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Abstract
Determining the link between rainfall and flow for a watershed is one of the most imperative problems and challenging tasks
faced by hydrologists and engineers. Conceptual and Box-Jenkins hydrological models represent suitable tools for this purpose in
circumstance of data Scarce and climate complexity. This research consists in a comparative study between conceptual models
and Box-Jenkins model, namely, GR2M, ABCD, and the autoregressive moving average (ARIMA) which has a numerical
design. The three models were applied to three catchments located in the north-west of Algeria. Basins have been selected
according to the availability of long-time series of hydrological and climatic data (more than 30 years) to calibrate parsimonious
models, taking into account the climatic variables and the stochastic behavior of the natural stream flow. Overall, the conceptual
models perform similarly; whereas the results show that the GR2M model performed better than the ABCD in the validation
stage, the stochastic model shows better results as opposed to conceptual models in the case of the Mellah Wadi which presents
high permeability in its behavior. This is due to the simplicity of the model needed for data (only runoff data) and the ability of the
stochastic model to produce stream flow in complex catchments. Such circumstance could be caused by different motivations. On
the one hand, the diverse number of model parameters that make the ABCD the less parsimonious approach, with four parameters
to be calibrated. On the other hand, the inability of the ABCD and the ARIMA model to capture and describe the groundwater
processes, important for the cases study. Moreover, the validation period includes a large drought period, started in the late 1980s,
which makes difficult model adaptation to different hydrological regimes.
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Introduction

Understanding and modeling hydrological behavior is an im-
portant challenge for managing the water resources and for the
investigation of extreme hydrological events, such as floods
and droughts. However, a substantial topic in many areas is
that meteorological and hydrological data accessibility which
is frequently rare. Several problems associated with obtaining

reliable long-term hydrological data in semi-arid regions in-
clude limited economic resources for monitoring and climates
complexity (Beaumont et al. 2016; Wheater 2002). The appli-
cation of accurate modeling procedures to predict and
simulate water availability is an indispensable way for flood
protection, irrigation, drought management and water needs.
According to Refsgaard and Knudsen (1996) and Wagener
et al. (2004), two major categories of rainfall-runoff models
can be notable—deterministic models and stochastic
models—the first family can be classified into black box
models, such as artificial neural networks ANN and statistical
models such as Box-Jenkins ARIMA model and conceptual
or physically based models such as the GR family. Rainfall-
runoff models differ generally in underlying design philoso-
phy. The prior contains forecasting applications (flood warn-
ing and hydropower operation) and catchment management
purpose (climate impact studies and water distribution); the
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conclusions are geared on the way to understanding the catch-
ment function and how the individual processes combine to
produce catchment response (Parajka et al. 2007). The choice
of suitable hydrological modeling for a particular catchment
with a special hydrological environment and a distinct physi-
cal background should be established on a diversity of aspects
containing data availability, model complexity, and prediction
uncertainty among others. Consequently, for making a deci-
sion on model selection a comparison between the pros and
cons of a variety of hydrological models is necessary. In the
literature, several studies elaborate the subject of comparative
analysis of different hydrological models (Bai et al. 2015; bin
Shaari et al. 2017; Machekposhti et al. 2018; McCuen 2016;
Mohammadi et al. 2005; Singh et al. 2005; Valipour et al.
2013). In the current research, various models will be used:
rural monthly engineering model with two parameters
(GR2M), Thomas ABCD model and the non-seasonal
autoregressive integrated moving average (ARIMA) models,
are involved to predict flow in three basins in the northwestern
Algeria.

Conceptual models (occasionally called gray-box models)
are transitional between theoretical and empirical models.
Generally, conceptual models consider physical laws but in
extremely simplified form. There is a big variety of models
which belong to this class; examples which are familiar to
several researchers are HBV, GR, and the Thomas ABCD
model (Xu 2002). Conceptual models, especially GR2M,
have been widely employed for predicting and simulating
different hydrological processes: drought forecasting
(Belarbi 2017), assessing hydrologic changes (Lyon et al.
2017), and quantifying the impact of human activities and
climate change on stream flow (Ahn and Merwade 2014).
Researchers sub-cited in references argued that this kind of
models presents good capacities to reproduce the flows from
the rainfall data under climate variability.

Traore et al. (2014) apply the GR2M and the GR4J models
for evaluating water resources of the Koulountou River Basin,
a tributary of the Gambia River where they found that the
GR2M shows the best performance and easier for calibration
and application, and they conclude that it can be used to
restore gaps in series of flows. Bai et al. (2015) compared
the performance of 12 monthly water balance models in dif-
ferent climatic catchments of China. They found the GRmod-
el to be more suitable for monthly river predicting. They con-
clude that the GR2M two-parameter model is sufficient to
give a good performance for monthly runoff simulation.
Sharifi (2018) used the GR2M two-parameter monthly water
balance model for simulating monthly seasonal and annual
runoff in Kalu and Mahaweli rivers of Serilanca. He found
that the model with the simple structure and two parameters
proved to be a very efficient model when simulating runoff in
different time scales. It was concluded too that this two-
parameter monthly water balance model can be easily and

efficiently used for the water resources planning and
management; this is due to its plainness and great
productivity in performance.

The ABCD model is a conceptual water balance model
well known in modeling different hydrological processes.
Alley (1984) studied the comparison of three water balance
models; the results showed that the ABCDmodel had the best
performance, especially in its capacity to reproduce the ob-
served behavior of ancillary catchment states (e.g., groundwa-
ter). Wang et al. (2011) used the ABCD model for simulating
monthly stream flow in the Australian catchments; they found
that the ABCD model is a good performer at simulating low
flow compared with daily water balance model. They con-
cluded that monthly water balance is more advantageous com-
pared with daily water balance model for the reason that the
monthly one requires less data with a low computational cost.
In order to estimate the impact of climatic variation on the
stream flow in the Yiluo River in China (Liu et al. 2013)
carried the ABCD water balance model to see the attribution
of change of stream flow, the results showed that the ABCD
model proved a high accuracy for long-term simulation of
stream flow. Currently, mathematical models have taken over
the most important tasks of problem answering in hydrology.
A mathematical model expresses the system behavior by a set
of equations, perhaps together with logical declaration stating
relationships between variables and parameters without taking
into account the groundwater behavior of the catchment (Xu
2002). Box-Jenkins models became one of the universal
models in estimating hydrological time series, particularly af-
ter publishing the work of (Series 1976). An ARIMA non-
seasonal model is an overview of an ARMA model. This
model is applied in some cases where data clarify suggestion
of non-stationary, where an initial differencing step (corre-
sponding to the “integrated” part of the model) can be applied
one or more times to remove the non-stationary. Therefore,
ARIMA models are non-static and cannot be used to estimate
the missing data. However, these models are more suitable for
estimating changes in a process (Karamouz and Araghinejad
2012). The non-seasonal autoregressive moving average
(ARIMA) models can be employed in a varied range of re-
quests in many hydrological modeling problems such as
stream flow prediction (Al-Juboori and Guven 2016;
Mohammadi et al. 2005), rainfall–runoff modeling
(Castellano-Méndez et al. 2004; Farajzadeh et al. 2014;
Machekposhti et al. 2018), and drought forecasting (bin
Shaari et al. 2017; Mishra and Desai 2005). Ahsan and
O’Connor (1994) stated that Box-Jenkins model appears quiet
reliable for predicting flow time series with a minimum mean
square error when the flow forecasting model is expected to be
autoregressive moving average model and the corresponding
flow data are free of measurement errors. Abudu et al. (2010)
applied autoregressive integrated moving average (ARIMA),
seasonal ARIMA (SARIMA) and Jordan-Elman artificial
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neural networks (ANN) models in forecasting monthly stream
flow in the Kizil River, Xinjiang, China. The results indicated
that ARIMA model performed similarly to ANN models.
Each of these different hydrological models has its own po-
tential, advantages, and disadvantages. Accordingly, it is im-
portant to compare them from the standpoint of these proce-
dures in terms of prediction accuracy and efficiency on the one
hand, and their implantation in different climate conditions
and catchments characteristics, on the other hand. The purpose
of this study is, therefore, to evaluate whether the parsimoni-
ous hydrological models are able to simulate historical stream
flow time series in northern Algeria. The main objective of the
research is to compare conceptual rainfall-runoff hydrological
models (ABCD and GR2M) with a stochastic modeling ap-
proach (ARIMA). Relevant to this, the following research

questions are put forward:

(i) Which model will be suitable to predict flow in this spe-
cial type of complex climate?

(ii) Have geological structures of the catchments an impor-
tant effect in the simulation of these models?

(iii) Does the degree of complexity of the model affect the
accuracy of the prediction?

In Algeria, GR models have been widely used (Belarbi
et al. 2017; Merabet-Baghli et al. 2018; Otmane et al. 2017;
Paturel et al. 2017). They gave varying results in terms of
robustness according to the geographical regions of the coun-
try. On the other hand, ABCD and ARIMA models have not
been tested before; hence, the importance of this work that
will allow comparison of these different approaches to find
out the best alternative. Flow forecasting is a very important
step in addressing the information needed for hydraulic stud-
ies, engineering structures, and protection studies.

Materials and methods

Study area

Algeria is part of the semi-arid areas which cover over 40% of
the world’s land surface and which are more exposed to the
phenomenon of climate change (Boudjadja et al. 2003; Meddi

Fig. 1 Location of study basins rainfall, flow, and climate stations
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and Hubert 2003). The management of the water resource in
North Africa is more complex than it is in tropical zones due to
the deficiency of perennial wadis and other readily available
water sources (Souza et al. 2016). In this study, we are inter-
ested in the northwestern part of the Algerian territory. From
1970 to 2004, the country underwent the most severe drought
period, with increases in the annual average temperature
(Bakreti et al. 2013) and reduction of rainfall about 25%
(Meddi and Hubert 2003). The location of the studied basins
extends from 34°, 24′ to 35°, 48′ north latitude and 2°, 12′ to
0°, 12′ east longitude. The highest elevation of the study area
is located in theMont of Telemcen with 1614m and the lowest
is 16 m at the Mellah hydrometric station in the Tlata basin.
The present research has focused on three sub-basins, two
located in the Oranian coastal area (Wadi Tlata and Wadi
Mellah) and the third in the Tafna basin (Wadi Chouly) (Fig.
1). Their drainage areas are 95 km2, 720 km2, and 170 km2

respectively.
Geologically, the study area is occupied by a geological

series ranging from Primary to the Quaternary period, and it
is hollowed out in a material of high variable resistance. Based
on the primary schisto-quartzitic substratum and secondary

carbonate formations, tertiary sediments were deposited, pre-
dominantly Miocene clays, sandstones, and quaternary alluvi-
ums occupying the valley bottom and plains (Benest 1985).
Heading to the Mediterranean Sea and in the east of the study
area, according to Fig. 2, we notice the presence of the Large
Sabkha of Oran. This Sebkha consists of a vast salty lake
surrounded by successive strata to the north (Misserghin,
Amria, Bou-Tlelis, etc.) and the great plain of Mleta to the
south.

The northern part of Algeria is characterized by a
Mediterranean climate with a relatively cold and rainy winter
and a hot and dry summer. The annual rainfall reaches
400 mm in the west, 700 mm in the center, and 1000 mm in
the east for the coast. This type of climate is also found in the
Tellian Atlas chains where we record totals ranging from 800
to 1600mm in the eastern summits, while the values are lower
in the center (700 to 1000 mm) and in the west (600 mm). In
the plains of the Tellian Atlas, rainfall varies between 500 mm
in the west, 450 mm in the center and 700 mm in the east. The
pluviomtric regime is characterized by a decrease of about
25% since 1975 (Meddi and Hubert 2003) and confirmed by
Taïbi et al. (2016). The hydrological regime is variable. The

Fig. 2 General map of the massif Oranian coastal
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spatial evolution of the flow follows the spatial variability of
rainfall. The latter decreases from the east to the west, and
from the south to the north.

Figure 3 illustrates the spatio-temporal variability of rain-
fall in the northwestern Algeria.

Data

The collected data concern rainfall, runoff, and temperature.
Conceptual models (ABCD and GR2M) require evapotranspira-
tion as an essential input; for this purpose, the Thornthwaite
model for estimating the evapotranspiration will be used. The
data used were obtained from the two agencies responsible of
rainfall network, i.e. the National Agency of Water Resources
(N.A.W.R) and the National Meteorological Office (NMO). The
characteristic of set data are regrouped in Table 1.

GR2M

The GR2M model (agricultural engineering with 2 monthly
parameters) is a conceptual model with two parameters. It is
developed by the CEMAGREF (France) for applications in
the field of water resources and the base flow. This model has

known several versions, proposed successively by (Kabouya
1990; Makhlouf 1994; Mouelhi 2003; Mouelhi et al. 2006)
which made it possible to improve gradually the performances
of the model. The version presented here is that of Mouelhi
et al. (2006) which appears the best performing. The schemat-
ic of the GR2M is presented in Fig. 4.

At the beginning, the production store has a capacity to
collect the moisture defined by parameter X1. The initial level
S specifies the initial state of water/moisture in the production
store of X1 capacity. Rainfall (P) is distributed such that total
of the rainfall increases the level in the production store
(infiltration) and the rain that does not infiltrate (excess) be-
comes surface flow (P1). The water level in the production
store also varies due to evapotranspiration (ET). The level in
the storage tank is also affected by percolation (P2). The re-
maining water becomes the storage water level S that is used
as the starting level for the next time step (month). The routed
water consisted of the infiltrated water and excess rainfall. The
routed water (R1) is affected by the exchange coefficient X2
that represented groundwater exchange. X1 and X2 are free
parameters that are determined through calibration. According
to Mouelhi et al. (2006), the routing store has a fixed capacity
of 60 mm.

Fig. 3 Rainfall map of the study area (the National Agency of the Water resources of Algiers (Agence Nationale des ressources hydrométrique, ANRH)
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ABCD

TheABCDmodel is a conceptual model with four parameters,
it presents a diverse formulation in the evapotranspiration pro-
cess, and takes into account an excess of water whenever the
soil moisture reservoir (S) is not full yet (Mouelhi et al. 2006).
There are four parameters governing the model behavior—A
controls the amount of runoff and recharge that occurs when
the soils are under-saturated; B controls the saturation level of
the soils; C defines the ratio of groundwater recharge to sur-
face runoff; and D controls the rate of groundwater discharge
(https://abcd.walkerenvres.com). As displayed in Fig. 5, the
ABCD contains two compartments: the first one is the soil
storage (S) and the second is the ground water storage (R).
The upper (S) has two productions: runoff and infiltration.
Therefore, the ABCD has two inputs: rainfall (P) and evapo-
transpiration (ET). The outputs will be the runoff (Qs), infil-
tration, monthly available water, real evapotranspiration (ET),
satisfied soil moisture at the last of month (S), total runoff (Q),
groundwater runoff (QR) and monthly groundwater storage

(R) (Fig. 3). The following equations describe the catchment
runoff production (storage, soil moisture and ground water).

Storaget þ ∑Outflowt ¼ Storaget−1 þ ∑Outflowt

SoilMoisturet þ ETt þ Runoff t þ Recharget ¼ SoilMoisturet−1
Groundwatert þ Discharget ¼ Groundwatert þ Recharget

þ Precipt

Box-Jenkins model

According to the previous works of Yule and Wold (Wold
1938; Yule 1926), Box-Jenkins (Series 1976) contracted a
convenient approach to constructing ARIMA models, which
have the basic effect on the forecasting applications and the
time series analysis. As demonstrated by Valipour et al.
(2013), such a model can be created using a combination of
moving average (MA) and AR processes. To apply the
ARIMA model, some processes have to be realized first. It
proposes a three-phase practical technique to achieve a suit-
able model; this technique is based on identification, estima-
tion, and diagnosis (Fig. 6).

Table 1 Calibration and
validation periods of the models Catchments Hydrometric stations Period of calibration Period of validation

TAFNA Chouly Wadi (160601) 1971–1988 1995–2006

Oranian coastal TLATAWadi (040401) 1979–1989 1990–2010

Mellah Wadi (040220) 1979–1990 1990–2011

Fig. 4 Schematic of the GR2M model (Mouelhi et al. 2006) Fig. 5 Schematic of the ABCD model (Thomas 1981)
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The first step is to check the stationarity of the data set.
“Stationarity” designates that the series remain at a constant
level over time. Data should also show a constant variation in
their variability over time. This is easily appreciated with a
series that is spectacular seasonal and grows at a faster rate.
Many accounts associated with the process cannot be deter-
mined without gathering the stationarity conditions. The
ARIMA model function is represented by (p, d, q); these pa-
rameters are successively the order of the autoregressive com-
ponents, the number of differencing operators, and the highest
order of the moving average term. According to Series (1976),
the Box-Jenkins methodology proposed an extensive variety
of ARIMA models to select from; for the present study, the
projected ACF and PACF were used to select one or more
applicable ARIMA models. The basic idea is that each
ARIMA model should be linked with theoretical ACF and
PACF. During the identification step, we obtained the estimat-
ed ACF and PACF, deliberate from the data derived from
different theoretical ACF and PACF. Consequently, the most
resembled model to the theoretical one will be chosen, this
model is then adapted to the available data by calculating the

essential coefficients. If these estimated coefficients do not
answer some mathematical conditions, the model is rejected
(Valipour et al. 2013).

In time series predicting, Yt, can be reflected as the output
of the linear system, where the input εt is a Gaussian white
noise, Yt is defined by Eq. (1) (Hamilton 1994);

Y t ¼ μ þ ψ Βð Þεt ð1Þ

μ is the mean of Yt, the back shift operator B is defined by
Eq. 2; Bkεt = εt − k, for K = 1, 2 …, and ψ(B) is the transfer
function, which links the input, εt, to the linear system output,
Yt, such as ψ(B) = 1 +ψ1B +ψ2B

2….
The autoregressive (AR) one is a particularly interesting

class of these models. In such a model, every value Yt is the
weighted and finite sum of previous values plus a random
term εt. The model is then designated by AR (p), p is the
corresponding order. Therefore, for μ = 0, it is expressed as
follows (Valipour et al. 2013):

ϕ Bð ÞY t ¼ εt ð2Þ

Where ϕ(B) = 1 − ϕ1B − ϕ2B
2 −… − ϕpB

p is the AR (p) op-
erator, which is a p order polynomial in B, which converges
for |ϕi| < 1, the moving average (MA) approach is another
interesting model to insure the stationary conditions, in which
each value is the sum of q + 1 previous values of a white noise,
hence Yt is defined in the following equation (Eq. 3) (Valipour
et al. 2013);

Y t ¼ θ Bð Þεt ð3Þ
Where θ(B) = 1 − θ1B − θ2B

2 −… − θpB
p is the MA (q) oper-

ator, which is a q order polynomial in B, and it converges for
|θi| < 1 in order to insure for invertibility condition insurance
(Valipour et al. 2013).

The linear combination of AR (p) and MA (q) models
generate a new mixed process called autoregressive and mov-
ing average of order p and q, ARMA (p, q) and it is expressed
as follows (Valipour et al. 2013).

ϕ Bð ÞY t ¼ θ Bð Þεt ð4Þ

In this case, Yt, can be considered as the output of a linear
filter whose transfer function is the ration of the two polyno-
mials θ(B) and ϕ(B):

Fig. 6 Schematic of the ARIMA forecasting model (Series 1976)

Table 2 Range of coefficient of
efficiency NSE, BIAS (%), and
coefficient of determination
(Moriasi et al. 2007)

NSE BIAS (%) R2

Very Good 0.75 < NSE ≤ 1.00 PBIAS < ± 10 0.00 0.75 < R2 ≤ 1.00
Good 0.65 < NSE ≤ 0.75 ± 10 ≤ PBIAS < ± 15 0.65 < R2 ≤ 0.75
Satisfactory 0.50 < NSE ≤ 0.65 ± 15 ≤ PBIAS < ± 25 0.50 < R2 ≤ 0.65
Unsatisfactory NSE ≤ 0.50 PBIAS ≥ ± 25 R2 ≤ 0.50
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Y t ¼ θ Bð Þ
ϕ Bð Þt

εt ð5Þ

This type of modeling assumes data to be stationary
(Mohammadi et al. 2005), but this is not the case in most of
hydrological time series (Hamilton 1994). In this case, it is
always possible to make them stationary using some mathe-
matical transformations such as the differences and the normal
logarithm. Hence, ARMAmodel becomes ARIMA; more de-
tails on the method can be found in several references such as
(bin Shaari et al. 2017; Mohammadi et al. 2005; Valipour
2015; Valipour et al. 2013). The general basis of the used
methods in this investigation revolves around the identifica-
tion of the hydrological models that best fit each catchment
considered (Hamilton 1994). The assessment of the goodness
of fit for the three models was mainly performed using the
ratings suggested (McCuen 2016); Pearson’s correlation coef-
ficient between observed and predicted runoff in the studied
period was also analyzed. The conceptual hydrological
models are defined with two parameters for the GR2M and
four parameters for the ABCD, they present different moisture
balances according to the different processes in a hydrological
system through all phases of the hydrological cycle. The
ARIMA model with three parameters takes into account only
the observed runoff as the exclusive variable as a time series;
the goodness of fit of this type of model based on the Akaike’s
Information Criterion (AIC) and the Bayesian Information
Criterion (BIC), depends also on the coefficient of determina-
tion R2.

Goodness of fit

Themodel parameters were calibrated using different efficien-
cy indices such as the Nash-Sutcliffe Efficiency (NSE) (Nash
and Sutcliffe 1970), the coefficient of determination R2, the
root mean square error (RMSE) (Singh et al. 2005) and the
percent bias (%). Moriasi et al. (2007) proposed a rating sys-
tem to classify the models into four types: very good, good,
satisfactory, and unsatisfactory.

For the Box-Jenkins model, to analyze the performance of
these models, another two popular measures were applied
such as the Akaike information criterion (AIC) and the
Bayesian information criterion (BIC). They are used for com-
paring maximum likelihood models.

NSE ¼ 1−
∑
n

i¼1
Qoss;i−Qmod;i

� �2

∑
n

i¼1
Qoss;i−Qoss

� �2 ð6Þ

RMSE ¼ 1

n
∑
n

i¼1
Qmod;i−Qoss; ið Þ2

� �1=2
ð7Þ

BIAS %ð Þ ¼
∑
n

i¼1
Qmod;i−Qoss;i

� �

∑
n

i¼1
Qoss;i

*100 ð8Þ

AIC ¼ −2*ln likelihoodð Þ þ 2*k ð9Þ
BIC ¼ −2*ln likelihoodð Þ þ ln Nð Þ*k ð10Þ

Table 3 Calibration and
validation performance for
GR2M model

Calibration Validation

Catchment X1 X2 RMSE NSE BIAS R2 RMSE NSE BIAS R2

Chouly Wadi 5.6 0.8 1.44 0.85 − 16.82 0.81 0.34 0.7 16.18 0.76

Tlata Wadi 4.53 0.55 0.016 0.84 − 0.68 0.78 0.46 0.73 24.08 0.74

Mellah Wadi 7.13 0.66 0.37 0.29 − 24.4 0.11 1.15 − 0.1 − 77.63 0.08

Fig. 7 The comparison of the observed and predicted monthly stream flow using the GR2M procedures for Chouly and Tlata wadi watershed for
validation
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Where n is the number of data observations, Q (oss) is the
observed stream flow, Q (mod) is the estimated stream flow,
and Q (oss) is the average of observed stream flow. The
modeling procedure having lower RMSE values can be sup-
posed to be the most accurate model for stream flow predic-
tion. A value of NSE equals to 1 means an optimal perfor-
mance of the model. When the simulated values correspond
exactly to the observed values, I, t established the model’s
ability to simulate the flow values from the mean values.
Correlation coefficient values near unity indicate a linear re-
lationship between the observed and predicted stream flows
(Table 2).

Results and discussion

Calibration and validation of the models

The GR2Mmodel The calibration of the GR2Mmodel is based
on two parameters: X1 and X2, coefficient of production and
exchange, respectively. The calibration of the model was done
by comparing the observed and predicted stream flow data in
the three catchments for different periods (Table 1). All the
calibrated parameters of the selected model were identified
using iterative procedure for several times based on high value
of R2 and NSE criteria and low value for RMSE. Table 3
presents the calibrated parameter values for the model consid-
ering a high value for R2 and for the NSE criteria.
Furthermore, a graphical verification was done to ensure the

reliability of the rainfall–runoff behavior in catchments. The
performance of the GR2Mmodel in the validation period was
evaluated using a graphical illustration to compare the ob-
served and simulated flows (Fig. 7).

Considering Fig. 7, it can be assumed that there is a relatively
good agreement between the observed and simulated flows. A
comparison of the observed and simulated monthly flows for the
GR2Mmodel is shown in Fig. 8, which confirms the robustness
of the calibrated model to predict flow (Table 3).

The ABCD model For predicting runoff using the ABCDmod-
el, a process was developed for calibrating the model automat-
ically and for predicting runoff. For each catchment, the spa-
tial average of monthly rainfall and PE is computed over the
entire studied period, the model was used with these data as
input, while their respective four parameters were improved
within a defined range (Table 4). The objective of these sys-
tematic test runs was to optimize the statistical criterion be-
tween the predicted and observed values of flows for the cal-
ibration and the validation period. In order to obtain a success-
ful calibration situation by using automatic optimization pro-
cedures, it will be necessary to formulate numerical perfor-
mance measures that reflect the prediction objectives.
Calibrated and validated values for the model were presented
in Table 4, where results showed that in calibration period the
agreement between the observed and predicted monthly flows
is widely satisfactory.

The calibration performance was evaluated using plots of
the observed and predicted data series and analysis of the

Table 4 Calibration and validation performance for ABCD model

Calibration period Validation period

Catchment a b c d RMSE NSE BIAS R2 RMSE NSE BIAS R2

Chouly Wadi 0.39 18 0.44 0 1.38 0.9 − 19.31 0.91 0.21 0.66 − .48 0.48

Tlata Wadi 0.35 6 0.38 0 0.64 0.84 − 14.37 0.85 0.14 0.65 7.51 0.70

Mellah Wadi 0.52 12.2 0.94 0 0.03 0.31 1.65 0.32 0.3 0.18 − 21.5 0.06

Fig. 8 The comparison of the observed and predicted monthly flow using the ABCD model for Chouly and Tlata basins in validation
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statistical measures. Table 4 presents the calibration and the
validation performance of the ABCDmodel based on the most
accurate model run taking into account the best fit of the
model’s parameters. As can be seen in Table 4, the agreement
between the observed and simulated monthly flows is gener-
ally more satisfactory in the calibration period compared with
the validation period. The performance of the ABCDmodel in
the validation period was evaluated using a plot of the ob-
served and predicted flows (Fig. 9). It can be noted that the
ABCD model predicted the flow better in the Tlata basin than
Chouly basin. As a result, the underestimation of the flow by
the ABCD model in Chouly wadi could be seen in Fig. 10. In
addition, Fig. 10 shows a comparison of the observed and
simulated monthly stream flows with respect to the 1:1 line.

ARIMA models There are five stochastic models to model the
monthly flows with the Box-Jenkins model. The most suitable
one will be selected based on the Akaike’s information, the
Bayesian criterion and the root mean square error. The lesser is
the RMSE, AIC, and BIC, the better is the model. The month-
ly time series need some transformations to be stationary as
indicated in “Box-Jenkins model.” Figure 11 shows the auto-
correlation function and the partial correlation function that
are applied on data. The first two displays show the ACF
and the PACF for initial non-stationary data before application
of the first-order transformation (d = 1). Figure 11, of ACF
and PACF after transformation of data, confirms that the data

are compliant to be used in ARIMA model where we have a
very significant value in lag one for the ACF and two signif-
icant values in the first lags in PACF.

In this way, data are ready for an ARIMA modeling with
(d = 1), several researchers such as Hamilton (1994),
Mohammadi et al. (2005), and Valipour et al. (2013) say that
an order of differences of more than one is not recommended
for time series because data with (d > 1) results have to be
further from reality and the model to be overestimated even
with this order of difference we got the perfect correlation
between the observed and the predicted observations.

As shown in “Box-Jenkins model,” three steps of
modeling were followed for selecting the most appropriate
model among the different ARIMA models to the time
series of stream flows in the three catchments located in
the study area. To define the insistence system in the series
the ACF and the PACF were tested. Different models were
identified based on the ACF and PACF analysis. Table 5
presents the 9 selected ARIMA models which might be
suitable for predicting the monthly stream flow in the three
catchments under study. For selecting the best-fit model
out of the various tested models, the AIC and BIC criteria
were used; however, the BIC was intended to select one of
the competitive models. The ARIMA (2, 1, 3), ARIMA (1,
1, 1) models performed better than other models. The
ARIMA (1, 1, 1) model had the lowest value of BIC in
the three cases of the study (Table 5).

Fig. 9 The scatter plots of the
observed and predicted monthly
flows using the GR2M in the
Chouly and Tlata wadi
watersheds for the validation data
set

Fig. 10 The scatter plots of the
observed and predicted monthly
flows using the ABCD model in
the Chouly and Tlata basins for
the validation period
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The residual autocorrelation function tests were employed
for checking the adequacy of the models fitted to the time
series. Depending on the RAFC tests and residual correlation,
the ARIMA (1, 1, 1) model was the most suitable one.
Figure 11 shows a plot of the RACF for the selected ARIMA
(1, 1, 1) model in the three catchments under study. It can be
noted that the estimated values fall within the 95% confidence
interval. Therefore, the residuals are normally distributed and
white noise. The final calibrated model must be tested for the
next step to predict stream flow data series in the period of
validation. The selectedARIMA (1, 1, 1) model predictedmod-
erately the stream flow in the three catchments in the validation
period. Figure 12 shows the comparison between the observed
and predicted stream flows in the validation step. However, the

underestimation of the stream flow by the selected model dur-
ing high flow periods is seen in Fig. 12 especially for the Tlata
wadi. Figure 13 shows the accuracy of the ARIMA model in
the validation stage as a scatter plot of the observed and pre-
dicted stream flows. Figure 12 shows the calibration and the
validation with the Box-Jenkins ARIMA model with one pa-
rameter of autoregressive and moving average. It was the sim-
plest and the quickest to predict stream flows in a semi-arid
catchment. It is so clear also that the Box-Jenkins model is more
powerful to predict low flow, but it was so weak in high flow or
peak point such as extreme events that are often observed in the
area of study. On the other hand, the trend period has no influ-
ence during the simulation and the model is more stable after
some iterations.

Fig. 11 The RACF for the selected ARIMA (1, 1, 1) model; (a) display of the quality of the calibration (b) display of the quality of the validation

Fig. 12 Results of calibration obtained by the ARIMA (1, 1, 1) model
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Hydrological models comparison

Table 6 presents the comparison between the stochastic model
(ARIMA) and the conceptual models (GR2M and ABCD) in
the validation stage based on different statistical indexes
namely, RMSE, NSE, BIAS, and R2.

According to these criteria, the GR2M model performed
better than the other models. The ABCD model gave compet-
itive results of prediction compared with the ARIMAmodel in
the case of Chouly and Tlata wadi but it is not the case in the
third catchment where the ARIMA model prove its ability for
modeling stream flow in the Mellah wadi. GR2M and ABCD
models show small values of prediction errors with reference
to the RMSE criterion. It can be noted from Table 5 that the
statistical evaluation of the predicted stream flow provided the
less values of RMSE for the ABCD model in the three catch-
ments under study. On the other hand, the GR2Mmodel gave
little more value than the ABCDmodel, 0.34, 0.46 respective-
ly for the Chouly and Tlata Wadi, noting that the Mellah wadi
is a special case regarding the complexity of the physical
behavior of the catchment. This indicates that the stream flow
prediction of the ABCD gave less error than those of the

GR2M model. Based on the RMSE criteria the GR2M and
the ABCD performed better than ARIMA model in the
Chouly and Tlata wadi.

The BIAs index was used to evaluate the quality of predic-
tion for the different models used in the paper. The ABCD
model shows least values of BIAS of 7.51 and − 8.48 for the
Tlata and Chouly wadi respectively.

This result shows the small range of overestimation and
underestimation in stream flow prediction using the ABCD
model. Then, again, the results given by the GR2M model
show the large underestimation in stream flow prediction in
the Tlata wadi and the high overestimation in both of Chouly
and Tlata wadi (Table 5), this value is still in an acceptable
standard (Moriasi et al. 2007). However, the accuracy mea-
sures for the ARIMAmodel in Tlata wadi showed a relatively
acceptable performance (RMSE = 0.407, NSE = 0.68,
BIAS =− 13.29, R2 = 0.73). Nevertheless, it was not the case
for the two other models in this catchment. According to the
scatter plots of the predicted and observed stream flow for
each model in previous sections, it can be noted that the
GR2M model has the superiority of predicting in respect to
the 1:1 line. Model parameters for the GR2M appear similar to
all the analyzed catchments. The ABCD parameters are in-
stead rather variable for the three catchments. This circum-
stance is probably caused by the adaptation of the different
hydrological processes embedded in the model structure to the
different cases of the study. What appears quite clear is the
inability of the ABCD model to capture and describe the
groundwater processes (d = 0), which is of particular impor-
tance for the cases studied.

For evaluating the prediction accuracy for the models, the
NSE criterion was used; the NSEs of the ABCD and the
ARIMA model were ranging between 0.54 and 0.66 in the
Chouly and Tlata wadi catchment. The results reveal that the
simulation of these models is not satisfactory but still in an
acceptable standard. On the other hand, the GR2M model
showed a satisfactory prediction accuracy founded on the
NSE criteria with an average value superior than 0.70 which

Fig. 13 The scatter plots of the observed versus the predicted monthly
stream flows using the ARIMA model in the Mellah wadi watersheds in
the validation data set

Table 5 Calibrated model parameters for the Box−Jenkins ARIMA
models

Catchment Model AIC BIC RMSE

Mellah wadi ARIMA (1,1,1) 571.4 582.9 0.407

ARIMA (2,1,3) 570.9 588.2 0.336

ARIMA (0,1,1) 874.3 886.9 0.653

Tlata wadi ARIMA (1,1,1) 874.1 885.6 0.766

ARIMA (1,1,3) 875.9 890.3 0.766

ARIMA (2,1,3) 879.4 899.5 0.732

Chouly wadi ARIMA (1,1,1) 1617.8 1631.3 0.629

ARIMA (1,1,3) 1620.2 1640.3 1.341

ARIMA (2,1,3) 1617.8 1638.9 1.526

Table 6 The comparison of different hydrological models based on
accuracy measures

Catchment Model RMSE (%) NSE (%) BIAS (%) R2 (%)

Chouly Wadi GR2M 0.340 0.70 16.18 0.76

ABCD 0.210 0.66 − 8.48 0.48

ARIMA 0.629 0.59 21.17 0.68

TLATAWadi GR2M 0.460 0.73 24.08 0.74

ABCD 0.140 0.65 7.51 0.70

ARIMA 0.766 0.54 15.23 0.62

Mellah Wadi GR2M 1.150 − 0.1 − 77.63 0.08

ABCD 0.300 0.18 − 21.45 0.06

ARIMA 0.407 0.68 − 13.29 0.73
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sets the GR2M model better than the other two models. This
implies that the GR2M model is the most accurate modeling
procedure based on NSE criteria.

For the complex catchment, which is the Mellah wadi, the
ARIMA proves good ability for modeling this type of catch-
ments with NSE = 0.68, where the input data were confined
only on stream flow as predictor, as indicated in “Study area.”
This basin is characterized by a specific geology represented,
in certain areas of the basin, by Karsts. Many authors have
found that the ARIMA model gives good results in basins
with a similar geology (Ghanbarpour et al. 2010; Graupe
et al. 1976; Pallard et al. 2009).

The correlation coefficient R2 was used to compare the
different models based on the quality of the agreement be-
tween the observed and predicted stream flow. The average
value of the correlation coefficients for the GR2M and ABCD
models were 0.70 and 0.60, respectively (Table 5), which
shows a good agreement between the observed and simulated
stream flow values. On the other hand, the ARIMA model
shows a satisfactory agreement and correlation in the
Chouly and Tlata wadi catchments and a good agreement in
the Mellah wadi catchment. This result confirms the robust-
ness of the prediction from the GR2M and the ABCD model-
ing procedures for stream flow simulation in the study area.
However, the GR2M model accurately predicted the stream
flow in high flow and low flow. The ABCDmodel performed
very well but not as accurately as the GR2M model. Yet, the
ARIMA model predicted the flow rates very well in the
Mellah wadi catchment.

Conclusion

In order to identify a valid modeling tool for stream flow
predictions in the northernwest of Algeria, conceptual
(GR2M and ABCD) and stochastic (ARIMA) modeling ap-
proaches have been investigated and compared in this re-
search. The different approaches have been used to simulate
stream flow at three catchments featured by different proper-
ties, particularly in terms of the hydrogeological aspect. In
fact, among the three, the Mellah catchment represents the
most complex catchment because of important and diffused
Karst phenomena.

As an overall finding, all the applied methods are charac-
terized by similar hydrological performance in terms of good-
ness of fit indices, although a rank in model performance can
be identified. Conceptual models appear indeed to moderately
outperform stochastic models. In particular, the GR2M has
been identified as the best modeling solution for the case
study, probably due to the fact that this specific approach is
able to model the water exchange term with neighboring
catchments. This is done through the parameter X2 which,
according to the values found during the calibration period,

leads to effectively important contributions of groundwater
exchange. The second best model for the case study is repre-
sented by the ABCD model which, differently to the GR2M
model, was not able to properly characterize the groundwater
store. This can be noted in the results of the parameters cali-
bration which has led to a value of zero for the parameter d
that accounts for this particular hydrological process. The poor
performance of conceptual models in the case of the Mellah
catchment can probably be ascribed to its relevant
hydrogeological processes which cannot be correctly identi-
fied and described by the conceptual parameters.

As a conclusion, this study can be considered as the first
step toward a regional scale analysis where the ability of each
of the considered models may be validated over a larger num-
ber of catchments and where furthermore an investigation of
regional model parameters can be achieved.
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