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Abstract
The accuracy of ordinary response surface method (RSM) is improved using the high-nonlinear polynomial basis functions for
modeling total dissolved gas (TDG). The third-order (3O), fourth-order (4O), and fifth-order (5O) polynomial functions are
applied as the mathematical relations of TDG. The accuracy of third-, fourth-, and fifth-order polynomial basis function based on
high-order RSM (H-RSM) is compared with least squares support vector machine (LSSVM), M5 model tree (M5Tree), and
multivariate adaptive regression spline (MARS) models. The H-RSM, LSSVM, MARS, and M5Tree models were developed
and compared using four input combinations and evaluated using several statistical indices namely coefficient of correlation (R),
Willmott index of agreement (d), Nash-Sutcliffe coefficient of efficiency (NSE), RMSE, and MAE. The models were developed
using data collected from four USGS stations at Columbia River, USA. According to the obtained results, it was demonstrated
that the models worked with high level of satisfactory accuracy with respect to the five statistical indices. Overall, the 5H-RSM1
with four input variables provided the best accuracy at the four stations with R, NSE, d, RMSE, and MAE ranging from 0.911 to
0.965, 0.829 to 0.931, 0.952 to 0.982, 1.456 to 2.263, and 1.022 to 1.751, respectively.
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Introduction

Over the last few decades, with the great importance attributed
to the management and control of dam’s reservoirs, the link-
age between total dissolved gas (TDG) supersaturation and
some environmental problems has been widely recognized
(Parker et al. 1984; Boyd et al. 1994; Tanner et al. 2012). In

particular, and without limitation to the foregoing, the “gas
bubble trauma GBT” in fish also designated by “gas bubble
disease GBD” is the most important and serious problem as-
sociated with the elevation of TDG (Beeman et al. 2003; Skov
et al. 2013; Wang et al., 2018a), and the interest to demon-
strate that TDG supersaturation may be having an adverse
effect on the aquatic life of fish is not new and dates back to
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the beginning of the last century (Gorham, 1898; Marsh and
Gorham 1904; Alikhuni et al., 1951; Parker et al. 1984; Boyd
et al. 1994; Colt 1986). In general, TDG supersaturation is
quantified in percent (%) and calculated as the difference be-
tween TDG pressure and atmospheric pressure, for which
TDG pressure is calculated for any temperature, as the sum
of the partial pressures of all TDG plus the vapor pressure of
water, and generally limited to 110% (Skov et al. 2013;
Politano et al. 2016). Nitrogen and oxygen form the essential
dissolved gas and hence play an important role in the deter-
mination of the final TDG concentration. However, the limit-
ed level of gas concentration varies depending on the nature of
gas dissolved in water, and generally, nitrogen and dissolved
oxygen have been considered unsafe above 110% and 300%,
respectively (Parker et al. 1984). TDG supersaturation is pro-
duced in a major part by the “spill” at “hydroelectric projects”
(Weitkamp et al. 2003). Water is generally spilled whether
through drum gates or also through a series of outlet work
conduits (Bragg and Johnston 2016). According to Beeman
andMaule (2006), the rate of TDG supersaturation increases if
the pressure of TDG falls below the hydrostatic pressure in
dam tailraces.

The objectives related to the monitoring and control of
TDG supersaturation in water ranged, on the one hand, from
providing the relevant physicochemical phenomena which are
causing TDG supersaturation and, on the other hand, under-
standing the anthropogenic and natural causes (CCME 1999).
Consequently, an effective understanding of the TDG super-
saturation represents a high priority, especially for the regions
with high network of dam reservoirs (e.g., Columbia River,
USA), and in this case, the database for all measured variables
plays a crucial role and can help in the development of models
for estimating TDG. Previous studies have shown that TDG
can be analyzed using numerical models (NM), using labora-
tory and field experiment. However, NM possesses an impor-
tant disadvantage that generalization is inappropriate for the
majority of empirical equation derived. Therefore, the results
cannot be generalized statistically to the outside of used data
during the calibration phase (Wang et al., 2018b). Review of
literature clearly demonstrated that various empirical and
physical models were proposed for predicting TDG supersat-
uration (Roesner and Norton 1971; Hibbs and Gulliver 1997;
Shaw 1998; Geldert et al. 1998; Orlins and Gulliver 2000;
Hadjerioua et al. 2012; Feng et al. 2013; Picket et al. 2004;
Tawfik and Diez 2014; Wang et al., 2018a; Yuan et al. 2018).

Roesner and Norton (1971) were the first authors in the
literature that have attributed particular importance to develop
a predictive model for TDG downstream of spillway. The
proposed model was applied at Columbia and Snake rivers,
USA. As a result of the model, it is reported that an effective
depth to reduce the rate of TDG supersaturation is directly
related to a specific discharge. Tawfik and Diez (2014) pro-
posed a model for predicting TDG supersaturation up to the

onset of bubble nucleation at the electrodes (heterogeneous
nucleation). In order to demonstrate the effect of solid media
in water, Yuan et al. (2018) conducted an investigation and
proposed a model linking the density of vegetation with the
TDG dissipation process. The model was able to significantly
increase the performances of predictive models of TDG
“transport” and “dissipation” in downstream high dam spill-
ing. From the obtained results, the authors demonstrated that
the dissipation rate of TDG supersaturation increased with the
increase in vegetation density. A first-order kinetics reaction
model is proposed by Picket et al. (2004). Feng et al. (2013)
used the CE-QUAL-W2 developed by the US Army Corps of
Engineers, for developing a two-dimensional laterally aver-
aged hydrodynamic model for TDG transportation and
dissipation in the deep Dachaoshan reservoir. The authors
demonstrated that the percent saturation increases with the
water depth at the layers near the water surface. A model
based on volume of fluid method was proposed by Wang
et al. (2018b) and applied for predicting TDG downstream
of spillways. TDG was quantified using a mathematical for-
mula taking into account the masse transfers between bubbles
and water.

Orlins and Gulliver (2000) used a combined model having
two components: physical and numerical for total dissolved
gas concentration. The physical model takes into account the
hydraulic information related to the modification of spillway,
while the numerical model estimates the concentration of
TDG using mass transport relation between air and water.
Shaw (1998) implemented a new equation for TDG produc-
tion from spill using the Columbia River salmon passage
model (CRiSP.1). The proposed equation links the discharge
to the TDG% exiting the tailrace of a dam. Hibbs and Gulliver
(1997) proposed a numerical model for determining an effec-
tive bubble depth (EPD) in spillway taking into account three
variables: spillways, flow parameters, and the tailwater depth.
The determined EPD is incorporated into the models used for
predicting TDG in downstream of spillways. In another study,
Geldert et al. (1998) used data collected from three spillways
on the Columbia and Snake rivers for developing a physical
predictive model for TDG caused by the stilling basin in
downstream of the dam. The proposed model takes into ac-
count several ideas, namely transfer across the air water inter-
face, and the hypothesis that TDG% is mainly related to the
stilling basin depth and the downstream river depth.
Hadjerioua et al. (2012) proposed a generalized model for
predicting TDG level. The proposed model included a large
number of parameters including structural, operational, and
environmental parameters, among them are the following: (i)
the depth of the stilling basin, (ii) total head, (iii) volume spill,
(iv) powerhouse flow, (v) TDG pressure, (vi) water tempera-
ture, (vii) barometric pressure, (viii) geometry of the spillway,
(ix) spillway flow deflectors, (x) training walls, and (xi) and
baffle blocks. Several other models can be found in the
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literature (Politano et al. 2007, 2009, 2012, 2017; Stewart
et al. 2015; Witt et al.2017a, b).

Paradoxically, despite the importance attached to the study
and modeling TDG supersaturation and to the application of
DD models in many areas of scientific researches, none of the
above reported investigations have applied or used data-
driven (DD) models for predicting TDG. Recently, Heddam
(2017) proposed for the first time the generalized regression
neural network (GRNN) for predicting TDG at Columbia
River dams. In the present study, we applied four DD models
for predicting TDG (%), namely high-order response surface
method (H-RSM), least squares support vector machine
(LSSVM), M5 model tree (M5Tree), and multivariate adap-
tive regression splines (MARS) using data collected at four
dam reservoirs at Columbia rivers, USA.

Methods

Study area and data used

The data used for developing the models were obtained from
the United States Geological Survey (USGS) database
(https://waterdata.usgs.gov). The study includes four
stations, namely USGS453439122223900 at Columbia
River, right bank, at Washougal, Clark County, WA
(lati tude, 45° 34 ′ 39″ ; longitude, 122° 22 ′ 39″);
USGS453630122021400 at Columbia River, left bank, near
Dodson, Multnomah County, OR (latitude, 45° 36′ 30″;
longitude, 122° 02′ 14″); USGS4538451215620000 at
Columbia River at Bonneville Dam Forebay, Skamania
County, WA (latitude, 45° 38′ 45″; longitude, 121° 56′ 20″);
and USGS453845121564001 at Columbia River at Cascade
Island, Skamania County, WA (latitude, 45° 38′ 45″;
longitude, 121° 56′ 40″). The statistical parameters of the
selected data used in our investigation are summarized in
Table 1. Four variables measured at daily time step were
selected as input variables for developing the models. These
variables were respectively the following: (i) daily water
temperature (TE), (ii) daily barometric pressure (BP), (iii)
daily spill from dam (SFD), and (iv) daily discharge (DIS).
In addition, the total dissolved gas measured in % of saturation
is used as the output of the models. Note from Table 1 that the
SFD and DIS have high correlations with the TDG in all
stations. Data used in the present investigation are based on
large period of measure and cover a period from 1 January
1998 to 31 December 2017 for three stations: USGS
453439122223900, USGS 453630122021400, and USGS
453845121562000, respectively, while for the fourth station
(USGS 453845121564001), the data cover a period from 1
January 2004 to 31 December 2017. However, during the
period of record, the stations have some incomplete data
from year to year. The data set was randomly divided into

two sub-data sets in this study: (i) training subset (70%) for
model calibration and (ii) validation subset (30%) for model
testing. The validation subset, sometimes called test subset,
was used to assess the performances of the proposed models
(Moghaddasi and Noorian-Bidgoli 2018; Li et al. 2019).

High-order response surface method

The response surface method (RSM) is an efficient and simple
approximating experiment-based the quadratic polynomial set
function corresponding to several data bases (Keshtegar and
Kisi 2017). Generally, the second-order polynomial function
is utilized for predicting TDG in the RSM by the following
function (Keshtegar and Heddam 2018).

TD ̂G ¼ a0 þ ∑
n

i¼1
aixi þ ∑

n

i¼1
∑
n

j¼1
aijxix j ð1Þ

where, TD̂G is the approximated TDG using the input data
sets x including TE, BP, SFD, and DIS. n is the number of
input variables, and a0, ai, and aij are the unknown coeffi-
cients. The total number of coefficients is NC = (n + 1)(n +
2)/2. Least squared estimator is applied to approximate the
unknown coefficients of the response surface function in Eq.
(1). Thus, the predicted data basis RSM is given as follows
(Keshtegar and Seghier 2018):

TDGp ¼ P xið Þ P xð ÞTP xð Þ
h i−1

P xð ÞT
h i

TDG ð2Þ

where, TDGP is the predicted TDG using ith input variables
(xi ϵ [TEi, BPi, SFDi, and DISi]). Here, x and TDG are respec-
tively the input data set and the observed TDG in the training
phase. P(.) is the polynomial basis function. Second-order
functions for 4-input data with 15 coefficients can be
expressed as:

P xð Þ ¼ 1; x1; x2; x3; x4; x21; x1; x2; x1; x3; x1; x4; x
2
2; x2; x3; x2; x4x

2
3; x3; x4; x

2
4

� �
ð3Þ

As seen from Eq. (3), the P(xi) is computed based on the
input data of (xi ϵ [TEi, BPi, SFDi, and DISi]) at ith data; thus,
we have a matrix with N×NC dimensions for P(x) where N is
the number of the training data and NC is the number of the
unknown coefficients and the polynomial basis functions P(x)
is developed based on the linear cross-correlations of the input
variables (i.e., xi xj i ≠ j). Consequently, highly nonlinear cross-
correlation between variables xi and xj is not considered in the
RSM. The recent studies showed that the original RSM may
provide inaccurate results compared with the modified versions
of the response surface method which transfers the input
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database by power or exponential forms (Keshtegar and
Heddam 2018; Keshtegar and Kisi; 2017; Keshtegar and
Seghier 2018). Consequently, the highly nonlinear cross-
correlations of the input data may improve the accuracy of the
RSM as well as the modified RSM. In this current study, the
high-nonlinear basis polynomial functions are investigated for
the prediction of TDG using nonlinear forms of the basic RSM.

As seen from Eq. (1), the RSM is a simple and efficient
modeling approach for predicting TDG, but this explicit math-

ematical form basis polynomial function with cross-
linear terms may provide inaccurate results for complex
processes. Therefore, the second-order polynomial basis
set functions are needed to improve RSM in solving
complex real engineering problems. The flexibility of
RSM in Eq. (1) may be enhanced for predictions of
TDG using the high-order polynomial basis function
with second, third or fourth cross terms, which is pre-
sented by the following polynomial set functions:

ð4Þ

in which TĎG is the predicted TDGwith high-order polynomial
function (PF) with n input data set. a0, ai, aij, bij, dij, and kij are the
unknown coefficients with a total number of coefficients:

NC ¼ nþ 1ð Þ nþ 2ð Þ=2þ Or−2ð Þn2 ð5Þ
where (Or) is the order of PF and 3 to 5 orders were used in this
study. The least square estimator is generally applied to solve Eq.
(4) using training data. Consequently, the predicted data using

high-order PF is computed based on Eq. (2) where P(.) and
P(xi) are determined by using the high-order polynomial basis
function. For example, the high-order polynomial basis functions
for three input data of x1, x2, x3, and PF with 3-order is given as
below:

P xð Þ ¼ 1; x1; x2; x3; x21; x1; x2; x1; x3; x
2
2; x2; x3; x

2
3;

x31; x1; x
2
2; x1; x

2
3; x2; x

2
1; x

3
2; x2; x

2
3; x3; x

2
1x3; x

2
2; x

3
3

" #
ð6Þ

Table 1 Statistical parameters of
the used data sets for all stations Station Data set Unit Xmean Xmax Xmin Sx Cv R

USGS 453439122223900 TE °C 16.58 23.7 6.40 4.527 0.274 − 0.194
BP mmHg 763.8 779 748 3.607 0.005 − 0.167
DIS kcfs 214.6 506 71.2 91.65 0.427 0.735

SFD feet 86.75 303 0.00 53.51 0.617 0.888

TDG % sat. 111.6 129 98.0 5.194 0.047 1.000

USGS 453630122021400 TE °C 15.67 23.3 3.40 5.010 0.320 − 0.037
BP mmHg 763.5 781 747 3.798 0.005 − 0.091
DIS kcfs 211.3 506 72.1 91.85 0.435 0.700

SFD feet 77.74 303 0.00 58.37 0.751 0.929

TDG % sat. 112.3 131 98.0 6.307 0.056 1.000

USGS 453845121562000 TE °C 16.39 23.5 6.40 4.498 0.274 − 0.426
BP mmHg 761.4 779 747 3.523 0.005 − 0.137
DIS kcfs 213.1 506 71.2 91.58 0.430 0.838

SFD feet 85.14 303 0.00 54.22 0.637 0.799

TDG % sat. 108.9 126 97.0 5.498 0.050 1.000

USGS 453845121564001 TE °C 16.40 23.5 6.40 4.625 0.282 − 0.325
BP mm Hg 761.9 774 747 3.344 0.004 − 0.011
DIS kcfs 212.5 455 71.2 87.12 0.410 0.827

SFD feet 89.33 280 0.00 45.91 0.514 0.872

TDG % sat. 116.4 128 104 3.952 0.034 1.000

TDG, total dissolved gas; TE, water temperature; BP, barometric pressure; SFD, spill from dam; DIS, discharge;
Xmean, mean; Xmax, maximum; Xmin, minimum; Sx, standard deviation; Cv, coefficient of variation; R, correlation
coefficient with TDG; kcfs, thousands of cubic feet per second; mmHg, millimeter of mercury

order

ji

n

i

n

j
ij

order

ji
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As seen from Eqs. (3) and (4), the high-order PF is struc-
tured by the high cross-correlation nonlinear of the input data
in the H-RSMmodeling approach. More accurate results may
be obtained using the high-order PF compared with the
second-order PF for complex processes. The steps of the pre-
dicted TDG using H-RSM are presented as below:

Step 1: Give the training databases including input data set
as (xi ϵ [TE, BP, SFD, and DIS]) and output TDG.

Step 2: Set the order of PF and compute P(x) in terms of
high-order polynomial basis function.

Step 3: Give the input data in test phase (xi ϵ [TEi, BPi, SFDi,
and DISi]) and determine the high-order PF P (xi).

Fig. 1 The schematic view of the
H-RSM for predictions of TDG

Table 2 Performances of
different models in modeling
TDG at USGS
453439122223900 station

Models Training Validation

R NSE d RMSE MAE R NSE d RMSE MAE

M5TRee1 0.983 0.966 0.991 0.970 0.617 0.897 0.796 0.947 2.272 1.751

M5TRee2 0.976 0.953 0.988 1.135 0.706 0.890 0.784 0.943 2.339 1.802

M5TRee3 0.969 0.939 0.984 1.293 0.851 0.892 0.788 0.944 2.316 1.809

M5TRee4 0.974 0.949 0.987 1.187 0.776 0.880 0.761 0.938 2.462 1.809

LSSVM1 0.926 0.857 0.960 1.979 1.543 0.922 0.849 0.958 1.955 1.508

LSSVM2 0.917 0.842 0.955 2.085 1.626 0.914 0.836 0.954 2.037 1.564

LSSVM3 0.918 0.843 0.956 2.079 1.627 0.915 0.837 0.954 2.027 1.572

LSSVM4 0.918 0.843 0.956 2.079 1.615 0.915 0.838 0.954 2.023 1.562

MARS1 0.929 0.862 0.962 1.944 1.517 0.923 0.838 0.959 2.024 1.564

MARS2 0.924 0.854 0.959 2.002 1.575 0.913 0.832 0.953 2.064 1.600

MARS3 0.926 0.858 0.961 1.972 1.544 0.905 0.797 0.949 2.270 1.690

MARS4 0.912 0.832 0.953 2.147 1.662 0.913 0.832 0.953 2.060 1.580

3H-RSM1 0.923 0.853 0.959 2.012 1.572 0.921 0.849 0.958 1.957 1.520

3H-RSM2 0.916 0.839 0.955 2.102 1.645 0.913 0.833 0.954 2.057 1.591

3H-RSM3 0.920 0.847 0.957 2.048 1.595 0.916 0.839 0.955 2.020 1.549

3H-RSM4 0.920 0.847 0.957 2.048 1.581 0.918 0.843 0.956 1.995 1.540

4H-RSM1 0.930 0.864 0.963 1.930 1.496 0.922 0.850 0.959 1.950 1.498

4H-RSM2 0.923 0.851 0.959 2.021 1.578 0.915 0.837 0.955 2.032 1.569

4H-RSM3 0.922 0.850 0.958 2.032 1.578 0.916 0.839 0.955 2.019 1.551

4H-RSM4 0.921 0.849 0.958 2.035 1.570 0.918 0.842 0.956 1.998 1.543

5H-RSM1 0.931 0.867 0.963 1.914 1.488 0.923 0.851 0.959 1.943 1.496

5H-RSM2 0.924 0.854 0.959 2.002 1.573 0.917 0.840 0.956 2.014 1.560

5H-RSM3 0.922 0.851 0.958 2.026 1.575 0.917 0.841 0.955 2.010 1.550

5H-RSM4 0.923 0.852 0.959 2.019 1.562 0.919 0.845 0.957 1.983 1.542
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Step 4: Predict the TDG (TDGp) using the training datasets
of x, TDG, and test input data of xi as:

TDGp ¼ P xið Þ P xð ÞTP xð Þ
h i−1

P xð ÞTTDG
h i

ð7Þ

The framework of H-RSM for prediction of the TDG is
presented in Fig. 1. As seen from Fig. 1, the H-RSM is a
simple modeling approach as well as the RSM. For applying
the above steps to predict TDG, a program code was devel-
oped by MATLAB software.

Least squares support vector machine

Least squares support vector machine (LSSVM) pro-
posed by Suykens and Vandewalle (1999) is a super-
vised machine learning model introduced as an im-
proved version of the original SVM. The LSSVM pos-
sesses the general form of any regression model that
works on linking a set of inputs variables (xi) to one
target output variable (y) by using the linear least
squares (LLS) criteria rather than the convex quadratic

programming (CQP) used for the SVM as follow
(Suykens and Vandewalle 1999):

y ¼ f xð Þ ¼ wtϕ xð Þ þ b w; x∈Rd
� � ð8Þ

for which w and b are the weights and biases, x is the matrix of
input variables, and y is the target variable. Using the LSSVM,
the objective function (OF) is calculated using the principle of
structural risk minimization (SRM) (Zhu et al. 2018) as follow:

Minw;γ J w; γð Þ ¼ 1

2
wTwþ 1

2
γ ∑

n

k¼1
e2k ð9Þ

Consequently, Eq. (8) is written as follow:

y ¼ w:φ xð Þ þ bþ ek ð10Þ
where γ denotes regularization parameter and ek denotes the
random error between observed and calculated value, and φ
(x) is the kernel function Mercer conditions as follow (Zhu
et al. 2018; Yang 2018):

k xi; x j
� � ¼ φ xið ÞTφ x j

� � ð11Þ

Table 3 Performances of
different models in modeling
TDG at USGS
453630122021400 station

Models Training Validation

R NSE d RMSE MAE R NSE d RMSE MAE

M5TRee1 0.993 0.986 0.996 0.749 0.447 0.951 0.902 0.975 1.998 1.453

M5TRee2 0.990 0.980 0.995 0.896 0.556 0.952 0.905 0.976 1.973 1.487

M5TRee3 0.987 0.974 0.993 1.015 0.657 0.943 0.887 0.971 2.147 1.576

M5TRee4 0.988 0.977 0.994 0.951 0.607 0.952 0.905 0.976 1.975 1.431

LSSVM1 0.964 0.930 0.981 1.660 1.285 0.962 0.925 0.980 1.750 1.354

LSSVM2 0.960 0.921 0.979 1.757 1.370 0.959 0.919 0.979 1.822 1.422

LSSVM3 0.957 0.916 0.977 1.820 1.394 0.958 0.918 0.978 1.832 1.429

LSSVM4 0.960 0.921 0.979 1.762 1.368 0.960 0.922 0.979 1.783 1.396

MARS1 0.966 0.934 0.983 1.610 1.241 0.961 0.924 0.980 1.762 1.388

MARS2 0.964 0.930 0.982 1.661 1.288 0.957 0.916 0.978 1.859 1.464

MARS3 0.962 0.925 0.980 1.714 1.328 0.960 0.922 0.979 1.790 1.389

MARS4 0.957 0.916 0.978 1.814 1.409 0.960 0.921 0.979 1.794 1.402

3H-RSM1 0.965 0.932 0.982 1.637 1.273 0.964 0.929 0.982 1.705 1.331

3H-RSM2 0.961 0.924 0.980 1.731 1.356 0.959 0.920 0.979 1.812 1.421

3H-RSM3 0.959 0.919 0.979 1.784 1.372 0.960 0.922 0.979 1.789 1.405

3H-RSM4 0.960 0.922 0.979 1.755 1.365 0.960 0.922 0.980 1.784 1.396

4H-RSM1 0.966 0.934 0.983 1.610 1.242 0.965 0.931 0.982 1.685 1.313

4H-RSM2 0.962 0.926 0.980 1.707 1.328 0.961 0.922 0.980 1.781 1.393

4H-RSM3 0.960 0.922 0.979 1.753 1.350 0.960 0.922 0.980 1.781 1.403

4H-RSM4 0.962 0.925 0.980 1.717 1.329 0.963 0.927 0.981 1.730 1.360

5H-RSM1 0.968 0.936 0.983 1.581 1.219 0.965 0.931 0.982 1.677 1.300

5H-RSM2 0.963 0.928 0.981 1.679 1.311 0.961 0.923 0.980 1.776 1.385

5H-RSM3 0.961 0.923 0.980 1.744 1.342 0.962 0.925 0.980 1.755 1.381

5H-RSM4 0.963 0.928 0.981 1.685 1.298 0.964 0.929 0.981 1.703 1.332
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Finally, the regression equation of the LSSVM model is
obtained by a group of single linear equations as follow
(Xiong et al. 2018; Wang et al. 2018):

f xð Þ ¼ ∑
n

i¼1
αik xi; x j

� �þ b ð12Þ

In the present study, LSSVMmodel is developed using the
LS-SVMlab software (http: //www.esat.kuleuven.be/sista/
lssvmlab/.).

Multivariate adaptive regression splines

One of the most and well-known adaptive, nonlinear and non-
parametric regression models is certainly the multivariate
adaptive regression spline (MARS) model introduced by
Friedman (1991). The MARS is mainly used for mapping a
set of predictors to a dependent variable using high-
dimensional arguments (Nalcaci et al. 2018), with respect to
the principal of “divide” and “conquers”method (Zhang et al.
2018). The MARS approach divides the input space into sev-
eral subspaces and then for each subspace, a basic function
(BF) is developed. Each BF takes into account the information

provided by one or several predictors, and the BFs are fixed
between two limits: “primary” and “end” points called
“knote” (Arabameri et al. 2018). The BF relates the regressors
to the dependent variable in the form of Max (0, X−c) or Max
(0, c−X) (Friedman 1991), for which c is the threshold and X is
the input variable. MARS model can be expressed as follow:

Y ¼ f xið Þ ¼ ψ0 þ j ¼ ∑
P

j¼1
∑
B

b¼1
ψjb þð ÞMax 0; xi−Kbj

� �þ ψjb −ð ÞMax 0;Kbj−x j
� �� �

ð13Þ
where x is one of the predictors, Y is the dependent variable; P
and B are the number of the predictors and the number of the
generated BF, respectively, ψ0 is constant or intercept, ψjb is the
coefficient of the jth BF, and the Κ values are called knots
(Arabameri et al. 2018). In the present study, MARS model is
developed using the Matlab toolbox ARESLab (Jekabsons,
2016b).

M5Tree model

Inspired from the original regression trees (RT), the M5Tree
model (M5Tree) was developed by Quinlan (1992) as a new

Table 4 Performances of
different models in modeling
TDG at USGS
453845121562000 station

Models Training Validation

R NSE d RMSE MAE R NSE d RMSE MAE

M5TRee1 0.981 0.962 0.990 1.076 0.660 0.814 0.600 0.898 3.457 2.102

M5TRee2 0.971 0.943 0.985 1.309 0.850 0.877 0.756 0.935 2.702 2.056

M5TRee3 0.963 0.927 0.981 1.486 0.993 0.855 0.718 0.923 2.902 2.191

M5TRee4 0.967 0.934 0.983 1.409 0.929 0.858 0.720 0.925 2.893 2.150

LSSVM1 0.922 0.850 0.958 2.130 1.661 0.906 0.821 0.949 2.317 1.797

LSSVM2 0.901 0.811 0.945 2.387 1.874 0.896 0.801 0.943 2.439 1.940

LSSVM3 0.904 0.818 0.947 2.346 1.855 0.893 0.798 0.942 2.459 1.918

LSSVM4 0.900 0.809 0.945 2.400 1.881 0.881 0.776 0.934 2.589 1.989

MARS1 0.924 0.854 0.959 2.097 1.632 0.910 0.828 0.951 2.269 1.742

MARS2 0.908 0.825 0.950 2.299 1.798 0.892 0.794 0.942 2.482 1.923

MARS3 0.907 0.822 0.949 2.320 1.832 0.899 0.808 0.944 2.398 1.865

MARS4 0.889 0.791 0.939 2.515 1.976 0.877 0.769 0.931 2.629 2.028

3H-RSM1 0.920 0.845 0.957 2.161 1.686 0.909 0.826 0.951 2.280 1.772

3H-RSM2 0.900 0.809 0.945 2.400 1.883 0.895 0.801 0.943 2.442 1.944

3H-RSM3 0.903 0.815 0.947 2.364 1.875 0.896 0.802 0.943 2.431 1.908

3H-RSM4 0.896 0.803 0.943 2.443 1.920 0.880 0.775 0.934 2.597 1.992

4H-RSM1 0.922 0.850 0.958 2.131 1.658 0.907 0.823 0.950 2.301 1.782

4H-RSM2 0.903 0.816 0.947 2.358 1.845 0.895 0.799 0.943 2.451 1.939

4H-RSM3 0.904 0.816 0.947 2.355 1.868 0.894 0.800 0.942 2.446 1.910

4H-RSM4 0.901 0.811 0.945 2.387 1.867 0.885 0.783 0.937 2.548 1.950

5H-RSM1 0.924 0.853 0.959 2.105 1.641 0.911 0.829 0.952 2.263 1.751

5H-RSM2 0.906 0.820 0.949 2.331 1.826 0.899 0.807 0.946 2.402 1.912

5H-RSM3 0.904 0.818 0.948 2.344 1.854 0.897 0.805 0.944 2.417 1.892

5H-RSM4 0.903 0.816 0.947 2.357 1.845 0.887 0.786 0.939 2.530 1.924
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machine learning technique. The M5Tree model builds recur-
sively a RTmodel (Pulkknen et al. 2018), by dividing the space
of the training data into several subsets, and amultivariate linear
regression is formulated for each one, which relates the input
variables to the dependent variable. The partitioning is achieved
by recursive splits that minimize intra-subset variation (Ajmera
and Goyal 2012). The M5Tree model contains three steps:
splitting, creating, and extracting the knowledge from the tree
(Fatehnia et al. 2016). During the first stage, a linear regression
model is developed based on the division of the space of the
data, and at the end of this step, the required information is
provided that form the tree and the nodes are constructed.
Generally, M5Tree model employs splitting criterion using the
standard deviation reduction (SDR), calculated as follow (Pal
and Deswal 2009; Fatehnia et al. 2016; Sattari et al. 2018):

SDR ¼ sd Tð Þ−∑ Tij j
T

sd T ið Þ ð14Þ

where T is the set of data points that reach the node, Ti denotes
the subset of cases that have the ith outcome of the potential
test, and sd represents the standard deviation of the observed
values. In the present study, the M5Tree is implemented using
the Matlab toolbox M5PrimeLab (Jekabsons, 2016a).

Performance assessment of the models

To evaluate and compare the accuracy of the developed
models, we used five performance indices. These five indices
are the following: the coefficient of correlation (R), the Nash-
Sutcliffe efficiency (NSE), the Willmott index of agreement
(d), the root mean squared error (RMSE), and the mean abso-
lute error (MAE).

R ¼
1

N
∑ Oi−Omð Þ Pi−Pmð Þffiffiffiffi

1

N

r
∑
n

i¼1
Oi−Omð Þ2

ffiffiffiffi
1

N

r
∑
n

i−1
Pi−Pmð Þ2

2
6664

3
7775 ð15Þ

NSE ¼ 1−
∑
N

i¼1
Oi−Pi½ �2

∑
N

i¼1
Oi−Om½ �2

ð16Þ

d ¼ 1−
∑
N

i¼1
Pi−Oið Þ2

∑
N

i¼1
Pi−Omj j þj j Oi−Omj jð Þ2

ð17Þ

Table 5 Performances of
different models in modeling
TDG at USGS
453845121564001 station

Models Training Validation

R NSE d RMSE MAE R NSE d RMSE MAE

M5TRee1 0.989 0.978 0.994 0.580 0.293 0.912 0.829 0.954 1.674 1.036

M5TRee2 0.984 0.969 0.992 0.687 0.35 0.917 0.840 0.957 1.621 1.002

M5TRee3 0.972 0.944 0.985 0.926 0.465 0.921 0.847 0.959 1.585 1.031

M5TRee4 0.978 0.957 0.989 0.813 0.454 0.887 0.782 0.94 1.889 1.265

LSSVM1 0.931 0.867 0.963 1.427 0.960 0.923 0.851 0.958 1.564 1.080

LSSVM2 0.926 0.857 0.960 1.478 0.991 0.922 0.850 0.955 1.566 1.090

LSSVM3 0.927 0.859 0.961 1.469 0.978 0.922 0.850 0.958 1.568 1.083

LSSVM4 0.915 0.837 0.953 1.579 1.148 0.905 0.819 0.948 1.720 1.287

MARS1 0.941 0.886 0.969 1.318 0.919 0.926 0.856 0.959 1.535 1.062

MARS2 0.940 0.884 0.968 1.331 0.926 0.920 0.846 0.956 1.589 1.112

MARS3 0.933 0.870 0.964 1.410 0.962 0.912 0.828 0.954 1.678 1.150

MARS4 0.909 0.826 0.950 1.631 1.181 0.907 0.822 0.950 1.707 1.283

3H-RSM1 0.925 0.856 0.960 1.481 0.999 0.925 0.856 0.960 1.534 1.065

3H-RSM2 0.922 0.849 0.958 1.518 1.038 0.923 0.852 0.960 1.556 1.101

3H-RSM3 0.922 0.850 0.958 1.513 1.024 0.922 0.850 0.959 1.568 1.105

3H-RSM4 0.909 0.826 0.951 1.630 1.197 0.905 0.818 0.949 1.726 1.312

4H-RSM1 0.933 0.871 0.965 1.404 0.951 0.932 0.868 0.964 1.470 1.039

4H-RSM2 0.930 0.865 0.963 1.435 0.985 0.929 0.864 0.962 1.495 1.058

4H-RSM3 0.927 0.859 0.961 1.465 0.983 0.926 0.858 0.961 1.524 1.064

4H-RSM4 0.917 0.841 0.956 1.557 1.117 0.917 0.841 0.955 1.613 1.207

5H-RSM1 0.936 0.876 0.966 1.375 0.939 0.933 0.871 0.964 1.456 1.022

5H-RSM2 0.933 0.869 0.964 1.413 0.974 0.932 0.868 0.964 1.472 1.031

5H-RSM3 0.928 0.860 0.962 1.461 0.981 0.927 0.859 0.961 1.519 1.061

5H-RSM4 0.920 0.845 0.957 1.537 1.102 0.916 0.839 0.955 1.622 1.203
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RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
∑
N

i¼1
Oi−Pið Þ2

s
ð18Þ

MAE ¼ 1

N
∑
N

i¼1
Oi−Pij j ð19Þ

where N is the data number, Oi is the measured TDG value,
and Pi is the predicted TDG. Om and Pm indicate the average
of Oi and Pi.

Results and discussion

In this study, TDG measured at four dam reservoirs at
Columbia River, USA, was predicted using four data-driven
models as reported above. The developed models were
LSSVM, MARS, M5Tree, and high-order RSM (H-RSM)
with three different orders, from 3 to 5. The models were
developed using four input variables, namely TE, BP, SFD,
and DIS, served as predictors. The models were developed
and evaluated using five statistical indices: R, NSE, d,
RMSE, andMAE. Several combinations of the input variables
were utilized and four scenarios were evaluated: (i) SFD, DIS,
BP, and TE; (ii) SFD, DIS, and TE; (iii) SFD, DIS, and BP;

(iv) SFD, BP, and TE. Consequently, LSSVM1, MARS1,
M5TRee1, 3H-RSM1, 4H-RSM1, and 5H-RSM1 correspond
to the first combination; LSSVM2, MARS2, M5Tree2, 3H-
RSM2, 4H-RSM2, and 5H-RSM2 correspond to the second
and so on, until the fourth combination. The performances of
the simulated models compared with measured TDG are
shown in Tables 2, 3, 4, and 5, illustrating the calculated sta-
tistical indices.

According to the obtained results, the following conclu-
sions can be derived. First, comparison of models indicated
that model 5H-RSM1 that includes the four input variables
(SFD, DIS, BP, and TE) yields the best performance among
the considered models with respect to R, NSE, d, RMSE, and
MAE criteria, at four stations. Using 5H-RSM1, a good agree-
ment is observed in all stations with R, NSE, and d ranging
from 0.911 to 0.965, 0.829 to 0.931, and 0.952 to 0.982,
respectively. The highest accuracy using the 5H-RSM1 was
obtained at USGS453630122021400, while the lowest accu-
racy has been achieved at USGS 453845121562000.
Similarly, the RMSE ranges from 1.456 to 2.263% with an
average of 1.835%. In addition, the MAE ranges from 1.022
to 1.751%with an average of 1.392%. Second, it is clear from
the results reported in Tables 2, 3, 4, and 5 that the M5Tree
approach produced a model with low accuracy at the four

MARS1 LSSVM1 M5TRee1

3H-RSM1 4H-RSM1 5H-RSM1

Fig. 2 Scatterplot of calculated versus measured TDG (%) for the optimum developed models during the validation phase: USGS 453439122223900
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stations, with high RMSE and MAE, and low R, NSE, and d.
Finally, although the 5H-RSM1 provided the high accuracy, it
is evident that the 5H-RSM1 slightly improved the accuracy
of the other three models which use only three input variables,
and the improvement is marginal especially between 5H-
RSM1 and 5H-RSM2, for which the MAE observed from
validation data between the two models in the four stations
tended to be of a similar magnitude. Similarly, RMSE values
were fairly consistent across stations between the two models.

Results obtained at USGS453439122223900 station are
reported in Table 2. Hereafter, we compared the performance
(e.g., RMSE, MAE, R, NSEN, and d) of the H-RSMmethods
against the other three methods: LSSVM, MARS, and
M5TRee. An accuracy assessment was conducted to evaluate
the results. Table 2 showed that the best accuracy was obtain-
ed using the 5H-RSM1 slightly better than 4H-RSM1, 3H-
RSM1, LSSVM1, and MARS1, and considerably higher than
the M5TRee1. 5H-RSM1 yielded a result with an RMSE of
1.943%, an MAE of 1.496%, an R of 0.923, an NSE of 0.851,
and an d = 0.959. For numerical comparison, using the 5H-
RSM1, the RMSE of the M5TRee1 was decreased by
14.48%, the MAE is reduced by 14.56%, the R was lifted by
2.6%, the NSE was promoted by 5.5%, and finally the d is
increased by 1.2%. For further analysis, when looking at the

models with only three inputs, it is obvious that the best per-
formance was obtained using combination number 4 with
SFD, BP, and TE as input variables, with the exception of
the M5Tree models so that the best accuracy with three input
variables was found for the M5TRee3 with SFD, DIS, and BP
as input variables. However, it is worth noting that the most
significant improvement between four-input and three-input
models was achieved using MARS and LSSVM. Four-input
LSSVM1 decreased the RMSE and MAE of the three-input
LSSVM4 model by 3.36% and 3.45%, respectively. In addi-
tion, MARS1 decreased the RMSE and MAE of the MARS4
by 1.748% and 1.013%, respectively. For the other ap-
proaches, the difference between the models with four and
three input variables is completely negligible. Finally, accord-
ing to Table 2, the four M5Tree models provided relatively
similar accuracy with very marginal difference. Calculated
TDG (%) using the best models are plotted against corre-
sponding measurements values in Fig. 2.

For USGS453630122021400 station, the R, NSE, d,
RMSE, and MAE statistics are provided in Table 3, for all
models, with all input combinations. Among the all proposed
methods, model 5H-RSM1 contains the smaller RMSE and
MAE, with values equal to 1.677 and 1.300, respectively.
Compared with the worst method, the 5H-RSM1 decreased

MARS1 LSSVM1 M5TRee1

3H-RSM1 4H-RSM1 5H-RSM1

Fig. 3 Scatterplot of calculated versus measured TDG (%) for the optimum developed models during the validation phase: USGS 453630122021400
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the RMSE and MAE of the M5Tree1 by 16.066% and
10.53%, respectively. According to Table 3, the results obtain-
ed demonstrated that combination of three input variables
compared with the best model with four input variables slight-
ly decreases the performance. Specifically, 5H-RSM4 with
SFD, BP, and TE was slightly less than the 5H-RSM1 with
negligible difference in the RMSE andMAE values. Based on
the validation results in Table 3, the 5H-RSM, 4H-RSM, and
3H-RSM are promising for TDGmodeling while the LSSVM
and MARS are comparable to the H-RSM with relatively
similar accuracy when using only three input variables. The
statistical indices showed that there was no considerable dif-
ference between LSSVM and MARS predictions, but they
were both considerably different from the M5Tree1 for TDG
(%) modeling. LSSVM1 decreased the RMSE and MAE of
the M5Tree1 by 12.41% and 6.81%, respectively. In addition,
the MARS1 decreased the RMSE and MAE of the M5Tree1
by 11.81% and 4.47%, respectively. The 4H-RSM1 and 3H-
RSM1 achieved a comparable result with similar R and d
values (R = 0.965, d = 0.982) and slightly different values of
NSE: 0.929 for 3H-RSM1 and 0.931 for 4H-RSM1. Figure 3
shows the linear regressions (scatterplot) between the calcu-
lated and the measured TDG (%) values using the validation
dataset. As clearly observed from the scatter graphs, the 5H-

RSM1 has less scattered estimates (R2 = 0.9315) and its fit line
is closer to the exact line (slope and bias of the fit line equation
is closer to 1 and 0, respectively) compared with other models.

Table 4 reports the results of the proposed models for TDG
prediction at USGS 453845121562000 station. The overall
accuracy of the best models compared with the measured
TDG was discussed hereafter. It can be seen from Table 4 that
the 5H-RSM1 model has both the highest R, NSE, and d
values (R = 0.911, NSE = 0.829, d = 0.952) and the lowest er-
ror measures (RMSE = 2.263 and MAE = 1.751). The 5H-
RSM1 model is more accurate compared with the other
models, is considerably higher than the M5TRee1, and it
slightly improved the accuracy of 4H-RSM1, 3H-RSM1,
LSSVM1, and MARS1. The 5H-RSM1 model reduced the
MAE and RMSE measurements of the M5TRee1 with a per-
centage reduction of 34.54% and 16.70%, respectively. In
addition, the values of R, NSE, and d of the M5TRee1 were
promoted by 9.7%, 22.9%, and 5.4%, respectively, while for
the 3H-RSM1 and 4H-RSM1, the values of RMSE, MAE, R,
NSE, and d did not show considerable differences. MARS1
model predictions are slightly more accurate than those from
LSSVM1 in terms of the all five statistical indices. Utilizing
theMARS1model resulted in a reduction of RMSE andMAE
of about 2% and 3%, respectively, compared with the

MARS1 LSSVM1 M5TRee1

3H-RSM1 4H-RSM1 5H-RSM1

Fig. 4 Scatterplot of calculated versus measured TDG (%) for the optimum developed models during the validation phase: USGS 453845121562000
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LSSVM1. Table 4 indicates that, on the average, the results
from the two input combinations (combinations 2 and 3) differ
by only a few. Table 4 highlights a better performance of the
MARS3 having input variables SFD, DIS, and BP, with re-
spect to all statistical indices. For instance, MARS3 has
RMSE, MAE, R, NSE, and d of 2.398, 1.865, 0.899, 0.808,
and 0.944, respectively, slightly superior to the values provid-
ed by the LSSVM3, 5H-RSM3, 4H-RSM3, and 3H-RSM3
and significantly better than the M5TRee3. Contrary to the
two previous stations, the lowest accuracy was obtained by
the models using combination 4, with SFD, BP, and TE.
Overall, except the models using all the four input variables,
for which the best accuracy was obtained, the models with
three input variables provided relatively similar accuracy with
low differences. Figure 4 shows the scatterplot of measured
and predicted TDG, for the six best models. Here also the less
scattered estimates of the 5H-RSM1model can be clearly seen
especially for the peak TDG values compared with other
models. This confirms the lower RMSE values (see Table 4)
of this model than the alternative models.

Table 5 summarizes the results of applied models in terms
of statistical indices at USGS453845121564001. Clearly, the
results suggest that the 5H-RSM1 model consistently outper-
forms the other models and produces high accuracies in terms

of R, NSE, d, RMSE, and MAE; however, the results also
show that the 5H-RSM1 and 4H-RSM1 give similar accuracy
regarding all the statistical indices. In addition, the difference
among the 3H-RSM1, LSSVM1, and MARS1 models are
marginal. MARS1 had the second best accuracy, and
LSSVM1 performed less than the MARS1 and better than
the M5TRee1. Similarly, poor accuracy was obtained using
M5TRee1 compared with that obtained using all developed
models. The M5TRee1 model yielded the substantially lowest
R, NSE, and d and the highest RMSE and MAE. Using three
input variables, the best accuracy was obtained using 5H-
RSM2 with SFD, DIS, and TE as input variables. However,
the RMSE and MAE differences between the proposed
models are small when the SFD, DIS, and BP are included
as predictor variables suggesting that the relationships be-
tween TDG and those predictor variables can be captured
equally by all models, and none of them was capable to pro-
vide an accuracy improvement. Comparison of first and sec-
ond input combinations reveals that including BP variable in
inputs considerably increases the models’ accuracies in esti-
mating TDG even though there is a very low correlation be-
tween BP and TDG as seen from Table 1. This is also valid for
the other three stations. This indicates that there might be
nonlinear relationship between the BP and TDG variables.

MARS1 LSSVM1 M5TRee1

3H-RSM1 4H-RSM1 5H-RSM1

Fig. 5 Scatterplot of calculated versus measured TDG (%) for the optimum developed models during the validation phase: USGS 453845121564001
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Figure 5 shows the scatterplot of measured and calculated
TDG using the best models. The figure clearly shows the
superiority of the 5H-RSM1.

Conclusions

The investigation presented in this paper has demonstrated the
potential of data-driven models to accurately predict an impor-
tant variable at dam’s reservoirs: total dissolved gas (TDG) con-
centration. The estimation of TDG was made possible through
the exploitation of large data base freely available and contains
several easily measured variables. Providing such kind of
models can be of great interest, compared with the physical
and numerical models which require a large number of variables
to be calibrated. Four models were developed and compared,
three well known and widely reported in the literature as a
powerful tool for solving several environmental problems
(LSSVM, MARS, and M5Tree) and one new model (RSM)
presented for the first time as a powerful tool. While the dem-
onstration of the usefulness and robustness of the proposed
approaches is based on data collected at four USGS stations,
the generalization of the methods is relatively straightforward,
in the light of all data-drivenmodels. Several conclusions can be
drawn at the closing of this investigation. Firstly, among the
proposed four models, M5Tree models had the lowest accuracy
at the four stations, and this leads us to conclude that M5Tree
was unable to provide high and precise accuracy for modeling
TDG concentration. Secondly, LSSVM and MARS models
provided relatively similar accuracy with slightly and marginal
difference. Finally, high-order response surface method (5H-
RSM) using all the four input variables successfully built the
relationship between TDG concentration and the selected pre-
dictors. The high-order RSM provides the high correlation
terms based on the polynomial functions while the coefficient
vector is increased by increasing the polynomial term basis
high-order consideration. According to these reasons, applying
the high-order correlation of basis input data may improve the
accuracy prediction of nonlinear problems compared with orig-
inal RSM. However, the H-RSM needs more data point for
training a nonlinear model due to the increasing number of
coefficients, which could provide a useful method with high
flexibility for both accuracy and efficiency. However, it can be
applied for modeling the problems with smaller input variables
with larger training database. Furthermore, it was demonstrated
that the performance of the 5H-RSM was only slightly de-
creased when the model included fewer input variables.

Acknowledgments We would like to thank all scientists from USGS for
allowing permission for using the data that made this study possible.
Once again, we would like to thank anonymous reviewers and the editor
of Arabian Journal of Geosciences (AJGS) for their invaluable comments
and suggestions on the contents of the manuscript which significantly
improved the quality of the paper.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

References

Arabameri A, Pradhan B, Pourghasemi H, Rezaei K, Kerle N (2018)
Spatial modelling of gully erosion using gis and r programing: a
comparison among three data mining algorithms. Appl Sci 8(8):
1369. https://doi.org/10.3390/app8081369

Ajmera TK, Goyal MK (2012) Development of stage-discharge rating
curve using model tree and neural networks: an application to
Peachtree Creek in Atlanta. Expert Syst Appl 39(5):5702–5710.
https://doi.org/10.1016/j.eswa.2011.11.101

Alikhuni KH, Ramachandran V, Chaudhri H (1951) Mortality of carp fry
under supersaturation of dissolved oxygen in water. Proc Natl Inst
Sci India 17:261–264

Beeman JW, Venditti DA, Morris RG, Gadomski DM, Adams BJ,
Vanderkooi SJ, Robinson TC, Maule AG (2003) Gas bubble disease
in resident fish below Grand Coulee Dam: final report of research.
US Bureau of Reclamation https://pubs.er.usgs.gov/publication/
70179865

Beeman JW, Maule AG (2006) Migration depths of juvenile Chinook
salmon and steelhead relative to total dissolved gas supersaturation
in a Columbia River reservoir. Trans Am Fish Soc 135:584–594.
https://doi.org/10.1577/T05-193.1

Bragg HM, Johnston MW (2016). Total dissolved gas and water temper-
ature in the lower Columbia River, Oregon and Washington, water
year 2015: U.S. Geological Survey Open-File Report 2015-1212, p
26. 10.3133/ofr20151212.

Boyd CE, Watten B, Goubier V, Wu R (1994) Gas supersaturation in
surface waters of aquaculture ponds. Aquac Eng 13(1):31–39.
https://doi.org/10.1016/0144-8609(94)90023-X

CCME (1999) Canadian Council of Ministers of the Environment,
Canadian water quality guidelines for the protection of aquatic of
aquatic life: dissolved gas supersaturation. Canadian Environmental
Quality Guidelines http://ceqg-rcqe.ccme.ca/download/en/176/

Colt J (1986) Gas Supersaturation-impact on the design and operation of
aquatic systems. Aquac Eng 5:49–85

Fatehnia M, Tawfiq K, Ye M (2016) Estimation of saturated hydraulic
conductivity from double‐ring infiltrometer measurements. Eur J
Soil Sci 67(2):135–147. https://doi.org/10.1111/ejss.12322

Feng JJ, Li R, Yang HX, Li J (2013) A laterally averaged two-
dimensional simulation of unsteady supersaturated total dissolved
gas in deep reservoir. J Hydrodyn 25(3):396–403. https://doi.org/10.
1016/S1001-6058(11)60378-9

Friedman JH (1991) Multivariate adaptive regression splines. Ann Stat
19(1):1–67. https://doi.org/10.1214/aos/1176347963

Geldert DA, Gulliver JS, Wilhelms SC (1998) Modeling dissolved gas
supersaturation below spillway plunge pools. ACSE J Hyd Eng
124(5):513–521. https://doi.org/10.1061/(ASCE)0733-9429(1998)
124:5(513)

Gorham FP (1898) Some physiological effects of reduced pressure on
fishes. J Boston Sot Med Sci 3:50 https://www.ncbi.nlm.nih.gov/
pmc/articles/PMC2121825/pdf/jbsms00023-0019.pdf.

Hibbs DE, Gulliver JS (1997) Prediction of effective saturation concen-
tration at spillway plunge pools. ACSE J Hyd Eng 123(11):940–
949. https://doi.org/10.1061/(ASCE)0733-9429(1997)123:11(940)

Hadjerioua B, PashaMD, Stewart KM, BenderM, SchneiderML (2012).
Prediction of total dissolved gas exchange at hydropower dams (No.
ORNL/TM-2011/340). Oak Ridge National Laboratory (ORNL).
https://info.ornl.gov/sites/publications/Files/Pub32242.pdf.

Arab J Geosci (2019) 12: 544 Page 13 of 15 544

https://doi.org/10.3390/app8081369
https://doi.org/10.1016/j.eswa.2011.11.101
https://pubs.er.usgs.gov/publication/70179865
https://pubs.er.usgs.gov/publication/70179865
https://doi.org/10.1577/T05-193.1
https://doi.org/10.1016/0144-8609(94)90023-X
http://ceqg-rcqe.ccme.ca/download/en/176/
https://doi.org/10.1111/ejss.12322
https://doi.org/10.1016/S1001-6058(11)60378-9
https://doi.org/10.1016/S1001-6058(11)60378-9
https://doi.org/10.1214/aos/1176347963
https://doi.org/10.1061/(ASCE)0733-9429(1998)124:5(513)
https://doi.org/10.1061/(ASCE)0733-9429(1998)124:5(513)
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2121825/pdf/jbsms00023-0019.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2121825/pdf/jbsms00023-0019.pdf
https://doi.org/10.1061/(ASCE)0733-9429(1997)123:11(940)
https://info.ornl.gov/sites/publications/Files/Pub32242.pdf


Heddam S (2017) Generalized regression neural network based approach
as a new tool for predicting total dissolved gas (TDG) downstream
of spillways of dams: a case study of Columbia River Basin Dams,
USA. Environ Process 4:235–253. https://doi.org/10.1007/s40710-
016-0196-5

Jekabsons G (2016b) ARESLab Adaptive regression splines toolbox for
Matlab/Octave ver. 1.13.0. Institute of Applied Computer Systems
Riga Technical University, Latvia Available: http://www.cs.rtu.lv/
jekabsons/Files/ARESLab.pdf

Jekabsons G (2016a) M5PrimeLab: M5’ regression tree and model tree
ensemble toolbox for Matlab/Octave ver. 1.7.0. Institute of Applied
Computer Systems Riga Technical University, Latvia Available:
http://www.cs.rtu.lv/jekabsons/Files/M5PrimeLab.pdf

Keshtegar B, Kisi O (2017) Modified response-surface method: new
approach for modelling pan evaporation. J Hydrol Eng 22(10):
04017045. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001541

Keshtegar B, Seghier MEAB (2018) Modified response surface method
basis harmony search to predict the burst pressure of corroded pipe-
lines. Eng Fail Anal 89:177–199. https://doi.org/10.1016/j.
engfailanal.2018.02.016

Keshtegar B, Heddam S (2018) Modeling daily dissolved oxygen con-
centration using modified response surface method and artificial
neural network: a comparative study. Neural Comput & Applic
30(10):2995–3006. https://doi.org/10.1007/s00521-017-2917-8

Li S, Kazemi H, Rockaway TD (2019) Performance assessment of
stormwater GI practices using artificial neural networks. Sci Total
Environ 651:2811–2819. https://doi.org/10.1016/j.scitotenv.2018.
10.155

Moghaddasi MR, Noorian-Bidgoli M (2018) ICA-ANN, ANN and mul-
tiple regression models for prediction of surface settlement caused
by tunneling. Tunn Undergr Space Technol 79:197–209. https://doi.
org/10.1016/j.tust.2018.04.016

Marsh H.C., Gorham F.P. (1904). The gas disease in fishes. Rep US Bur
Fish, pp. 343-376.

Nalcaci G, Özmen A, Weber GW (2018) Long-term load forecasting:
models based on MARS, ANN and LR methods. Central Eur J
Oper Res:1–17. https://doi.org/10.1007/s10100-018-0531-1

Orlins JJ, Gulliver JS (2000) Dissolved gas supersaturation downstream
of a spillway II: computational model. J Hydraul Res 38(2):151–
159. https://doi.org/10.1080/00221680009498350

Pal M, Deswal S (2009) M5 model tree based modelling of reference
evapotranspiration. Hydrol Process 23(10):1437–1443. https://doi.
org/10.1002/hyp.7266

Parker NC, Suttle MA, Fitzmayer K (1984) Total gas pressure and oxy-
gen and nitrogen saturation in warmwater ponds aerated with airlift
pumps. Aquac Eng 3(2):91–102. https://doi.org/10.1016/0144-
8609(84)90001-3

Picket J., RuedaH., HeroldM. (2004). Total maximum daily load for total
dissolved gas in the Mid-Columbia River and Lake Roosevelt.
Submittal Report. No. 04-03-002, Washington State Department of
Ecology, Olympia, WA. http://www.ecy.wa.gov/biblio/0403002.
html.

Politano M, Carrica PM, Turan C, Weber L (2007) A multidimensional
two phase flow model for the total dissolved gas downstream of
spillways. J Hydraul Res 45(2):165–177. https://doi.org/10.1080/
00221686.2007.9521757

Politano M, Carrica P, Weber L (2009) A multiphase model for the hy-
drodynamics and total dissolved gas in tailraces. Int J Multiphase
Flow 35:1036–1050. https://doi.org/10.1016/j.ijmultiphaseflow.
2009.06.009

Politano M, Arenas Amado A, Bickford S, Murauskas J, Hay D (2012)
Evaluation of operational strategies to minimize gas supersaturation
downstream of a dam. Comput Fluids 68:168–185. https://doi.org/
10.1016/j.compfluid.2012.08.003

Politano M, Lyons T, Anderson K, Parkinson S, Weber L (2016).
Spillway deflector design using physical and numerical models.

6th International Symposium on Hydraulic Structures Portland,
Oregon, USA, 27-30 June 2016. Hydraulic Structures and Water
System Management. ISBN 978-1-884575-75-4. 10.15142/
T3470628160853.

Politano M, Castro A, Hadjerioua B (2017) Modeling total dissolved gas
for optimal operation of multireservoir systems. J Hydraul Eng.
https://doi.org/10.1061/(ASCE)HY.1943-7900.0001287

Pulkknen M, Ginzler C, Traub B, Lanz A (2018) Stereo-imagery-based
post-stratification by regression-tree modelling in Swiss National
Forest Inventory. Remote Sens Environ 213:182–194. https://doi.
org/10.1016/j.rse.2018.04.052

Quinlan J.R. (1992). Learning with continuous classes. In: Proceedings of
the Fifth Australian Joint Conference on Artificial Intelligence,
Hobart, Australia, 16-18 November. World Scientific, Singapore,
pp. 343-348.

Roesner LA, NortonWR (1971). Nitrogen Gas (N2)Model for the Lower
Columbia River. Water Resources Engineers. Report N° 1-350, wa-
ter resources Engineers, Inc., Walnut Creek, Calif

Sattari MT, Mirabbasi R, Sushab RS, Abraham J (2018) Prediction of
groundwater level in Ardebil plain using support Vector regression
andM5 tree model. Groundwater 56(4):636–646. https://doi.org/10.
1111/gwat.12620

Stewart KM, Witt A, Hadjerioua B (2015) Total dissolved gas prediction
and optimization in riverware. Prepared for US Department of
Energy Wind and Water Program by Oakridge National
Laboratory, Oak Ridge https://info.ornl.gov/sites/publications/
Files/Pub59285.pdf

Suykens JAK, Vandewalle J (1999) Least square support vector machine
classifiers. Neural Processing Letters 9 (3), 293-300 https://doi.org/
10.1023/A:1018628609742

Shaw P (1998) In: University of Washington (ed) Gas generation equa-
tions for CRiSP 1.6, Seattle, Washington www.cbr.washington.edu/
d_gas/tdg_manual.pdf

Skov PV, Pedersen LF, Pedersen PB (2013) Nutrient digestibility and
growth in rainbow trout (Oncorhynchus mykiss) are impaired by
short term exposure to moderate supersaturation in total gas pres-
sure. Aquaculture 416:179–184. https://doi.org/10.1016/j.
aquaculture.2013.09.007

Tanner DQ, Bragg HM, Johnston MW (2012). Total dissolved gas and
water temperature in the lower Columbia River, Oregon and
Washington, water year 2011: quality-assurance data and compari-
son to water-quality standards: U.S. Geological Survey Open-File
Report 2011-1300, p 28. http://pubs.usgs.gov/of/2011/1300

Tawfik ME, Diez FJ (2014) On the relation between onset of bubble
nucleation and gas supersaturation concentration. Electrochim
Acta 146:792–797. https://doi.org/10.1016/j.electacta.2014.08.147

Weitkamp DE, Sullivan RD, Swant T, DosSantos J (2003) Gas bubble
disease in resident fish of the lower Clark Fork River. Trans AmFish
Soc 132(5):865–876. https://doi.org/10.1577/T02-026

Wang Y, Politano M, Weber L (2018a) Spillway jet regime and total
dissolved gas prediction with a multiphase flow model. J Hydraul
Res 57:26–38. 1-13. https://doi.org/10.1080/00221686.2018.
1428231

Witt A, Stewart K, Hadjerioua B (2017a) Predicting total dissolved gas
travel time in hydropower reservoirs. J Environ Eng 143(12):
06017011. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001281

Wang P, Liu C, Li Y (2018b) Estimation method for ET0 with PSO-
LSSVM based on the HHT in cold and arid data-sparse area. Clust
Comput. https://doi.org/10.1007/s10586-018-1726-x

Witt A, Magee T, Stewart K, Hadjerioua B, Neumann D, Zagona E,
PolitanoM (2017b) Development and implementation of an optimi-
zation model for hydropower and total dissolved gas in the mid-
Columbia River System. J Water Resour Plan Manag 143(10):
04017063. https://doi.org/10.1061/(ASCE)WR.1943-5452.
0000827

544 Page 14 of 15 Arab J Geosci (2019) 12: 544

https://doi.org/10.1007/s40710-016-0196-5
https://doi.org/10.1007/s40710-016-0196-5
https://doi.org/10.1061/(ASCE)HE.1943-5584.0001541
https://doi.org/10.1016/j.engfailanal.2018.02.016
https://doi.org/10.1016/j.engfailanal.2018.02.016
https://doi.org/10.1007/s00521-017-2917-8
https://doi.org/10.1016/j.scitotenv.2018.10.155
https://doi.org/10.1016/j.scitotenv.2018.10.155
https://doi.org/10.1016/j.tust.2018.04.016
https://doi.org/10.1016/j.tust.2018.04.016
https://doi.org/10.1007/s10100-018-0531-1
https://doi.org/10.1080/00221680009498350
https://doi.org/10.1002/hyp.7266
https://doi.org/10.1002/hyp.7266
https://doi.org/10.1016/0144-8609(84)90001-3
https://doi.org/10.1016/0144-8609(84)90001-3
http://www.ecy.wa.gov/biblio/0403002.html
http://www.ecy.wa.gov/biblio/0403002.html
https://doi.org/10.1080/00221686.2007.9521757
https://doi.org/10.1080/00221686.2007.9521757
https://doi.org/10.1016/j.ijmultiphaseflow.2009.06.009
https://doi.org/10.1016/j.ijmultiphaseflow.2009.06.009
https://doi.org/10.1016/j.compfluid.2012.08.003
https://doi.org/10.1016/j.compfluid.2012.08.003
https://doi.org/10.1061/(ASCE)HY.1943-7900.0001287
https://doi.org/10.1016/j.rse.2018.04.052
https://doi.org/10.1016/j.rse.2018.04.052
https://doi.org/10.1111/gwat.12620
https://doi.org/10.1111/gwat.12620
https://info.ornl.gov/sites/publications/Files/Pub59285.pdf
https://info.ornl.gov/sites/publications/Files/Pub59285.pdf
https://doi.org/10.1023/A:1018628609742
https://doi.org/10.1023/A:1018628609742
http://www.cbr.washington.edu/d_gas/tdg_manual.pdf
http://www.cbr.washington.edu/d_gas/tdg_manual.pdf
https://doi.org/10.1016/j.aquaculture.2013.09.007
https://doi.org/10.1016/j.aquaculture.2013.09.007
http://pubs.usgs.gov/of/2011/1300
https://doi.org/10.1016/j.electacta.2014.08.147
https://doi.org/10.1577/T02-026
https://doi.org/10.1080/00221686.2018.1428231
https://doi.org/10.1080/00221686.2018.1428231
https://doi.org/10.1061/(ASCE)EE.1943-7870.0001281
https://doi.org/10.1007/s10586-018-1726-x
https://doi.org/10.1061/(ASCE)WR.1943-5452.0000827
https://doi.org/10.1061/(ASCE)WR.1943-5452.0000827


Xiong J, Wang T, Li R (2018).Research on a hybrid LSSVM intelligent
algorithm in short term load forecasting. https://doi.org/10.1007/
s10586-018-1740-z.

Yuan Y, Feng J, Li R, Huang Y, Huang J, Wang Z (2018) Modelling the
promotion effect of vegetation on the dissipation of supersaturated
total dissolved gas. Ecol Model 386:89–97. https://doi.org/10.1016/
j.ecolmodel.2018.08.016

Yang J. (2018). A novel short-term multi-input-multi-output prediction
model of wind speed and wind power with LSSVM based on

improved ant colony algorithm optimization. Clust Comput, 1-8.
https://doi.org/10.1007/s10586-018-2107-1.

Zhu X, Ma SQ, Xu Q (2018) A WD-GA-LSSVM model for rainfall-
triggered landslide displacement prediction. J Mt Sci 15(1):156–
166. https://doi.org/10.1007/s11629-016-4245-3

Zhang W, Zhang R, Goh AT (2018) Multivariate adaptive regression
splines approach to estimate lateral wall deflection profiles caused
by braced excavations in clays. Geotech Geol Eng 36(2):1349–
1363. 1-15. https://doi.org/10.1007/s10706-017-0397-3

Arab J Geosci (2019) 12: 544 Page 15 of 15 544

https://doi.org/10.1007/s10586-018-1740-z
https://doi.org/10.1007/s10586-018-1740-z
https://doi.org/10.1016/j.ecolmodel.2018.08.016
https://doi.org/10.1016/j.ecolmodel.2018.08.016
https://doi.org/10.1007/s10586-018-2107-1
https://doi.org/10.1007/s11629-016-4245-3
https://doi.org/10.1007/s10706-017-0397-3

	Modeling...
	Abstract
	Introduction
	Methods
	Study area and data used
	High-order response surface method
	Least squares support vector machine
	Multivariate adaptive regression splines
	M5Tree model
	Performance assessment of the models

	Results and discussion
	Conclusions
	References


