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Abstract
Precipitation is an essential part of the hydrological cycle. Objective change-point detection plays an important role in the
research on extreme climate events and risk assessment in the context of global climate change. The study can automatically
identify and extract multiple change points over a lengthy time series and calculate trends over several segmentations by uniting
the maximum likelihood approach and the nonparametric Mann-Kendall trend test which is also compared with ordinary least
squares (OLS). The observed station precipitation data were compiled over Hebei Province in China from 1961 to 2014.
Temporal-spatial characteristics were also investigated by using several indices: the number of change points, standard deviation,
timing of change points, minimum and maximum trends for segmentations, and the generalization trend. Obvious change points
were generally around 1974, 1981, and 1998, and occurred at few stations before 1974 and after 2000, indicating that precip-
itation was relatively stable in the study area during the periods 1961–1974 and 2000–2014; the minimum trend for segmenta-
tions decreased over all stations; the maximum trend for segmentations increased over all stations except Leting; and general-
ization trend weakened abrupt changes in specific time sections among the multiple segmentations. Change-point detection
followed by trend analysis can detect an obvious increasing or decreasing trend over certain parts of the time series and the
proposed method can serve as a management tool with proper measures to deal with climate change. The results for both
segmentations and generalization can provide a workable reference for managing regional water resources and implementing
strategies to mitigate meteorological risks.
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Introduction

Global climate change continues to influence our world’s eco-
system, water cycle and soil condition, crop yield, and other
aspects of the natural environment in addition to social and
economic activities (Fischer et al. 2012; Panda et al. 2013;
Zhang 2013; Wang et al. 2018). Research on global climate

change has grown particularly intense in recent years as the
scientific community—and indeed, the public has grown in-
creasingly aware of these effects. (Warner et al. 2009; Wu
et al. 2010). Precipitation is an essential part of the hydrolog-
ical cycle. Abnormal changes in precipitation contribute to a
host of environmental problems (Djaman et al. 2016).
Precipitation tends to rise in the tropical and high-altitude
zones across the globe while decreasing in subtropical zones
(Alexander et al. 2006; Frich et al. 2002). These changing
trends vary by region (Mihailović et al. 2015). In China, study
has revealed inconsistent trends at the regional scale due to the
various analysis approaches and study periods to investigate
them (Fan et al. 2012; Ip et al. 2011). Consequently, there is an
urgent necessity for trend analysis methods that function in-
dependent of the study periods.

Within lengthy time series datasets, precipitation may
change non-monotonically (Khaliq et al. 2007; Rahmani
et al. 2015) or monotonically, however, with wide variations
in amplitude across different periods (Ruggieri 2013). These

Responsible Editor: Abdullah M. Al-Amri

* Wei Shui
shuiwei@fzu.edu.cn

1 College of Environment and Resource, Fujian Provincial Key
Laboratory of Remote Sensing of Soil Erosion and Disaster
Prevention, Fuzhou University, Fuzhou 350116, China

2 Key Lab of Spatial Data Mining & Information Sharing, Ministry of
Education of China, Fuzhou 350116, China

3 Climate Change Cluster, University of Technology Sydney,
Broadway, New South Wales 2007, Australia

https://doi.org/10.1007/s12517-019-4790-5

/Published online: 2 December 2019

Arabian Journal of Geosciences (2019) 12: 745

http://crossmark.crossref.org/dialog/?doi=10.1007/s12517-019-4790-5&domain=pdf
http://orcid.org/0000-0002-8460-6821
mailto:shuiwei@fzu.edu.cn


phenomena reflect the existence of change points in such
datasets (Chen et al. 2016; Fealy and Sweeney 2005).
Traditional approaches to change-point detection assume that
the change point is identical locations (or timing) and quantity
of change points in the data across multiple time series; it is
not flexible enough to apply for longer time series (Jamali
et al. 2015). Moreover, when change points are recognized,
at present, existing approaches cannot contain the necessary
indices to verify the reliability and practicability of the recog-
nized change points (Chen et al. 2016; Fealy and Sweeney
2005; Fu et al. 2015). Because change-point detection is main-
ly used to analyze data of lengthy time series in economy,
environment, ecology, management, and demography, as well
as meteorological research, its approach must meet new re-
quirements for flexibility and simplicity.

Trend analysis approaches are primarily comprised of para-
metric or nonparametric trend test (Burn and Elnur 2002;
Wang et al. 2014; Xu et al. 2004; Zenklusen Mutter et al.
2010). Parametric approaches are simple but require data se-
ries which follow normal distribution. The least squares meth-
od is a popular such approach, in which the best fit is a trend
line with the minimized sum of squared residuals and the
significance of linear fitting is considered the significance of
the trend (Crujeiras and Van Keilegom 2010; Wang et al.
2014). Nonparametric approaches, conversely, do not require
the data series to follow normal distribution. The most com-
monly used is a calculation process that combines the Mann-
Kendall trend test with the Sen’s method (Kendall 1948;
Mann 1945; Sen 1968). This approach is more reliable in
terms of significance test results than the least squares method
and is widely applied for meteorology, hydrology, agriculture,
ecology, and environment (Burn and Elnur 2002; Wang et al.
2015, 2017; Xu et al. 2004). The present study focuses on a
novel nonparametric approach for analyzing precipitation
trends over lengthy time series.

Most of the trend analysis that has been conducted has not
considered the existence of a change point in the time series
analysis (Suhaila and Yusop 2018), also according to a previ-
ous study that different methods often give different numbers
and locations of change points (Sharma et al. 2016); however,
the identification of change points in the previous studies only
consider the location and number of change points; the trend
of each segmentation between adjacent change points cannot
be assessed jointly in the time series; in our study, trend tests
can be used as a management tool with proper measures to
evade climate change impacts (Nouri et al. 2017). We try to
propose an optimized non-parametric method including the
automatic identification of change points and calculation of
segmentation trends for each station, combined with the trend
approach and change point detection which are popular hot
topics in hydrology climate and ecology fields (Razmi et al.
2017). Therefore, the combination of identifying change
points and calculating segmentations trends is our innovation.

This study proposes a change-point detection approach that
automatically identifies the characteristics of change points
(locations and timing) and calculates the trend characteristics
of multiple segments. The approach involves detecting the
locations and timing of change points using the maximum
likelihood approach, and assessing trends analysis and signif-
icance in the data in each segment using the Mann-Kendall
trend test which is also compared with the ordinary least
squares (OLS) method. Notably, we need to do a normal dis-
tribution test before we use OLS linear regression. The pro-
posed approach was applied to a region scale using the num-
ber of change points, standard deviation, timing of change
points, minimum and maximum trend for segmentations,
and generalization trend across the entire study period as the
index. The results presented here may provide a workable
reference for regional water resource management and adap-
tation to extreme climate, as well as technical support for time
series data analysis in other domains of social sustainability.

Study area and data sources

Hebei Province in northern China (113.45–119.83° E, 36.05–
42.58° N) includes 11 cities with 188,800 m2 in total area. It
features complex and varied landforms and is the only
Chinese province encompassed with plateaus, mountains,
hills, plains, lakes, and coasts altogether. The terrain declines
from northwest to southeast.

The study area consists of three landform units, Bashang
Plateau, Yanshan Mountains and Taihang Mountains, and
Hebei Plain respectively. Hebei has a temperate continental
monsoon climate characterized by four distinctive seasons in
most areas, with greater precipitation in the southeast than in
the northwest. Nineteen meteorological stations are provided
data for this study; they represent arable land, woodland, and
grassland cover (Fig. 1). These stations are evenly distributed
across the province and effectively represent the climatic and
spatial patterns of Hebei.

The series of daily precipitation values (mm) over the 19 sta-
tions during the period 1961–2014 were sourced from the China
Meteorological Administration (http://data.cma.cn/en). The
discontinuities with series of daily precipitation can lead to
misinterpretations of the studied climate. In order to avoid errors
and obtain homogeneous climate time series, non-natural irregu-
larities in climate data series must be detected and removed prior
to its use (Ribeiro et al. 2016). From March 2011 to June 2012,
theChinaMeteorologicalAdministration carried out the construc-
tion of ground basic meteorological data. Repeated quality testing
and control were carried out on the continuous observation data in
the monthly ground report data files of national stations from
1951 to the present, which corrected a large number of wrong
data, and made up for the digital missing data, so that the data
quality has been significantly improved. So, we can analyze the
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data directly with no need to do extra homogeneity assessment.
Several stations with missing values were excluded to ensure the
integrity and continuity of the data series across the entire study
period. MODIS Land Cover product data with a 500-m spatial
resolution for the year 2013 were adopted (available online from
the United States Geological Survey website). The land cover in
the study area was classified into six categories: water, grassland,
woodland, arable land, built-up land, and unused land, pursuant to
the classification standards (Liu et al. 2003). The spatial distribu-
tion of these land cover types is shown in Fig. 1.

Methodology

Multiple change-point detection approach

A change-detection approach identifies the time node where the
data element in a lengthy time series changes abruptly. It also
allows the researcher to divide time series data into discrete seg-
ments. In traditional detection, the locations and quantity of
change points may be identical across multiple time series
(Jamali et al. 2015). Although the fitting with the least squares

method is popular in the present research on the detection of
multiple change points, it is prone to error due to the heavy-
tailed distribution of the data series (Zou et al. 2014).
Segmentation at arbitrary change point also fails to reveal optimal
points in terms of their locations and quantity. However, the
distribution of the data in a lengthy time series within individual
segmentations is typically unknown. This type of parametric
method can sustainmodel misspecifications. If the data with time
series have no parametric assumption, we consider the deter-
mined change point based on the independent data Xif gni¼1:

X i∼Fk xð Þ τk−1≤ i≤τ k−1; k ¼ 1; :…;Kn þ 1; i ¼ 1;…; n ð1Þ

where Kn is the true number or quantity of change points; the
locations or date (for time series data) of the change points with
the convention of τ0=1 and τKnþ1 =n+ 1, Fk denotes cumulative
distribution function (CDF) for the segment k satisfyingFk ≠Fk+
1; the number of change points can be allowed to alter according
to the sample size n.

We assume that Z1, …, Zn are mutually independent and

following the same distributionF0, and let F̂n denote empirical

Fig. 1 Study area
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CDF of sample, then nF̂n uð Þ ~binomial(n, F0(u)). If we con-
sider the sample as the binary data with a probability of suc-

cessF̂n uð Þ, in the context for formula (1), the joint-likelihood

for the candidate set for change points (τ
0
1 < ⋯ < τ

0
L ) can be

written as follow:
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where F̂
τ
0
kþ1

τ
0
k

denotes the empirical CDF of subsample time

series X τ
0
k
;X τ

0
kþ1−1

n o
with τ

0
0 ¼ 1 and τ

0
Lþ1 ¼ nþ 1. To es-

timate change points, we maximize the formula (1) in an in-
tegrated form as follow:

Rn τ
0
1;⋯; τ

0
L

� �
¼ ∫∞−∞ξ τ

0
1;…; τ

0
L

� �
dw uð Þ ð3Þ

where w(.) denotes the positive weight function; thus, Rn can
be finite, and the integral is used to combine all the informa-
tion acrossu.

The log-likelihood function formula (2) is essentially relat-
ed to two-sample data goodness of fit statistic test depending
on nonparametric likelihood ratio (Einmahl and McKeague
2003); in order to conduct a balance or stopgap between the
number of change points and the likelihood, we employ the
Schwarz’s Bayesian information criterion (BIC) by consider-
ing the penalty for largeL; we identify the value of L by min-
imizing L as follows:

BICL ¼ −maxRn τ
0
1;⋯; τ

0
L

� �
þ Lζn ð4Þ

where ζn represents the proper sequence going to infinity. The
BIC has been used in ζn = log n to determine the number of
change points and to show its consistency (Yao and Au 1989).

An efficient nonparametric maximum likelihood approach
was adopted in this study to detect multiple change points.
The proposed approach does not assume that the data series
has any specific parameter structure or distribution character-
istics. Therefore, it is suitable for the detection of any changes
in data distribution. The number of optimal change points is
determined by BIC, and locations of the points can be estimat-
ed with the dynamic programming algorithm and maximum
likelihood function. This approach has been performed well in
previous studies on the recognition of multiple change points

Fig. 2 The number of change
points for annual precipitation at
each station
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(Zou et al. 2014). The number of change points detected at
each station is P (P > 0). Using the location of each change

point, the total annual precipitation data series during the pe-
riod 1961–2014 is divided into P + 1 segments.

Fig. 3 Standard deviation for
annual precipitation at each
station

Fig. 4 Hovmöller map for timing
of change points at each station
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Trend analysis approach

The Mann-Kendall (MK) trend analysis is a nonpara-
metric test method (Kendall 1948; Mann 1945;
Haktanir and Citakoglu 2014; Haktanir and Citakoglu
2015) which does not require the data series to be nor-
mally distributed. MK is a proven and effective ap-
proach to analyze monotonous change in data series
(Burn and Elnur 2002; Xu et al. 2004; Ay and Kisi
2015). The null hypothesis H0 states that the data series
xk(k = 1, 2, 3⋯n) are independent from one another and
have the same distribution; the alternative hypothesis
H1 states that there is a monotonic trend in the data
series. The MK test statistics are calculated as follows:

S ¼ ∑
n−1

i¼1
∑
n

i¼ jþ1
sgn x j−xi

� � ð5Þ

where xj represents the sequential data values, n is the
length of the dataset, and sgn is calculated as follows:

sgn x j−xi
� � ¼

1
0
−1

8<
:

if
if
if

x j
x j
x j

>
¼
<

xi
xi
xi

ð6Þ

According to Mann (1945) and Kendall (1948), when n ≥
8, the test statistics S is approximately normally distributed
with the mean and variance as follows:

E Sð Þ ¼ 0

V Sð Þ ¼
n n−1ð Þ 2nþ 5ð Þ− ∑

n

m¼1
tmm m−1ð Þ 2mþ 5ð Þ

18

ð7Þ

where tmis the extent m. The standardized test statistics Z are
calculated as follows:

Z ¼

S−1ffiffiffiffiffiffiffiffiffiffi
V Sð Þp S > 0

0 S ¼ 0
S þ 1ffiffiffiffiffiffiffiffiffiffi
V Sð Þp S < 0

8>>>><
>>>>:

ð8Þ

|Zα| = 1.65, 1.96, and 2.58, which correspond to the critical
values at the significance level P = 0.1, 0.05, and 0.01, respec-
tively. If |Z| > |Zα|, the null hypothesis H0 is rejected; P = 0.05
and 0.01 were considered in the present research.

To analyze the time series variable trend, we used the ro-
bust estimator for the amplitude of trend slopes proposed by
Sen (1968):

Fig. 5 minimum trends for
segmentations at each station
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slope ¼ Median
x j−xi
j−i

� �
1≤ i < j≤nð Þ ð9Þ

where slope is the monotonic increase or decrease rate (i.e. the
linear slope) of the entire data series xk(k = 1, 2, 3⋯n) or any
segmentation xw(w = i, i + 1, 3 + 2⋯j). If it is positive, the
series monotonically increases; if it is negative, the series
monotonically decreases. Median indicates that the function
takes the median value. Sen’s trend calculation was performed
on the entire series and the segmentations (divided by the
results of change-point detection) of annual precipitation data
at the stations during the period 1961–2014, and conducted
significance tests on the Sen’s trend results using the MK
approach.

The ordinary least squares (OLS) linear regression analysis
is used to derive relationships between variables for time se-
ries data that is believed to be uniformly applicable across the
study area (Foody 2003). The OLS technique can quantita-
tively explore the effects of a collection of independent vari-
ables on one dependent variable and OLS also can extract
change trends of the time series data (Yang et al. 2016).
However, if the data do not satisfy some of assumptions, then
results can be misleading, especially, outliers violate the as-
sumption of normally distributed residuals in the least-squares
regression. Therefore, it is important to assess whether the

time series data at each station conform to the law of normal
distribution before the OLS is used; here, we adopt the Q-Q
plot and parametric test (such as coefficient of Skewness, co-
efficient of Kurtosis, and P value (Roozbeh and Arashi 2016)
to determine the normality of time series data. The U-statistics
was constructed based on coefficient of skewness and coeffi-
cient of kurtosis respectively, and P values were calculated by
the K-S test (Liu and Zhang 2016). then USkewness , UKurtosis,
and P values are applied for testing. At least two of the three
indicators can prove the normal distribution (USkewness <
U0.05 = 1.96,UKurtosis < U0.05 = 1.96, P > 0.05) (Liu and
Zhang 2016); the goodness of fit between the precipitation
dataset and the uniform distribution on (0, 1) at each station
are also revealed through Q-Q plots and histogram in our
study. The OLS fitting formula is as follows:

ŷ̂i ¼ aþ bxi ð10Þ

b ¼
∑
n

i¼1
xi−x

� �
yi−y

� �

∑
n

i¼1
xi−x

� �2 ð11Þ

a ¼ y−bx ð12Þ

Fig. 6 Maximum trends for
segmentations at each station
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Fig. 7 Generalization trend at
each station

Table 1 The Mann-Kendall trend
test at each station F means that
significance level of trend is
greater than 0.05, T means that
significance level of trend is less
than 0.05

Station name Z value for segmentations for each
segmentation(from 1961 to 2014)

P <
0.05

Z value for
generalization

P <
0.05

Zhangbei 0.76,− 0.87, − 0.37 F − 0.41 F

Weixian 0.30, − 1.77, 1.41 F 0.08 F

Shijiazhuang − 0.75, 0.28 F − 0.12 F

Xingtai − 1.13, 0.37 F − 0.36 F

Fengning − 0.50, 0.79 F − 1.43 F

Weichang 2.08, − 1.04,0.41, − 1.87, 0.44 T 0.60 F

Zhangjiakou 1.09, − 0.37,1.56, − 0.37,0.54 F − 0.16 F

Huailai 0.44, − 0.08 F − 0.88 F

Chenlai − 0.21, 1.25, − 0.37, 0.29 F − 1.01 F

Zunhua − 0.05, 0.50, − 2.00 T − 1.69 F

Qinglong − 0.21, 1.22, 0.22, 0.21 F − 1.50 F

Qinhuangdao 0.44, − 2.38,0.71 T − 1.42 F

Langfang 0.39, 1.50, − 0043, 1.71, − 2.10 T − 0.36 F

Tangshan 0.16, 0.60, − 0.62 F − 0.95 F

Leting − 0.31, − 1.71, − 0.40 F − 1.67 F

Baoding − 0.75, 0.08, 0.75, 0.21 F − 0.97 F

Raoyang − 0.68, 1.80, − 0.47 F − 1.55 F

Huanghua 0.79, 0.29 F − 1.19 F

Nangong − 0.75, 0.52, − 0.90, 0.97 F − 0.06 F
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where yis the dependent variable, xis the independent variable
, awhich represents the intercept and bwhich expresses the
slope of the relationship between the two variables.

Spatial characteristics

With multiple change-point detection, the number and loca-
tions (or dates) of change points at the 19 stations were iden-
tified and the series were divided into different segmentations.
The quantity of change points reflected the varying degrees of
change in precipitation during the study period. This variable
was compared against the standard deviation at each station to
spatially assess the changes over the time series from different
aspects. The location (or date) of each change point marked
the year in which precipitation sustained an abrupt change in
practice; this information supported engineers in developing
appropriate strategies in response to such change. The
Hovmöller map was used to illustrate the occurrence of
change points at each station in each year (Hovmöller 1949;
Wang et al. 2015). Different segmentations of the series have
different amplitudes or trends of change.

As discussed above, nonparametric MK tests and Sen’s
trend analysis are applied to each segmentation to determine
their respective trend. Spatial comparison was performed on
maximum trend, minimum trend, and generalization trend
over the entire study period for each station. The automatic
segmentation-based trend analysis and generalization trend
analysis were compared against each other. Trends in all the
segmentations and the entire period were depicted as overlap-
ping on the same spatial-temporal diagram to make clear the
magnitude of various changes at each station.

Results and discussion

Variability characteristics of annual precipitation

In this study, annual precipitation variability was characterized
by the number of change points and the standard deviation.
The number of change points at each station during the period
1961–2014 is shown in Fig. 2. The maximum number (4)
occurred at three stations: Zhangjiakou, Weichang, and
Langfang. This revealed that the precipitation at these stations

Fig. 8 Change trend for
segmentations and generalization
at each station
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underwent abrupt changes of multiple times in five time seg-
ments of the study period. The minimum number of change
points (1) occurred at the five stations: Fengning, Huailai,
Shijiazhuang, Xingtai, and Huanghua, indicating that precip-
itation at these stations was relatively stable or underwent only
one abrupt change during the study period. The standard de-
viation for annual precipitation at each station from 1961 to
2014 is shown in Fig. 3. Its spatial distribution is more repre-
sentative than that shown in Fig. 2; that is, the deviation grad-
ually decreased from more than 190 mm in the southeast to
less than 70 mm in the northwest. This might be characteris-
tically the higher precipitation in the southeastern regions and
thereby the higher inter-annual change than that in the north-
western regions. The inconsistency between Figs. 2 and 3 in
terms of spatial distribution was primarily attributable to the
fact that the change points in Fig. 2 represent the precipitation
variability across several time sections, while the standard
deviation shown in Fig. 3 represents the variability across
years. The number of change points and the standard deviation
depicted the variability of precipitation on different time
scales. Both, however, could reveal extreme climate events
or abnormalities related to climate change.

The characteristics of change-point date

To illustrate the dates and locations of change points over
different stations, the Hovmöller map was used to depict
temporal-spatial characteristics (Fig. 4). The red marks on

the map indicated the occurrence of abrupt change points.
Change points were generally obvious around 1974, 1981,
and 1998 and occurred in a few stations before 1974 and after
2000. This suggested that precipitation changed at a relatively
stable pace during the years 1961–1974 and 2000–2014, but
changed abruptly in 1974–2000 during a period in which me-
teorological disasters were likely to occur. Identical dates in
the change points were observed at some adjacent stations due
to the proximity effect of local meteorological conditions in
terms of precipitation. Figure 4 also shows that the change
points were concentrated mostly within Zhangjiakou,
Weichang, and Langfang. The Hovmöller map was also ap-
plied to the temporal-spatial analysis of other elements as it
revealed “hot-spot years,” sites or areas of interest, and the
continuity of changing characteristics in terms of a given area
or time.

Characteristics of trends

To determine the effect of our multiple change-point detec-
tion, temporal-spatial comparison was established between
the data in the segmentations divided by the multiple change
points and the data over the entire time series; this allowed a
clear comparison among minimum trends for segmentations
(Fig. 5), maximum trends for segmentations (Fig. 6), and the
generalization trend (Fig. 7) at each station. In addition, sig-
nificance level is shown with the Z value of the MK test
(Table 1).

Table 2 The table of normal
distribution test at each station Station name Skewness Kurtosis USkewness UKurtosis P values Normal distribution

Zhangbei 0.30 − 0.20 0.92 < 1.96 0.31 < 1.96 0.72 > 0.05 T

Weixian 0.11 − 0.19 0.34 < 1.96 0.30 < 1.96 0.93 > 0.05 T

Shijiazhuang 1.21 2.20 3.72 > 1.96 3.44 > 1.96 0.00 < 0.05 F

Xingtai 1.60 5.64 4.93 > 1.96 8.83 > 1.96 0.00 < 0.05 F

Fengning 0.42 0.10 1.30 < 1.96 0.15 < 1.96 0.45 > 0.05 T

Weichang 0.44 − 0.28 1.37 < 1.96 0.43 < 1.96 0.20 > 0.05 T

Zhangjiakou 0.12 − 0.46 0.37 < 1.96 0.72 < 1.96 0.50 > 0.05 T

Huailai − 0.11 − 0.44 0.33 < 1.96 0.69 < 1.96 0.93 > 0.05 T

Chenlai 0.07 − 0.82 0.21 < 1.96 1.28 < 1.96 0.40 > 0.05 T

Zunhua 0.42 − 0.51 1.29 < 1.96 0.80 < 1.96 0.08 > 0.05 T

Qinglong 0.56 − 0.70 1.73 < 1.96 1.09 < 1.96 0.01 < 0.05 T

Qinhuangdao 1.10 1.96 3.38 > 1.96 3.07 > 1.96 0.00 < 0.05 F

Langfang 0.88 0.16 2.71 > 1.96 0.26 < 1.96 0.00 < 0.05 F

Tangshan 0.46 − 0.09 1.43 < 1.96 0.14 < 1.96 0.33 > 0.05 T

Leting 0.54 0.57 1.66 < 1.96 0.89 < 1.96 0.15 > 0.05 T

Baoding 0.54 − 0.71 1.66 < 1.96 1.10 < 1.96 0.01 < 0.05 T

Raoyang 0.79 0.70 2.43 > 1.96 1.09 < 1.96 0.04 < 0.05 F

Huanghua 1.30 3.65 4.00 > 1.96 5.72 > 1.96 0.00 < 0.05 F

Nangong 0.45 0.69 1.38 < 1.96 1.08 < 1.96 0.20 > 0.05 T

The items presented in italic are the time series data that do not conform to normal distribution, and F is
abbreviationof FALSE,T is abbreviation of TRUE
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Fig. 9 Q-Q plots to present the fitting degree of the precipitation dataset relative to the uniform distribution on (0, 1) at each station
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Table 1 reflected that the significance level between gener-
alization trend and segmentation trend has some differences (T
means P is less than 0.05, F means P is greater than 0.05). For
generalization trend, there are no stations with a P value less
than 0.05. However, four stations (Weichang, Zunhua,
Qinhuangdao, Langfang) with a P value less than 0.05 for
different segmentations were observed which means only the
use of generalization trend may possibly mask abrupt change.

Figure 5 shows where the minimum trend for segmenta-
tions decreased at all stations. The most obvious decreased in
amplitude or trend occurred at Zunhua (− 211.60 mm/year),
Weichang (− 99.80 mm/year), Qinhuangdao (− 70.38 mm/

year), and Leting (− 55.85 mm/year) stations. In effect, to
determine the most abrupt decrease rate in the trend of a given
variant, it was feasible to derive the minimum trend indicator
from the segmentation-based trend analysis as part of the mul-
tiple change-point detection process.

Figure 6 illustrates where the minimum trend for segmen-
tations increased at all stations other than Leting, and most
obviously at Qinglong (43.26 mm/year), Nangong (− 37.00
mm/year), and Raoyang (27.23 mm/year). Again, deriving the
maximum trend indicator from the segmentation –based trend
analysis as part of multiple change-point detection appeared to
reveal the most abrupt increase rate in the trend of a variant.

Fig. 9 (continued)
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Fig. 10 Histograms with normal curves at each station
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Decreasing generalization trends are shown in Fig.7 over
the unsegmented long time data series at all stations other than
Weichang, Weixian, and Nangong. The amplitude of any in-
crease or decrease was insignificant at any of 19 stations. The
greatest amplitude of increase occurred at Weichang station
(0.32 mm/year), and the greatest amplitude of decrease oc-
curred at Zunhua (− 2.56 mm/year), Leting (− 2.5 mm/year),
Qinglong (− 2.27), and Qinhuangdao (− 2.26). The absolute
change was less than 3 mm/year at all stations. The
generalization-based trend analysis effectively smoothened
the trend of abrupt changes in specific time sections.

Generalization trends over full time series and for different
segmentations are shown in Fig. 8; change points occurred at all
19 stations. There was one change point at Fengning, Huailai,
Huanghua, Shijiazhuang, and Xingtai stations, and four (i.e.,
the maximum) at Weichang, Zhangjiakou, and Langfang. As
shown in Fig. 8, the segmentation trends at all stations other
than Leting and Qinhuangdao increased and decreased alterna-
tively. The generalization trends at all stations other than
Huailai, Tangshan, and Raoyang fell between the minimum
and maximum trends on multiple segmentations. This revealed
that generalization trends covered the trends characterized by
abrupt changes in specific time sections among multiple seg-
mentations. Such a change might be abrupt at a certain time
even if the generalization trend was mild.

To compare MK trend tests and Sen’s trend analysis, we use
the OLS linear regression method to calculate the trends.
Table 2 presents the results of the normal distribution test at
each station in the study. T represents accept the hypothesis of
the normal distribution and F is refuse the hypothesis of normal
distribution. We adopt the three parameters USkewness, UKurtosis,
and P values to assess the normality of time series data, in order
to ensure the performance of the assessing results. It is shown
that there are two or three test parameters proving normality of
time series data at each station; if there is only parameter show-
ing the normality, we think that the time series data do not
conform to normal distribution. There are six stations which
do not conform to normal distribution, if the OLS method is
conducted, the results of fitting or calculating change slope may
be wrong. We also used Q-Q plots and histogram to test the
normality of time series data. Figures 9 and 10 show consistent
results with Table 2; this indicates that the test results of the
three methods including parameters, Q-Q plots, and histogram
are consistent and effective, and there are Shijiazhuang,
Xingtai, Qinhuangdao, Langfang, Raoyang, and Huanghua
which do not conform to the normal distribution.

Table 3 presents change trends by using the OLS method;
the values of P indicate determination of the linear trends at the
significance level of 0.05. There is no station with P less than
0.05 which keep pace with the generalization trend by the
Mann-Kendall trend test. However, for the amplitude of change
slope, there is only Weichang station with increasing trend
(0.33 mm/year)) based on the OLS method, which shows

consistency with the result of Sen’s trend (0.32 mm/year) anal-
ysis, Zunhua (− 2.92 mm/year), Leting (− 2.36 mm/year), and
Qinglong (− 2.40 mm/year) have approximate values compar-
ing to the trend slopes calculated by Sen’s trend analysis, re-
spectively. The absolute change was less than 3 mm/year at all
stations whose results are the same as those in Fig. 7 and the
slopes in the two kinds of methods are inconsistent in most
stations. The Mann-Kendall Sen trend and the linear regression
trend are summarized in Table 4; there no one station with a
significant trend (p < 0.05), The Sen slope method does not
need the data to be a normal distribution and trends of OLS
failure to pass the significance level test; therefore, we can draw
the conclusion that the result of MK trend tests have a better
confidence degree which indicates a further application.

Summary and conclusion

Multiple change-point detection and segmentation-based
trend analysis are crucial techniques for the recognition of
climate abnormalities and the monitoring and evaluation of
environmental impact within the context of global climate
change, as well as in research on the spatial-temporal charac-
teristics of other subjects. Hebei Province, one of the major
grain-producing regions in China, was served as the focus of
the present study. The annual precipitation data at 19 meteo-
rological stations in the study area during the period 1961–
2014 were assessed. The nonparametric maximum likelihood

Table 3 The result of linear regression at each station

Station name Slope(change/
b)

Intercept(a) T values P

Zhangbei − 0.16 391.97 − 0.26 0.79 > 0.05

Weixian − 0.11 409.71 − 0.14 0.89 > 0.05

Shijiazhuang − 0.78 550.99 − 0.52 0.61 > 0.05

Xingtai − 1.64 562.88 − 1.09 0.28 > 0.05

Fengning − 1.11 489.35 − 1.46 0.15 > 0.05

Weichang 0.33 430.42 0.44 0.66 > 0.05

Zhangjiakou − 0.37 411.92 − 0.45 0.65 > 0.05

Huailai − 0.49 394.88 − 0.69 0.49 > 0.05

Chenlai − 0.87 546.75 − 0.96 0.34 > 0.05

Zunhua − 2.92 798.01 − 1.66 0.10 > 0.05

Qinglong − 2.40 761.98 − 1.41 0.16 > 0.05

Qinhuangdao − 2.23 705.09 − 1.32 0.19 > 0.05

Langfang − 1.05 536.34 − 0.67 0.51 > 0.05

Tangshan − 1.95 666.01 − 1.43 0.16 > 0.05

Leting − 2.36 671.03 − 1.46 0.15 > 0.05

Baoding − 2.15 579.67 − 1.30 0.20 > 0.05

Raoyang − 2.22 577.80 − 1.72 0.09 > 0.05

Huanghua − 3.03 668.35 − 1.83 0.07 > 0.05

Nangong − 0.47 493.76 − 0.39 0.70 > 0.05
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approach was applied and the number of change points at each
station was optimized based on BIC. The lengthy time series
was segmented based on the identified change points. MK
trend tests and Sen’s amplitude analysis were conducted for
segmentations at each station and validated by comparing
with basic ordinary least squares (OLS) regression analysis
based on generalization trends. The proposed approach repre-
sents an effective combination of nonparametric approaches
including the maximum likelihood, MK trend tests, Sen’s
trend analysis, and basic ordinary least squares (OLS) regres-
sion analysis. This approach enabled flexible and efficient
multiple change-point detection and research on multi-
segment trend characteristics. As reported above, the charac-
teristics of the temporal-spatial pattern were revealed using the
number of change points, standard deviation, timing of change
points, minimum and maximum trends for segmentations, and
generalization trends over the entire study period.

The standard deviation of annual precipitation can repre-
sent the variability of precipitation across several years, and
the number of change points can represent the variability
across several time segments. Change points in the dataset
were generally obvious around 1974, 1981, and 1998, and at
few stations in the study area before 1974 and after 2000;
precipitation changes were relatively stable during the periods
1961–1974 and 2000–2014. The minimum trend for segmen-
tations decreased at all stations but most significantly at
Zunhua (− 211.60 mm/year), Weichang (− 99.80 mm/year),
Qinhuangdao (− 70.38 mm/yea), and Leting (− 55.85 mm/
year). The maximum trend for segmentations increased at all
stations other than Leting, and most significantly at Qinglong
(43.26 mm/year), Nangong (− 37.00 mm/year), and Raoyang
(27.23 mm/year). The generalization trends were character-
ized by absolute change below 3 mm/year at all stations, and
fell between the minimum and maximum trends on multiple
segmentations at all but three stations. It also covered the
trends characterized by abrupt changes in specific time sec-
tions among the segmented series.

The result derived from the proposed approach can better
characterize the trend of climate variables over certain parts.
The proposed approach represents a reference tool for regional
water resource management and novel strategies to combat
the effects of climate change. This approach can yield even
more meaningful results if applied to the time series analysis
on larger spatial scales and across more disciplines, such as

quantitative evaluations of economic management practices,
forest protection initiatives, and environmental and social
development.
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