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Abstract
Due to the seasonality of Shabestar plain rivers, most of the water demands for agricultural and drinking sectors are provided
from groundwater. The existence of agricultural activities has expanded the use of chemical and animal fertilizers that are possible
to infiltrate and contaminate the groundwater resources. The purpose of this study is to provide an optimized DRASTIC approach
for assessing the vulnerability of the Shabestar plain aquifer located in East Azarbaijan Province, North West of Iran. The
effective parameters in this method include the depth to groundwater, net recharge, aquifer media, soil media, impact of the
vadose zone, topographic slope, and hydraulic conductivity, which are being provided in seven layers in the ArcGIS software
environment. After ranking each of the input parameters and applying their equivalent weight coefficients, the DRASTIC
vulnerability index for the study area ranged between 53.3 and 118.3. Nitrate concentration values at 66 water wells were used
for the validation of the DRASTIC-based vulnerability maps. The r value between the DRASTIC indices and the concentration
of nitrate is 0.38 indicating a low correlation. Sensitivity analysis results showed that the impact of the vadose zone and aquifer
media is significant on the intrinsic vulnerability of the study area. The Wilcoxon rank-sum test (WRST) was used for rate
modification. Also, the weights of the DRASTIC approach were optimized by using the ant colony optimization (ACO) and
genetic algorithm (GA). All optimized models increased the r compared to the typical DRASTIC method. The results indicate
that WRSTand GAmethods were most successful for optimization of the rates and weights, respectively, where the WRST-GA-
DRASTIC model obtained an r of 0.63.
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Introduction

Due to the increasing population growth and water require-
ments, the use of freshwater sources, such as groundwater
resources, has become very important. On the other hand,
human activities, such as agriculture, urbanization, and indus-
try, have reduced groundwater quality (Kazakis and
Voudouris 2015). The groundwater flow is very slow, and, if
contaminated, it will take a lot of time to remove

contamination. Therefore, prevention measures are the most
appropriate strategy to combat groundwater contamination.
One of the important tools for the management and protection
of groundwater is the provision of groundwater vulnerability
maps (Patrikaki et al. 2012). So far, various definitions have
been presented for the aquifer vulnerability and its concept in
hydrogeology. Among them can be pointed to the definition of
the National Committee of the United States in 1993 (Stigter
et al. 2006). According to the definition of this committee,
groundwater vulnerability is the possibility of infiltration and
diffusion of pollution to reach the groundwater system from
the ground surface (Almasri 2008). The vulnerability of
groundwater is divided into two types of intrinsic and specific
vulnerability. Intrinsic vulnerability depends on the character-
istics of geology, hydrology, and hydrogeology of the region
and human activities, while it is independent on the nature of
pollution (Hamza et al. 2007). Specific vulnerability indicates
groundwater vulnerability to particular pollution or a group of
pollution caused by human activities; in fact, it depends on the
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inherent sensitivity, location, and type of the contaminant
source (Gogu and Dassargues 2000). There are various ap-
proaches to assess intrinsic vulnerability, for example,
DRASTIC ((Aller et al. 1987)), AVI (Van Stempvroot et al.
1993), GOD (Foster 1987), SINTACS (Civita 1994), and
Time-Input (Kralik and Keimel 2003). The most common
method to assess the groundwater vulnerability is the
DRASTIC which was presented by the US Environmental
Protection Agency (USEPA) for the first time (Aller et al.
1987). The effective parameters in the DRASTIC method
are the depth of groundwater, net recharge, aquifer media, soil
media, impact of the vadose zone, topographic slope, and
hydraulic conductivity being provided in seven layers in the
GIS software environment. Through ranking and assigning
weights to the aforementioned input layers, the DRASTIC
index is calculated. Different hydrological, hydrogeological,
and geological characteristics for different areas can lead to
optimizing the DRASTIC method. Also, due to the fact that
the rates and weights in the DRASTIC method are somewhat
dependent on the expert’s decision, therefore, reducing the
subjectivity is necessary to provide a reliable vulnerability
map. So far, different methods have been used to optimize
the DRASTIC method. A number of these methods are pre-
sented in Table 1.

In this paper, the optimized methods, such as genetic algo-
rithm (GA), and ant colony optimization (ACO), as a new
methodology, were used to optimize the weights. Also,
Wilcoxon rank-sum test (WRST) was used to modify the rates
of the DRASTIC approach. Accordingly, the various
DRASTIC models, including typical DRASTIC, ACO-
DRASTIC, GA-DRASTIC, WRST-DRASTIC, WRST-
ACO-DRASTIC, and WRST-GA-DRASTIC, were generat-
ed. These models were employed to evaluate the groundwater
vulnerability of the Shabestar plain, NW Iran, as a case study.
The main objective of this study is to compare the perfor-
mance of the mentioned optimization models in assessing
the vulnerability of the study area.

Material and methods

Study areas

Shabestar plain with an area of 350 km2 and geographical
coordinates, x = 540500 to x = 587500 eastern longitude and
y = 4215000 to y = 4239550 northern latitude, is situated in
East Azarbaijan province in NW Iran. The plain is bordered to
the north by the Marand Zilberchay basin, to the east by the
Tabriz plain, to the south by the Urmia Lake, and to the west
by the Tasuj Basin. The slope of the ground surface in the
northern parts is high, and, to the south of the plain, the
amount of slope is reduced and the ground becomes almost
flat. The DEM (digital elevation model) of the study area is

shown in Fig. 1. The average annual rainfall in the region is
325 mm (Asghari Moghaddam et al. 2017). The highest and
lowest rainfall occurred in May and August, respectively. The
climate of the area is semi-arid. The most important rivers in
the plain are the Daryan-Chay, Payam-Chay, Shanehjan-Chay,
and Sis-Chay which flow approximately northeast–southwest
(Asghari Moghaddam et al. 2017).

Geologically, the oldest deposit in the area, in the south-
ern part of Mishoo and the northern plain of Shabestar, is
the Kahar Formation, which includes micaceous shale with
fine sandstone, schist, and a little dolomitic stromatolite
with layers of chert and dark limestone. On the southern
slopes, there is the Barut Formation that includes sandstone
and dolomite. In the Mishoo Mountain, the Dorood and
Rute Formations are composed of dark and red limestone
recovered by shale. Cretaceous sediments in the area in-
clude massive limestone (the eastern part of the region) and
sedimentary flesh (the middle section of the region).
Cenozoic rocks are dominated by a condensed conglomer-
ate, silt, marl, clay (west and center of the region), and red
marl with layers of the conglomerate (northern part of
Khamene and northeastern part of Shabestar). The expan-
sion of Quaternary deposits in the region is high, such as
conglomerates, long alluvial terraces, old alluvial, alluvial
plains, and young alluvial terraces, which are exposed
(Asghari Moghaddam et al. 2017).

The Shabestar plain aquifer is single-layered and uncon-
fined. However, in the southern parts of the plain, there is a
confined aquifer, but the water table falls below the imperme-
able layer indicating hydrogeologically that the aquifer is not
merely a confined aquifer but also acts as an unconfined aqui-
fer. Based on the pumping test data, the amount of transmis-
sivity in the middle of the plain is estimated to be about 1000
to 1500 m2/day, which decreases towards the south of the
plain with a value of 100 m2/day. The storage coefficient of
the aquifer ranged between 2 and 8%.

DRASTIC method

The DRASTIC method (Aller et al. 1987) is based on the
seven hydrological, hydrogeological, and geological parame-
ters, including groundwater depth (D), net recharge (R), aqui-
fer media (A), soil media (S), topography (T), impact of va-
dose zone (I), and hydraulic conductivity (C). Relative weight
is allocated to each of the aforementioned parameters with
respect to their importance in the transmission of pollution
to the groundwater system. The weight ranged between 1
and 5, which is the least and most important parameters, re-
spectively. The rate of the parameters varied from 1 to 10
based on the characteristics of the region, in which 1 means
the lowest and 10 means the most dangerous for groundwater
contamination (Panagopoulos et al. 2006). Table 2 shows the
rates of DRASTIC index parameters.
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To calculate the aquifer vulnerability index, the parameters
used are introduced into a simple linear equation as follows:

DI ¼ DrDw þ RrRw þ ArAw þ SrSw þ TrTw þ I rIw þ CrCw

ð1Þ

In the above-mentioned relationship, DI is a vulnerability
index. The capital letters represent the seven parameters, r is
the rate of value (rank), and w is the weight assigned to each
parameter. The larger the index, the greater the potential for
contamination.

Sensitivity analysis

Sensitivity analysis provides useful information about ratings
and weights assigned to each parameter (Gogu and
Dassargues 2000). The effect of each of the used seven
DRASTIC parameters can be determined on the vulnerability
of the study area. For this purpose, the sensitivity analysis was
used as the variation index. The VARi is calculated as follows
(Sadat-Noori and Ebrahimi 2016):

VARi ¼ vi−vxi
vi

� �
� 100 ð2Þ

where VARi is the variation index of the removal parameter
and vi and vxi are vulnerability index calculated using Eq. (1)
on the ith subarea and vulnerability index of the ith subarea
removing one map layer, respectively.

Nitrate concentration data

Nitrate as one of the most common groundwater pollutants
has different origins, such as domestic, municipal, and indus-
trial wastewater, chemical fertilizers, and animal wastes. In
this study, nitrate was used as an indicator to validate vulner-
ability assessment, because of the fact that nitrate, produced
by human activities, is reached into the groundwater from the
ground surface and also is considered as indicator of ground-
water quality degradation (US EPA 1996). Therefore, nitrate
concentration collected from 66 water wells was used to val-
idate the DRASTIC method. The concentration of nitrate is
varied between 0.2 and 70 mg/L with an average of 16.4 mg/
L. Figure 2 shows the distributionmap of nitrate concentration
in groundwater of Shabestar plain.

Ant colony optimization

Ant colony algorithm was first introduced in 1992 by Marco
Dorigo in his Ph.D. thesis. This algorithm is based on the
actual behavior of the ants, in which the ants can find the
shortest route to find food using their simple communication
mechanisms. As they move on their path, a chemical material
called pheromone remains on the earth which guides the ants
to the target. Ants choose their own pathway, which has the
greatest effect of pheromone. Due to the fact that pheromone
is evaporated with time, the path that more ants cross it has
more pheromone and encourages other ants to cross that. As

Table 1 A number of methods to optimize the DRASTIC method

Researchers Year Optimization method/model Result

Panagopouls et al. 2006 Statistical methods The r increased to 33% higher than the original method

Sadat-Noori and Ebrahimi 2016 Statistical methods The r2 increased significantly from 0.52 to 0.78

Thirumalaivasan et al. 2003 AHP The r was equal to 0.84 at 0.01 level

Asefi et al. 2013 AHP AHP showed a higher r compared to the original model

Yang et al. 2017 AHP-GA The r increased significantly from 41.07 to 75.31% after modification

Neshat et al. 2014 WRST Result of the modified DRASTIC is better than that of the original method

Jafari and Nikoo 2016 WRST-GA The r increased to 0.82

Neshat and Pradhan 2015 SPSA, FR, AHP FR-AHP with a higher value of r was the optimal model

Dixon 2005 Fuzzy logic This model had better estimations of groundwater vulnerability

Mahdavi and Zare 2015 Fuzzy logic models Based on these models, south, west, and northeast showed maximum
contamination potential to nitrate.

Barzegar et al. 2016 ANN, SFL, MFL, NF,
CMI, SCMAI

SCMAI was the best model for prediction of vulnerability

Ghanbari et al. 2017 ANN, MFL, SFL, NF The r2 between NF output and nitrate concentration was higher than the
other models

Hamami and Nadiri 2018 MFL, SFL, LFL, SCFL Combining the all fuzzy logic models (SCFL) used from the advantage
of each FL model

Nadiri et al. 2018 WRST, GA, SWM, AIMF AIMF was the best model and increased r to 0.84

Barzegar et al. 2019 WRST, FR, CC, AHP, GA WRST-GAwas the best model. By combining all optimized models
based on bagging, ensemble model r value increased to 0.67
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shown in Fig. 3, the mechanism of finding food from the
shortest path by ants includes the following three steps:

1) The ant by walking a route finds a food source and returns
to the nest by placing the effect of the pheromone.

Fig. 1 Digital elevation model (DEM) of the Shabestar basin, NW Iran

Table 2 The rates of DRASTIC index parameters (Aller et al. 1987)

Range Rate Range Rate Range Rate Range Rate Range Rate

Groundwater depth (m) Topography (%) Aquifer media Impact of vadose zone Soil media

0–1.5 10 0–2 10 Massive shale 2 Confining layer 1 Thin or absent 10

1.5–4.6 9 2–6 9 Metamorphic 3 Silt/clay 3 Gravel 10

4.6–9.1 7 6–12 5 Weathered metamorphic 4 Shale 3 Sand 9

9.1–15.2 5 12–18 3 Alluvium 5 Limestone 6 Peat 8

15.2–22.8 3 18 < 1 Sandstone, limestone, shale 6 Sandstone 6 Shrinking clay 7

22.8–30.4 2 Hydraulic conductivity (m d−1) Massive limestone 6 Sandstone, shale 6 Sandy loam 6

30.4 < 1 0.04–4.1 1 Massive sandstone 6 Gravel, sand, clay 6 Loam 5

Net recharge (mm) 4.1–12.3 2 Gravel, sand 8 Metamorphic 4 Silty loam 4

0–50.8 1 12.3–28.7 4 Basalt 9 Gravel, sand 8 Clay loam 3

50.8–101.6 3 28.7–41 6 Karst limestone 10 Basalt 9 Muck 2

101.6–177.8 6 41–82 8 Karst limestone 10 No shrinking clay 1

177.8–254 8 82 < 10

254 < 9
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2) Ants follow one of the four possible paths, but the gradual
increase in the amount of pheromone in the shortest path
increases the tendency of ants to path this route.

3) Ants follow the shortest route that has the highest amount
of pheromones to reach the food (Dreo 2006).

A simple ant colony optimization composed of two nodes
of vs (representing nest of ant) and vd (representing a source of
food). e1 and e2 are between vs and vd. Lengths of l1 and l2 are
allocated to e1 and e2, respectively. l1 and l2 indicate short and
long paths between vs and vd, respectively. An artificial pher-
omone value ti is considered for each of the two links ei = i = 1,
2. This shows the strength of pheromone trail on the path.
Finally, na artificial ants are introduced. The behavior of each
ant is as follows (Blum 2005):

pi ¼
ti

t1 þ t2
i ¼ 1; 2 ð3Þ

If t1 > t2, it means a trail of pheromone in the path e1 is a
strength. Then, the probability of choosing a path e1 is higher
and vice versa. An ant uses the same path as it chose to reach
vd. For returning from vd to vs, the ant changes the value of
artificial pheromone as follows (Blum 2005):

ti←ti þ Q
li

ð4Þ

where Q is a positive constant parameter of the model. The
above-mentioned equation shows artificial pheromone value
that is added depending on the chosen path. In other words,
the shortest path has a high pheromone value. In nature, pher-
omone deposits evaporate over time. Simulation of this pher-
omone is as follows (Blum 2005):
ti← 1−pð Þ:ti; i ¼ 1; 2: ð5Þ

The parameter p ϵ (0, 1] regulates the evaporation of
pheromone.

Genetic algorithm

A genetic algorithm was introduced by Holland in 1975
(Holland 1975). GA is a randomized optimization method
that mimics the same biological concepts. In the GA, a
population is initially formed, and, then, the individuals
develop from one generation to the next with a repetitive
process of evolution. Each evolutionary stage is called a
generation. Each person of this generation is judged by
the suitability function. The evolutionary routine consists
of choice, combination, and mutation. An evolutionary
algorithm generally determines the initial population ran-
domly and measures the suitability of each individual
based on their fitness value in the environment. In this
way, more qualified people will be selected several times
to participate in the new population and thus have a great-
er chance of reproduction.

In this method, each optimization problem has three basic
and fundamental components, including the objective func-
tion, the decision variables or parameters, and constraints
(Jafari and Nikoo 2016). For each optimization problem, the
population of the probable solutions chosen becomes the best
possible solution. Each solution can be modified based on its
compatibility with the selection, crossover, and mutation op-
erators (Jafari and Nikoo 2016) (Fig. 4).

Wilcoxon rank-sum test

The Wilcoxon rank-sum test (WRST) (Wilcoxon 1945) is a
non-parametric statistical test that is used to evaluate the sim-
ilarity of two samples dependent on a rating scale. In addition
to considering the differences in symptoms, this test also takes
into account the difference between them. So, since it uses
more information, it has a more accurate answer (Ahmadi
et al. 2013).

Fig. 2 The spatial distribution of
the nitrate concentration of
Shabestar plain
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Modeling procedure

For arranging seven layers of the DRASTIC method, relevant
information was inserted into the GIS environment and the
layers were prepared as the raster layers. The groundwater
depth parameter represents the depth that the pollutant needs
to pass through it to reach the water table. In order to provide
the groundwater depth layer, the 24-piezometer water table
information in the study area for the year 2016–2017 was

entered into the GIS software environment and interpolated
with the IDW method. Afterwards, they were classified using
the ratings shown in Table 2. The average depth to groundwa-
ter ranged between 2.5 and 86.6 m in the study area.
Therefore, rates between 1 and 9 are assigned to this parameter
(Fig. 5a). To calculate the net recharge, Piscopo’s (2001)
method was employed. For this method, three layers, includ-
ing precipitation, slope, and soil maps, are needed. To prepare
the slope map, a digital elevation model (DEM) of the area

Fig. 3 The mechanism of finding food from the shortest path by ants (Dreo 2006)

Fig. 4 Flowchart of the genetic
algorithm methodology (Chen
and Lin 2006)
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Fig. 5 Input layer maps in the DRASTIC method
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was obtained and then the percent slope of the ground surface
was extracted and ranked according to the standards in
Table 3. In order to prepare the soil map, considering the type
of soil layer in 2 m above the logs of the observation wells, the
soil map was classified into five classes and interpolated by
the Kriging method. Afterward, a rate was assigned to each
class based on soil permeability according to Table 3. As
regards the fact that the amount of precipitation for the area
is less than 500 mm per year, rank 1 was considered for the
precipitation layer. Three raster maps were prepared according
to Eq. (6) and superimposed. Then, the net recharge layer was
reclassified and rated (Fig. 5b). The ratings of net recharge
ranged between 1 and 3 in this study.

Net recharge ¼ soil permeabilityþ rainfallþ gradient ð6Þ

To prepare the aquifer media, soil media, and vadose zone
layers, 35 available well logs in the area were considered.
Materials of these logs consist of gravel, sand, mud, clay,
and silt. To prepare the aquifer media layer, based on the
aquifer materials, the ratings between 3 and 7 were given
according to Table 2 and interpolated (Fig. 5c). For the soil
layer, the upper part of the unsaturated zone or the surface
layer (upper 2 m of the well logs in the area) is considered.
The ratings between 2 and 5 were assigned according to
Table 2 and transformed into a raster layer by the Kriging
method (Fig. 5d). The percent slope of the ground surface
was calculated in the GIS and classified based on Aller et al.
(1987). Then, the rating values were assigned for each class
and raster topography map was generated (Fig. 5e). Ratings
between 1 and 10 were assigned to topography layer. For the
impact of the vadose zone, the material of this zone was
considered, and the ratings between 3 and 5 were assigned
according to Aller et al. (1987) (Fig. 5f). Hydraulic conduc-
tivity refers to the ability of the aquifer-forming material to
convey water, depending on the percentage of void spaces
associated with the saturated layer. By dividing amounts of
transmissivity (obtained from 52 observation wells), satura-
tion thickness amounts of hydraulic conductivity in the study
area are ranged between 0.1 and 38.2 m/day. Then, conduc-
tivity ratings are ranged between 1 and 6 (Fig. 5g).

In this study, in order to optimize the weights of the
DRASTIC method, ACO and GA methods were used.
WRST method was also employed to modify the rates.

In theWRSTmethod, the rates of parameters (e.g., D, R, A,
S, T, I, C) were rescaled based on the mean nitrate concentra-
tion in each class for each layer, then the highest rate of each
parameter was assigned to the class with the highest mean of
nitrate concentration, and other rates were modified linearly
according to this relation. Table 4 shows the modified rates
based on the Wilcoxon’s method.

The ACO is generally expressed as P = (S, f), in which
the limited set of objects S and fitness function f: S→ R
are given that attributes a fitness value to every s ∈ S. The
aim is to search for an object of minimum fitness value.
Knowing that there are n input data xi and an output data
y, the estimation error is calculated as follows:

Table 3 Ranking of net recharge based on Piscopo (2001)

Soil permeability Rainfall (mm) Slope (%) Net recharge

Intensity Rate Range Rate Range Rate Range Rate

High 5 850 < 4 2 > 4 11–13 10

Moderate to high 4 700–850 3 2–10 3 9–11 8

Moderate 3 500–700 2 10–33 2 7–9 5

Low 2 500 > 1 33 < 1 5–7 3

Very low 1 3–5 1

Table 4 The typical and modified rates based on mean nitrate
concentration in the Wilcoxon’s method

Vulnerability
parameter

Initial rate Nitrate
concentration

Modified
rating

Depth to
groundwater

9 0.01 0.001

7 67.5 9

5 20.55 2.74

3 15.79 2.1

2 16.31 2.17

1 12.49 1.66

Net recharge 3 14.59 2.13

1 20.48 3

Aquifer media 3 19.47 7

4 16.39 5.89

5 17.26 6.2

6 0.01 0.003

7 0.01 0.003

Soil media 5 11.13 3.02

4 16.72 4.54

3 18.38 5

2 12.9 3.5

Topography 10 16.07 9.23

9 17.41 10

5 17.26 9.91

3 3.18 1.82

1 0.01 0.005

Impact of
vadose zone

5 12.56 3.33

4 16.27 4.32

3 18.81 5

Hydraulic
conductivity

4 19.68 6

2 17.88 5.45

1 11.21 3.41

6 0.01 0.003
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e ¼ y−t x1; x2…X nð Þ ð7Þ
where t is the output of linear model written as follows:

t x1; x2;…X 2ð Þ ¼ a1x1 þ a2x2 þ…:anxn þ an þ 1 ð8Þ
where a1, a2, …an are weighting coefficients of the input
parameters (Kadkhodaie 2015). Seven parameters of the
DRASTIC were considered as the inputs of the ACO. The
output of the ACO is calculated using the following equa-
tion:

y ¼ vulmax

No3ð Þmax

� No3ð Þi ð9Þ

In the above-mentioned equation, y is the adjusted vulner-
ability index, vulmax is the maximum DRASTIC index,
(No3)max is the maximum nitrate concentration, and (No3)i is
the nitrate concentration. The MSE (mean squared error) of
adjusted vulnerability index was employed as the objective
function to be minimized by ACO as follows (Kadkhodaie
2015):

MSE ¼ 1

m
∑m

j¼1 y j−t xij
� �� �2

i ¼ 1; 2;…; n ð10Þ

where m and n are the number of estimated points and input
parameters for prediction of adjusted vulnerability index,
respectively.

For developing the ACO, the number of initial ants of 500,
epoch of 20, and 1 < a < 5 were set. Finally, the optimized
weights were obtained when a minimumMSE for the objective
function was reached. Table 5 represents the optimized weight
values of the DRASTIC method obtained by the ACOmethod.

For GA-based optimization of the DRASTIC method, sev-
en parameters of the DRASTIC as the variables were consid-
ered. The minimum and maximum values between 1 and 5
were defined as constraints for the weights of the variables.
The objective function for the GA method was the correlation
coefficient between the nitrate concentration and DRASTIC
index. The objective function used to optimize the DRASTIC
through the GA is presented as follows (Jafari and Nikoo
2016):

Max F ¼ Corr x; yð Þ ð11Þ

F ¼
∑n

j¼1 x j−x
� �

− y j−y
� �� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

j¼1 x j−x
� �2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

j¼1 y j−y
� �2

r Constrain : 1≤Wi≤5 j ¼ 1; 2;…;

ð12Þ
where F represents an objective function, n denotes the num-
ber of wells, yj is contaminant concentration, y represents the
mean concentration of contaminant, xj is vulnerability index, x
is mean vulnerability index, and Wi is the weight of the
DRASTIC parameters. Finally, with the purpose of maximiz-
ing the function, optimized weights were obtained. The results
of the GA-based optimization for DRASTIC are presented in
Table 6. Considering the optimized rates using the WRST
method, weights of the DRASTIC method were optimized
by the GA and ACO. The results of the optimization of the
rate and weight of the DRASTIC method are presented in
Table 7.

Validation of models

In order to validate the various vulnerability maps, the corre-
lation coefficient (r) was calculated as follows:

r ¼
∑n

i¼1 Vuli−Vul
� �

Ni−N
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1 Vuli−Vul
� �2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1 Ni−N
� �2

rs ð13Þ

where r is the correlation coefficient, Vuli is the vulnerability
index, Vul is the mean of a vulnerability index, Ni represents

the nitrate concentration, and N is the mean of nitrate
concentration.

Table 5 Main weighting and modified weighting coefficients using the
ant colony algorithm

Modified weighting
coefficient (ACO)

Original weighting
coefficient

Vulnerability parameter

3.73 5 Groundwater depth

1 4 Net recharge

1.15 3 Aquifer media

1 2 Soil media

1 1 Topography

1.37 5 Impact of vadose zone

1.77 3 Hydraulic conductivity

Table 6 Original and optimized weights of DRASTIC using GA
method

Modified weighting
coefficient (GA)

Original weighting
coefficient

Vulnerability parameter

5 5 Groundwater depth

1 4 Net recharge

5 3 Aquifer media

1.11 2 Soil media

1 1 Topography

5 5 Impact of vadose zone

2.69 3 Hydraulic conductivity
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Results and discussion

By overlapping the seven effective layers (e.g., D, R, A, S, T, I,
C) in the DRASTIC approach and using Eq. (1), intrinsic vul-
nerability index was calculated from 53.3 to 118.3 in the study
area. The vulnerability index was categorized into five catego-
ries, according to geometrical interval classification suggested by
Huan et al. (2012), including very low, low, moderate, high, and
very high vulnerability. The DRASTIC-based vulnerability map
of the Shabestar plain is shown in Fig. 6. Based on the typical
DRASTIC vulnerability map, very low and very high vulnerable
areas are located in the west and south-west of the plain, respec-
tively. Distribution of the class area shows that areas with very
low, moderate, high, and very high vulnerability covered 6.79,
39.11, 47.45, 6.02, and 0.6% of the study area, respectively. The
amount of r between the DRASTIC index and the concentration
of nitrate was calculated as 0.38 indicating an adaptation of the

Table 7 Typical and modified weighting coefficients based on WRST-
GA and WRST-ACO models

Parameter Typical
DRASTIC
weight

WRST-GA WRST-ACO
Modified
weighting
coefficient

Modified
weighting
coefficient

Depth to groundwater 5 5 2.84

Net recharge 4 3.96 1.80

Aquifer media 3 5 1.44

Soil media 2 2.73 1

Topography 1 1 1

Impact of vadose zone 5 1 1

Conductivity 3 2.30 1.39

Fig. 6 Typical and optimized DRASTIC vulnerability maps for the Shabestar aquifer
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vulnerability map to the distribution of nitrate concentration data
does not show much correlation. In other words, zones with a
high vulnerability index do not show high nitrate concentration.
Accordingly, the typical DRASTIC index cannot be precise
enough to evaluate the vulnerability of Shabestar plain aquifer.
On the other hand, the typical DRASTICmap is a general model
and the weight assigned to each parameter should be modified
based on the hydrogeological characteristics of each specific
area. Sensitivity analysis by variation index method was per-
formed to determine the effect of ratings and weights assigned
to each parameter. By removing one parameter of the typical
DRASTIC method and using Eq. (2), the statistical results of
the sensitivity analysis were calculated (Table 8). The results
show that the effect of the vadose zone and aquifer media has
the greatest impact on the vulnerability of the area, while hydrau-
lic conductivity and soil media have the least effect. On the other
hand, the sensitivity of each of the parameters in addition to the
weight is influenced by the rates. Therefore, it can be stated that
both weights and rates of the DRASTIC method need to be
optimized. Accordingly, in this study, the GA and ACO were
used to optimize weights, and WRSTwas employed to modify
the rates. Afterward, various optimized models were developed
to assess the vulnerability of Shabestar plain aquifer (Fig. 6).
Validation of the models also was calculated by r between the
nitrate concentration and optimized DRASTIC index. The vali-
dation results of optimized models are shown in Table 9. It can
be concluded that all optimized models elevated the r compared
to the typical DRASTICmodel. Using ACO andGAmethods to
optimize weights, r increased to 0.47 and 0.52 compared to the
typical DRASTIC model, respectively. The WRST method was

used to optimize the ratings of increased r to 0.6 compared to the
typical DRASTIC model. By applying ACO and GA based on
the WRST-DRASTIC model, r increased to 0.62 and 0.63, re-
spectively. These results indicate that theWRST-GA-DRASTIC
model with higher r outperforms the other optimized models in
assessing the vulnerability of the Shabestar plain aquifer. Based
on this model, zones with very low, low, moderate, high, and
very high vulnerability cover 8.08, 37.32, 46.17, 7.82, and
0.58% of the total area, respectively. Various optimized models
showed different percentages for different vulnerability catego-
ries (Fig. 7). Based on ACO-DRASTIC model, zones with very
low vulnerability index are located in north and northwest
(28.57% of total area) while zones with very high vulnerability
index are situated in south and southeast (11.91% of total area).
According to the GA-DRASTIC model, zones with very low
and very high vulnerability indices are located in the west (1.6%
of total area) and parts of the east and southeast (3.5% of total
area), respectively. Based on the WRST-DRASTIC model,
zones with very low and very high vulnerability indices are
located in western and southern parts, respectively, which cover
3.72 and 5.64% of the total area, respectively. Based on the
WRST-ACO-DRASTIC model, zones with very low and very
high vulnerability indices are located in the western parts (2.84%
of total area) and a small part of the southeast (0.52% of total
area).

Conclusion

DRASTIC vulnerability indexwas calculated from 53.3 to 118.3
in the Shabestar plain. In this model, the areas with very low,
moderate, high, and very high vulnerability cover 6.79, 39.11,
47.45, 6.02, and 0.6% of the study area, respectively, while the
zones with very low and very high vulnerability indices are
located in the west and south-west of the study area, respectively.
Nitrate concentration data were used for validation of the
DRASTIC model. The r value of 0.38 between the DRASTIC
indices and nitrate concentrations was calculated, which

Table 8 Statistical results of the map removal sensitivity analysis for
typical DRASTIC model

Variation index (%) Removal parameter

D R A S T I C

Maximum 37.96 20.87 23.7 16.55 17.3 36.16 16.63

Minimum 1.28 4.07 11.92 5.66 4.88 19.43 2.63

Mean 14.14 11.8 17.93 9.55 11.92 27.55 8.09

Standard deviation 8.75 4.81 2.79 2.25 2.08 4.03 3.47

Table 9 Validation
results of the various
DRASTIC models

Model r

Typical DRASTIC 0.38

ACO-DRASTIC 0.47

GA-DRASTIC 0.52

WRST-DRASTIC 0.60

WRST-ACO-DRASTIC 0.62

WRST-GA-DRASTIC 0.63

Fig. 7 Distribution of the class areas (%) according to each applied
method
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indicates a low correlation. Results of sensitivity analysis show
that the vadose zone and aquifer media with mean variation
index of 27.55 and 17.93%, respectively, have the greatest im-
pact on the vulnerability of the area while hydraulic conductivity
and soil media with mean variation index of 8.09 and 9.55%,
respectively, are less effective on vulnerability. WRSTwas used
to modify the rates, while ACO and GAwere used to optimize
the weights. Afterward, various optimized frameworks were de-
veloped to assess the vulnerability of the plain. By applying
ACO and GA methods to optimize weights, the r value was
increased to 0.47 and 0.52 compared to the typical DRASTIC
approach, respectively. The WRST method used to optimize the
rates increased the r value to 0.6 compared to the typical
DRASTIC method. By applying ACO and GA based on the
WRST-DRASTIC framework, the r increased to 0.62 and
0.63, respectively. These results indicate that the WRST-GA-
DRASTIC framework with higher r value outperforms the other
optimizedmodels in evaluating the vulnerability of the Shabestar
plain aquifer. Based on the proposedmodel, zoneswith very low,
low, moderate, high, and very high vulnerability index cover
8.08, 37.32, 46.17, 7.82, and 0.58%of the total area, respectively.
Based on the model, new industrial units should be constructed
in the western part of the study area with very low vulnerability.
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