
convex ranges.

Also, the study of the profile curvature factor, such as plan
curvature, showed that it had the most FR relative to the smooth
surfaces, and the convex and concave ranges with the same FR
had the least impact on flooding. A survey of TWI indicated that
the highest FR was equal to 1.37 for the last class (11.52–21.5)
and the lowest FR was equal to 0.55 for the first class (less than
25.9). The more the TWI values, the higher the flood volume;
this is due to the conditions of soil saturation. The more saturated
the soil, the greater the flooding.

Table 2 The number and
percentage of floods in FSM
using FR model

Flood susceptibility categories Area (km2) Flood number Flood percentage Frequency ratio

Low 3590.13 15 9.74 0.38

Moderate 4944.51 30 19.48 0.55

High 3811.51 48 31.17 1.14

Very high 1594.55 61 39.61 3.46
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In the case of the SPI, the class higher than 15.29482 with a
FR of 42.1 and the class 0.250 with a FR of 0.78 had the highest
and lowest impact on flooding, respectively. SPI shows the flow
power in terms of erosion (Tehrany et al. 2015). As a result, the
higher the flow power, the more flooding.

ANFIS

Data standardization results

FRwere standardized for classes of each effective factor using
Eq. (2). This equation indicates the standardization between
two values of zero to one, which is presented in the last col-
umn of the Table 1.

Subtractive clustering results

After normalizing the weights obtained from the FR model,
the map of each factor affecting flood, such as slope angle,
aspect, altitude, distance from rivers, drainage density, geolo-
gy, land use, plan curvature, profile curvature, TWI, and SPI
in ArcGIS environment were prepared based on standardized
weights.

In the subtractive clustering, with a change in the range of
influence from 0.4 to 0.8, with steps of 0.01 in different rep-
etitions, considering the lowest error in the testing stage, the
optimal range of influence was determined 0.52 by trial and
error.

Flood map results using ANFIS model

After determining the optimal range of influence and repeti-
tion, the ANFIS model was performed and then all the maps
of the effective factors were normalized, and entered into
Matlab 2014 software pixel-to-pixel. The ANFIS model was
implemented and the weight of each pixel was obtained and
finally a flood map was provided (Fig. 7), classified based on
quantile method. By studying Table 3, it is obvious that the
moderate class has the largest area percentage (34.45%),

Fig. 7 Flood susceptibility map using ANFIS model

0 200 400 600 800 1000

0
.3
0

0
.3
5

0
.4
0

0
.4
5

trees

E
rr
o
r

Fig. 8 The overall error rate for RF model (OOB (black line); no flood
(red line); flood (green line)

Table 3 The number and
percentage of floods in FSM
using ANFIS model

Flood susceptibility categories Area (km2) Flood number Flood percentage Frequency ratio

Low 3648.98 11 7.14 0.27

Moderate 4802.12 31 20.13 0.58

High 3704.21 43 27.92 1.05

Very high 1785.42 69 44.81 3.50
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followed by high (26.57%), low (26.17%), and very high
(12.81%) classes.

Random forest model results

RF model is another decision tree technique in this study. As
mentioned, for the implementation of this technique, the
“randomForest” package was used in the R software. First,
based on the error rate diagram, the random variables were
determined using the caret packet, the optimal number of ran-
dom variables for splitting each node was determined, and
then with the help of this number of random variable, the error
rate diagram was drawn in terms of the number of trees, and
decision was made regarding the number of optimal trees.
Accordingly, the final RF model with 3 random variables
(mtry) was implemented for each node and 1000 trees (ntree).

RF algorithm is based on a handful of decision trees and is
currently one of the best learning algorithms. The OOB (Out-
Of-Bag) was used to evaluate the performance of the model.
As shown in Fig. 8, OOB is a function of trees and is reduced
when more trees are added to the RF algorithm.

The performance results of the RF algorithm are presented
in Table 4 and Fig. 8. OOB and mean squared error (MSE)
values were calculated as 0.36 and 0.29, respectively.
Considering OOB and MSE values, flood modeling of the
study area can be carried out well. As can be seen from the
Table 4, out of 154 flood pixels, 54 pixels were mistakenly
predicted without flood, 100 pixels were correctly predicted,
and among 154 pixels without flood, 97 pixels were properly
predicted without flood, and 57 pixels were mistakenly pre-
dicted as flood.

Flood susceptibility map results using RF model

After preparing the effective factor maps, the flood inventory
map containing 154 flood points and 154 non-flood points
were discontinued and the value of each of the effective fac-
tors was obtained for each point. Then, the data were entered
into the R software, using the RF package, using the quantile
classification method; it was divided into four classes of low,
moderate, high, and very high sensitivity. By studying
Table 5, it is obvious that the moderate class has the largest
area percentage (25.47%), followed by high (25.36%), very
high (25.11%), and low (24.06%) classes (Fig. 9).

Fig. 9 Flood susceptibility map using RF model

Table 5 The number and
percentage of floods in FSM
using RF model

Flood susceptibility categories Area (km2) Flood number Flood percentage Frequency ratio

Low 3354.12 0 0.00 0.00

Moderate 3550.27 2 1.30 0.05

High 3535.27 8 5.19 0.20

Very high 3501.15 144 93.51 3.72

Table 4 Error matrix of RF model

Observed Predicted Error

Without Flood Flood

Without flood 154 97 57 0.37

Flood 154 54 100 0.35
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Fig. 10 ROC curve for three models
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Prioritizing effective factors in flood

The mean of Gini reduction was used to determine the priority
of effective flood factors (Table 6).

As can be seen from the Table 6, distance from rivers,
altitude, and drainage density is the most important factor
for flood and the least important factor is geology. The
results of Tehrany et al. (2015) found that altitude and slope
angle factors were the most important factors affecting on
flooding. Therefore, the importance of variables in the flood
map was influenced by the method used in the research and
the characteristics of the study area. In other words, different
geological conditions, topography, and weather in a region
can change the priority of the factors affecting the flood
mapping.

Evaluation of the model efficiency

One of the most methods for determining accuracy and eval-
uation of models is the ROC curve. In this study, 30% of the
floods were used for validation stage. The results of evaluation
of FR, ANFIS, and RF using ROC curve (Fig. 10) showed that
the obtained AUC for models were 68.6, 63.9, and 71.3%,
respectively.

Rahmati and Pourghasemi (2017) compared the evidential
belief function (EBF), RF, and boosted regression trees (BRT)
models for mapping flood susceptibility in the Galikesh re-
gion, Iran. They found that the EBF and BRTmodels with the
AUC values of78.67% and 78.22%, respectively, were supe-
rior to the RF model with an AUC value of 73.33%. Although
the EBF and BRT models were outperformed than the RF
model, There are several advantages for the RF model over
other models, as it can work with data lost in calibration and
validation data, and because of its hybrid design, it can esti-
mate even when some inputs are lost. In addition, in the
modeling process, the importance of the factors are identified
which can be useful (Ball et al. 2009). Another benefit of RF
model is able to model non-linear relationships between the
flood occurrence and related conditioning factors. Also, the
RF model do not need to check statistical assumptions (e.g.,
outliers and data normalization). As shown in Fig. 10, the RF
model with an AUC value of 71.3% had a good performance
and the FR and ANFIS models with AUC values of 68.6%
and 63.9%, respectively, had a moderate performance in pro-
viding FSM. This study shows that the performance of FR and
ANFIS models is similar, whereas Razavi Termeh et al.
2018) indicated that a combination of ANFIS with
metaheuristic optimization was superior to the FR model. In
addition, Tien Bui et al. (2018) proposed three new hybrid
artificial intelligence optimization models, namely, ANFIS
with cultural (ANFIS-CA), bees (ANFIS-BA), and invasive
weed optimization (ANFIS-IWO) algorithms for FSM in the
Haraz Watershed, Iran. They found that the AUC values of

Table 6 Accuracy mean decrease
and mean decrease Gini of
effective flood factors in RF
model for the preparation of FSM
in the Gilan Province

Factor Flood Without flood Accuracy mean decrease Mean decrease Gini

Topographic wetness index 4.41 0.37 3.61 10.51

Aspect − 4.54 6.30 1.35 9.72

Altitude (m) 17.88 4.78 17.79 15.42

Land use 10.35 − 4.52 5.52 2.45

Lithology 6.97 − 1.62 4.58 1.94

Plan curvature − 3.72 1.75 − 1.37 7.66

Profile curvature 1.98 3.06 3.62 9.03

Drainage density (km/km2) 1.57 6.57 5.93 11.12

Distance from river (m) 17.76 20.40 26.64 18.75

Stream power index − 4.52 1.35 − 1.20 1.15

Slope 4.39 − 2.13 1.93 10.64
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ANFIS-CA, ANFIS-BA, and ANFIS-IWO were 92.1%,
93.9%, and 94.4%, respectively.

The current research like other studies has some limi-
tation. Most importantly, non-flood locations were ran-
domly selected in the study area, the locations are con-
sidered as non-flood locations that did not have flood
occurrence (Chen et al. 2019a). Thus, the new methods
must be applied to select reliable non-flood locations.
The generated flood map can be used in management
and enforcement work to prevent and reduce floods in
the future.

Conclusions

The results of this study showed that by integrating geograph-
ic information system (GIS) and factors influencing flood
conditions and the historical data of recorded flood, the inter-
action between factors influencing watershed floods can be
studied. In general, GIS is one of the most powerful tools for
analyzing and displaying spatial data in the management of
watersheds. For this purpose, eleven factors were used as ef-
fective factors for FSM. Among the effective factors on flood,
the physical characteristics of the basin are very important due
to the high stability and low variability. These properties di-
rectly affect the hydrological regime and indirectly affect the
climate of the area. The prioritization of effective factors using
the mean decrease Gini showed that distance from rivers, al-
titude, and drainage density had the most effect, respectively,
and SPI and geology had the least effect on flooding in the
study area. Meanwhile, FSMwith RF and ANFIS models and
its accuracy evaluation using ROC revealed a reasonable ac-
curacy of the RFmodel (71.3%) comparedwith ANFISmodel
(63.9%) in the study area. Therefore, RF model is suitable for
identifying areas with flood susceptibility. Finally, use of RF
model is proposed for FSM, especially in developing
countries.
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