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Abstract
This study focuses on the zircon U–Pb geochronology and geochemistry of intermediate–basic dikes from the Buqingshan–
A’nyemaqen tectonic mélange belt (BTMB) along the southern margin of the East Kunlun orogenic belt (EKOB). Zircons from a
diorite dike show oscillatory zoning and relatively high Th/U ratios (0.47–2.43), indicating that they are of magmatic origin.
Using LA–ICP–MS, zircons of the diorite dike yield a U–Pb age of 205 ± 1 Ma (MSWD= 0.88), implying that the diorite dikes
were formed in the Late Triassic (Rhaetian) and also represented the latest tectonic magmatism in the BTMB. Geochemical
analyses show that the rocks have low SiO2 (51.96–59.33 wt%), low Al2O3 (10.49–13.95 wt%), and low alkaline (4.00–
5.29 wt.%), and thus belong to the subalkaline magma series. The contents of rare earth elements (REEs) are 80.23–
189.19 ppm, with weakly negative to weakly positive Eu anomalies (δEu = 0.50–1.10). The trace element geochemistry is
characterized by negative anomalies of Nb, Hf, P, Ti, and Sr and by positive anomalies of Th, La, Nd, Sm, Zr, and Eu. The
diorite dikes, the product of a mafic magma formed at high temperature (~ 777 °C), were derived by partial melting of the mantle
with possible admixture of crustal material. The intermediate–basic dikes in the BTMB are the products of mantle enriched
upward and emplaced along tensional faults in the crustal–relaxation stage after the subduction–collision of the Bayan Har and
East Kunlun Blocks during the Late Hercynian–Early Triassic.

Keywords Intermediate–basic dikes . Zircon U–Pb age . Geochemistry . Tectonic setting . Buqingshan–A’nyemaqen tectonic
mélange belt

Introduction

The Buqingshan–A’nyemaqen tectonic mélange belt (BTMB)
is in the western part of the A’nyemaqen Suture Zone, which is
at the intersection of the East Kunlun, West Qinling, and
Songpan–Bayan Har orogenic belts (Fig. 1a). The mélange
belt forms a junction with the Qinghai–Tibetan Plateau in
the Qinling orogen and is an important tectonic component
of the complex eastern section of the Proto-Tethyan and
Paleo-Tethyan ocean systems (Bian and Zheng 1992; Jiang
et al. 1992; Xu et al. 1996, 2001, 2006a, 2013; Wang et al.
1997a; Pei 2001; Zhang et al. 2003; Pei et al. 2018). The
region experienced two main tectonic phases: the Hercynian
and the Indosinian. This multi-stage history of the region is
vital to understand the tectonic evolution of continental China
(Jiang et al. 1992; Xu et al. 1996; Yin and Zhang 1997; Pan
et al. 2012; Dong et al. 2018).
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Controversy regarding the evolution process and geodynamic
setting of BTMB remains. Xu et al. (2006b, c, d) suggest that the
BTMB subduction–accretion complex is the product of subduc-
tion of the northern branch of the Paleo-Tethys oceanic crust.
Other researchers have proposed that the East Kunlun orogenic
belt (EKOB) and BTMB together form a large subduction–ac-
cretion–type tectonic mélange belt, and the paleo–ocean basin
represented by the Buqinshan ophiolite continued to evolve from

the Cambrian to the Early Triassic. The central of the East
Kunlun and the Buqinshan ophiolites had accumulated together
along the southern margin of the EKOB in the Middle and Late
Triassic (Jiang et al. 1992, 2000; Wang et al. 1997b, 1999; Bian
et al. 2001a, b, c, 2004, 2007; Li et al. 2007; Li et al. 2015a;
Xiong et al. 2015; Liu et al. 2011a, b, c). To clarify the evolution
of the BTMB,more research and data are needed and provided in
this paper.

Fig. 1 a Geological map of the middle-western sections of the Central
Orogenic Belt of China; b geological sketch map of the Buqingshan-
A’nyemaqen tectonic mélange belt (BTMB) and its adjacent areas; c

geological map of the BTMB, southern margin of the EKOB (modified
fromChina University of Geosciences (Wuhan) Geological Survey 2000)
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Due to their characteristic stability, zircons and their U–Pb
ages are extremely useful in constraining the tectonic evolution
of a region (Hartmann 2001; Wu et al. 2008; Wang et al. 2011;
Zhang et al. 2015; Hoskin and Black 2000; Hoskin and Ireland
2000; Griffin et al. 2000; Belousova et al. 2002; Rubatto 2002;
Hoskin and Schaltegger 2003; Hoskin 2005; Hanchar and
Westrenen 2007). Previous studies mainly focused on the
EKOB along the north side of the BTMB and obtained consid-
erable evidence from zircon U–Pb geochronology (Chai et al.
1984; Harris et al. 1988; Chen et al. 2002a; Liu et al. 2004; Mo
and Pan 2006; Sun et al. 2009; Chen et al. 2013a, b, c, 2017a, b,
2018a, b, c; Li et al. 2013a, b, 2017a, 2018a, b, 2019; Li et al.
2013c, 2018c; Chen et al. 2016; Deng et al. 2016; Hu et al. 2017;
Zhang et al. 2017). These studies found granitoids with both
Early Paleozoic ages in the BTMB (Liu et al. 2011a; Li et al.
2014a, 2015a, b; Li et al. 2014b, 2017b), as well as younger ones
in the eastern section of the EKOB, dated at 230–256 Ma (Liu
et al. 2004; Chen et al. 2013a, b, c, 2017a, 2018a, b, c; Ding et al.
2014; Chen et al. 2016; Li et al. 2018a). Late Triassic ages of
granitoids have so far only been found in the Gerizhuotuo diorite
(Li et al. 2013c). To expand the database on igneous rocks in the
BTMB, we here analyze the petrology, geochronology, and geo-
chemistry of intermediate–basic dikes in the BTMB. We also
discuss the source and petrogenesis of the dikes, and made an
attempt to provide new evidence for the Late Triassic tectonic
evolution of the BTMB.

Geological background

The E-W striking BTMB discontinuously is more than 700 km
long and approximately 10–20 km wide. It starts from Maqin in
the east and extends across the Majixueshan and Tuosuohu to
Buqingshan and southeast Heicigou to connect with the mafic–
ultramafic rocks ofMuzitage (Molnar et al. 1987; Burchfiel et al.
1989; Bian et al. 2004; Fig. 1a). To the north, the BTMB is
separated from the East Kunlun and West Qinling orogens by
the southern East Kunlun Fault, and to the south, it is separated
from the Songpan–Bayan Har Orogen by the Changshitou Fault.
The BTMB itself forms a suture zone between the Bayan Har
andEast KunlunBlocks and is a product of two phases of ocean–
continent subduction–collision in the Early and Late Paleozoic
(Zhang et al. 1999). It also is part of the East Tethys Ocean
tectonic domain (Jiang et al. 1992; Bian et al. 1999a, b, 2001c;
Chen et al. 1999, 2000a, 2004; Zhu et al. 1999; Yang et al. 2004;
Guo et al. 2007; Liu et al. 2011a, b, c; Pei et al. 2018).

The BTMB comprises the Lower–Middle Permian
Maerzheng Formation (P1–2m), including Early Paleozoic
and Late Paleozoic ophiolites, Paleozoic rock mass, seamount
basalts, and limestone (Liu et al. 2011b; Li et al. 2013c,
2014b, 2017b; Li et al. 2014a, 2015a, b; Pei et al. 2015,
2018; Yang et al. 2016; Pei et al. 2017). In the northern part
of the ophiolite belt is the Middle Proterozoic Kuhai Group

(Pt2K), which comprises marble, biotite–quartz schist, gneiss,
and amphibolite and constitutes the metamorphic basement
rocks. A nappe composed of the Upper Carboniferous to
Lower Permian Shumenweike Formation (C2P1–2sh), which
primarily comprises carbonates with apparent reef affinities
(Fig. 1b), covers the entire area.

The BTMB also includes various mafic to felsic
dikes that intruded rock masses of various ages and
diverse stratigraphy. The dikes intruded parallel to bed-
ding or intersect it at an oblique angle. Their NW ori-
entation appears fault controlled. The rock types primar-
ily include diabase, diorite, granodiorite, granite, and
syenogranite. According to the intersection relationships
of the dikes, their relative intrusion order may be rep-
resented as diabase→ diorite→ granodiorite→ granite→
syenogranite. Indosinian dikes are widely distributed in
the EKOB, indicating that the Indosinian magmatic
event was widespread across the region.

Analytical methods

Petrographic sample preparation and microscopy

Thin sections of rocks were completed at the Laboratory
of Mineralization and Dynamics of Chang’an University.
During sample preparation, after cutting the rock sam-
ple, it is ground with different specifications of sandpa-
per. Then, the polished rock slab and the glass slide are
dried in a preheated oven, and the surface of the rock
block is attached to the glass slide using epoxy resin.
After cooling, it was cut down to a thickness of 1 mm
using a precision cutter and then ground to a light-
transmission level (~ 30 μm), and polished with dia-
mond paste and alumina for about 10 min each until
the surface of the section was flat and free of mechan-
ical scratches. Petrographic observation and photomi-
crography were performed using an ORTHOPLAN par-
tial and reflective research microscope from Leitz,
Germany.

LA–ICP–MS testing

One sample (MNT-21) of the diorite dike was evaluated for
isotopic dating, whose geographic coordinates are N 35° 27′
30.7″ and E 97° 39′ 42.3″ (Fig. 1).

Rock samples were crushed to 80–100 meshes using
conventional methods and separated by flotation and
electromagnetism techniques. Well-formed, crystal-
shaped, and transparent zircons were handpicked using
a binocular microscope. Zircon grains were mounted on
a two-sided adhesive tape and fixed with colorless
transparent epoxy resin until fully solidified; the surface
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was polished to expose the interior of the zircons.
Cathodoluminescence (CL) microphotography images
were taken with a Cameca electron probe X-ray micro-
analyzer at the Institute of Geology and Geophysics,
Chinese Academy of Sciences. The analysis voltage
was 15 kV and the current was 19 nA.

The in situ U–Pb isotopic age analysis of zircons was
carried out following the standard test procedure using
an LA–ICP–MS at the State Key Laboratory of
Continental Dynamics, Northwest University. The anal-
ysis instruments were an Elan 6100DRC Type
Quad rupo l e Pe r ch Mas s Spec t r og r aph and a
Geolas200M excimer laser ablation system (193 nm,
Geolas200M, Lambda Physic). The facula beam’s diam-
eter of laser ablation was 30 μm, and the depth of laser
ablation samples was 20–30 μm. For the calculation of
zircon ages, the international standard zircon 91500 was
used as an external standard; for the element content
analysis, the artificial synthetic silicate glass NIST
SRM610 of the American National Standard Substance
Bureau was adopted as an external standard. 29Si was
used as the internal standard element. The isotopic ratio
and element content data were analyzed with GLITTER
(ver. 4.0, Macquarie University) software, general
plumbum adjustment was conducted using the
Andersen software (Andersen 2002), and age calculation
and concordia diagram drafting were completed using
ISOPLOT (3.0 edition) (Ludwig 2003). The detailed ex-
perimental principles, technological process, and instru-
mentation parameters were the same as those reported
by Yuan et al. (2003, 2004).

Geochemical analysis

Nine samples were selected for the analysis of major
and trace elements. The samples were ground to 200
meshes and the major and trace elements were deter-
mined by the State Key Laboratory of Lithosphere
Evolution, Institute of Geology and Geophysics,
Chinese Academy of Sciences. The major elements were
tested using the method of X-ray fluorescence spectrom-
etry (XRF–1500). To determine the content of oxide, a
sheet glass made of 0.5-g samples and 5 g lithium
tetraborate was tested using the Shimadzu XRF–1500,
with a precision of > 2–3%. The contents of the trace
and rare earth elements (REEs) were analyzed by ICP–
MS (ElementII). The samples were prepared using the
acid-solubility method, which has an analytic precision
of > 10% (according to the national standards GSR–1
and GSR–2), but the precision is > 5% when the ele-
ment content is > 10 ppm. The detailed analysis
methods were described by Chen et al. (2000b, 2002b).

Results

Petrography

The sampled dikes can be classified as diabase and
diorite. The diabase, gray–black and fine-grained with
typical diabasic texture (Fig. 2a, b), is composed pri-
marily of plagioclase (50–60%), pyroxene (± 20%), and
minor amounts of hornblende, biotite, and opaque min-
erals (8–10%). The diorite, dark–gray and fine- to
particle-grained with hypidiomorphic granular texture,
is composed primarily of plagioclase (65–70%), horn-
blende (± 20%), quartz (3–5%), and biotite (5–8%) with
accessory amounts of zircon, apatite, and magnetite
(Fig. 2c). Plagioclase is the most abundant phenocryst
and commonly has polysynthetic twins (Fig. 2d). Biotite
and hornblende are dark–green or brownish. Some
euhedral plagioclase grains are included within quartz
crystals (Fig. 2d).

Whole-rock chemistry

The intermediate–basic dikes of BTMB samples have rela-
tively low concentrations of SiO2 (51.96–59.33 wt%), K2O
(1.45–2.70 wt%), K2O+Na2O (4.00–5.29 wt%), TiO2 (0.30–
0.60 wt%), Al2O3 (10.49–13.95 wt%), and high concentra-
tions of total Fe2O3 (6.29–8.68 wt%), MgO (5.16–
11.79 wt.%), and CaO (5.86–10.15 wt%) (Table 1). All sam-
ples exhibit subalkaline trends in a total alkali–silica (TAS)
diagram (Fig. 3), and the intermediate dikes plot in the andes-
ite and basalt fields.

From the characteristics of the intermediate–basic dikes of
the BTMB in Table 1, we can conclude that the concentration
of REEs are 80.23–189.19 ppm, and the ratios of light RREs
(LREEs) to heavy RREs (HREEs) (LREE/HREE = 6.53–
13.15), with (La/Yb) N = 5.62–19.16, (La/Sm) N = 2.67–3.35.
The HREE losses may be due to residual garnet and amphi-
bole at the source (Patino–Douce and Johnston 1991).
Chondrite-normalized REE patterns display an incline to the
right (Fig. 4a). The diorite samples generally show similar
patterns, with differences in abundance and weak negative
Eu anomalies (δEu = 0.50–1.10) that may have been induced
by the differentiation of plagioclases and K-feldspars.

The intermediate–basic dikes are characterized by high Rb,
Th, and low Rb/Sr ratios (0.14–0.37); Ra/Ba ratios (0.04–
0.28); and high K/Rb ratios (75.52–355.14) (Table 1). On
the primitive mantle-normalized spidergram (Fig. 4b), they
are characterized by enrichment in LILEs relative to HFSEs,
showing notable negative Ta, Nb, Sr, P, and Ti anomalies and
positive U, Ce, Nd, Sm, and Hf anomalies. The diorite and
diabase dikes show different characteristics, with anomalous
Zr, Th, Rb, and Ba.
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Zircon U–Pb ages

Zircons from the diorite dike (sample MNT-21) are euhedral
to subhedral (Fig. 5a) with lengths in the range 100–250 μm
and width/length ratios of 1:1 to 1:10.

Thirty zircon analyses yielded Th concentrations in the
range 70–1267 ppm and U concentrations in the range 103–
1979 ppm (Table 2). A plot of total U versus Th shows a good
linear relation (Fig. 6a). The chondrite-normalized REE pat-
terns (Sun and McDonough 1989) (Fig. 6b) indicate that the
zircons are depleted in LREEs relative to HREEs with positive
Ce anomalies and negative Eu anomalies (δEu = 0.13–0.48)
(Table 3).

Except for the six apparent discordia data (e.g., analysis
spot numbers 002, 005, 015, 022, 023, 029) and captured or
inherited zircon ages (e.g., analysis spot numbers 020,
627 Ma) (Table 2), the remnant 23 zircon grains form a single
population (Fig. 5b). The 23 testing points are perfectly con-
cordant among 206Pb/238U and 207Pb/235U ages, the concordia
age of 204 ± 2 Ma (MSWD = 0.46) (Fig. 5b), and the

206Pb/238U weighted average age of 205 ± 1 Ma (MSWD=
0.88) (Fig. 5c). We interpret this to represent the Late Triassic
(Rhaetian) crystallization age of the diorite dike.

Discussion

Formation time of the dikes

The zircons analyzed were taken from the diorite dike (sample
MNT-21) in the BTMB. The majority of these zircons show
oscillatory zoning structures, indicating that they are magmat-
ic zircons (Belousova et al. 2002; Wu and Zheng 2004; Siebel
et al. 2005). This is corroborated by the high Th/U ratios
(0.47–2.43) (Table 2), indicating a magmatic origin (Vavra
et al. 1999; Claesson et al. 2000; Wu and Zheng 2004). A plot
of total U versus Th shows a good linear relation, which also is
a feature typical of magmatic zircons (Fig. 6a; Vavra et al.
1999; Claesson et al. 2000; Wu and Zheng 2004). The
chondrite-normalized (Sun and McDonough 1989) REE

Fig. 2 a, b Field photographs and microscopic photos of the diabase. c, d Field photographs and microscopic photos of the diorite in the BTMB,
southern margin of the EKOBAm, amphibole; Ap, apatite; Bi, biotite; Cpx, clinopyroxene; Pl, plagioclase; Qz, quartz; b, d, crossed polarizers, 20 times
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Table 1 Major element data components (wt%) and trace element abundance (ppm) for the intermediate–basic dikes in the BTMB, southern margin of
the EKOB

Sample MNT/
10

MNT/12-
1

MNT/12-
2

MNT/
13

MNT/
15

MNT/
21

MNT/22-
1

MNT/22-
2

MNT/23

SiO2 51.96 54.44 54.35 54.10 53.47 59.17 58.08 58.80 59.33

TiO2 0.35 0.31 0.30 0.31 0.31 0.60 0.59 0.60 0.56

Al2O3 11.94 11.45 11.14 10.49 10.58 13.95 12.54 12.59 12.76

Fe2O3
T 8.68 7.35 7.49 7.66 7.72 6.44 6.95 6.58 6.29

FeO 5.75 4.96 5.06 5.35 5.39 4.31 5.30 4.96 4.63

MnO 0.17 0.13 0.13 0.15 0.16 0.15 0.18 0.17 0.16

MgO 11.79 9.92 10.11 10.78 11.18 5.16 5.94 5.69 5.55

CaO 9.01 9.06 8.97 9.97 10.15 5.86 6.80 6.49 6.28

Na2O 2.27 2.63 2.56 2.63 2.55 3.18 3.22 3.10 3.11

K2O 1.76 2.61 2.70 1.77 1.45 2.02 1.99 1.97 2.17

P2O5 0.20 0.20 0.20 0.20 0.20 0.22 0.22 0.23 0.23

LOI 1.46 1.72 1.86 1.78 2.09 3.10 3.33 3.64 3.39

Total 99.59 99.82 99.81 99.84 99.86 99.85 99.84 99.86 99.83

Ti 2098.25 1876.12 1807.78 1859.87 1829.03 3597.00 3559.94 3584.85 3379.91

K 7304.00 10,830.67 11,199.57 7344.35 6006.70 8383.00 8274.81 8160.22 9018.91

P 436.20 443.46 432.70 434.43 435.23 479.82 489.36 501.96 509.74

Li 6.99 3.44 3.58 3.04 4.59 19.00 14.72 18.16 12.84

Be 0.54 1.11 1.09 1.25 1.30 1.50 2.65 2.44 2.26

Sc 48.60 9.43 13.00 10.07 13.36 17.00 5.29 5.71 4.13

V 247.00 195.80 205.50 212.60 215.50 98.20 117.20 113.20 109.60

Cr 555.00 438.00 523.80 444.10 510.60 275.00 363.80 285.50 336.30

Co 42.60 37.96 38.35 36.37 38.15 21.10 22.70 21.75 22.03

Ni 142.00 111.00 118.20 120.50 128.60 58.80 86.44 82.93 84.74

Cu 42.80 34.72 34.26 52.26 32.84 47.20 50.65 50.89 59.84

Zn 56.00 39.63 44.23 47.42 53.00 66.90 74.33 68.40 69.65

Ga 12.00 8.48 9.49 7.92 8.79 16.60 13.93 12.50 13.68

Rb 55.10 33.26 38.14 20.68 19.36 111.00 56.61 66.38 59.38

Sr 178.54 153.10 180.50 131.00 136.60 299.00 219.20 274.70 262.20

Zr 66.94 81.91 79.93 75.76 76.41 306.17 130.10 191.10 117.00

Nb 5.12 5.56 5.58 4.77 4.60 33.60 36.76 34.79 32.26

Mo 19.40 0.99 1.31 13.45 14.14 0.29 0.58 0.36 0.32

In 0.05 0.03 0.04 0.04 0.05 0.08 0.09 0.07 0.07

Cs 0.69 0.23 0.38 0.22 0.19 3.87 1.47 1.82 1.47

Ba 698.00 734.50 786.30 604.90 536.20 459.00 223.50 233.30 266.60

Hf 0.88 2.85 2.84 2.64 2.69 2.36 4.99 6.62 4.49

Ta 0.27 0.56 0.54 0.32 0.35 2.44 3.09 3.01 2.50

W 0.12 0.28 0.15 0.31 0.23 0.71 0.86 0.97 0.88

Tl 0.30 0.32 0.34 0.24 0.18 0.45 0.36 0.38 0.39

Pb 6.18 8.31 8.87 8.41 6.85 14.50 18.36 11.72 14.16

Bi 0.10 0.16 0.17 0.10 0.08 0.08 0.09 0.07 0.10

Th 7.77 5.30 5.82 5.22 5.50 21.50 12.81 8.65 7.53

U 1.25 2.05 2.55 1.54 1.41 2.47 3.55 3.00 3.40

La 20.30 16.91 17.07 16.18 15.67 32.80 21.74 18.46 14.52

Ce 40.30 36.59 36.57 34.45 34.62 70.40 77.24 64.64 59.54

Pr 5.25 3.95 4.09 4.05 4.00 9.94 6.78 6.65 4.68

Nd 20.90 14.96 15.80 15.53 15.63 41.40 25.97 26.53 17.82
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patterns (Fig. 6b) indicate that the zircons are depleted in
LREEs relative to HREEs. The zircons display positive Ce
anomalies (δCe = 1.02–79.30) and negative Eu anomalies
(δEu = 0.13–0.48) (Table 3), which are consistent with char-
acteristics of crustal magmatic zircons (Hoskin and
Schaltegger 2003).

Cathodoluminescence (CL) imaging of sample MNT-21
shows the complete zircon morphology, obvious oscillatory
zonal structure, and Th/U values of all the analysis points
greater than 0.1, demonstrating magmatic zircon

characteristics (Tapia–Fernandez et al. 2017). The 23 analysis
points obtained a relatively consistent 206Pb/238U apparent
age, with the 206Pb/238U weighted average age of 205 ±
1 Ma, considered to be the crystallization age of the diorite
dike.

Petrogenesis

The diabase dikes are relatively enriched in LREE and
LREE, with Nb and Ta negative anomalies, and have
relatively low Nb/U ratios (2.19–4.10) and high Zr/Nb
ratios (13.07–16.61) that are significantly different from
those of the standard OIB (Nb/U = 47.06 and Zr/Nb =
5.83, according to Sun and McDonough 1989). The
diabase dikes in the BTMB have obvious Nb, Ta, and
Ti negative anomalies, which reflect the geochemical
characteristics of island-arc basalt, suggesting either
crustal contamination or metasomatism by subduction
fluid (Green and Pearson, 1987; Rollinson 1993; Green
1995; Barth et al. 2000). High primitive mantle-
normalized (Th/Nb)N ratios (≫ 1, Saunders et al. 1992)
and low Nb/La ratios (< 1, Kieffer et al. 2004) are two
reliable trace element indicators for crustal contamina-
tion. The BTMB diabase dikes do have high (Th/Nb)N
ratios (7.89–12.56) and low Nb/La ratios (0.25–0.33),
suggesting crustal contamination. The diorite dike shows
characteristics that are opposite to those of the diabase
dikes, with lower (Th/Nb)N ratios (1.93–5.30) and

Fig. 3 TAS diagrams for the intermediate–basic dikes (after Rickwood
1989) in the BTMB, southern margin of the EKOB

Table 1 (continued)

Sample MNT/
10

MNT/12-
1

MNT/12-
2

MNT/
13

MNT/
15

MNT/
21

MNT/22-
1

MNT/22-
2

MNT/23

Sm 3.91 2.66 2.86 2.84 2.84 7.93 4.56 4.97 3.11

Eu 1.04 0.89 0.99 0.91 0.89 1.61 0.72 0.82 0.61

Gd 3.17 2.41 2.65 2.54 2.61 6.61 4.22 4.41 3.01

Tb 0.48 0.29 0.33 0.32 0.33 1.20 0.59 0.63 0.40

Dy 2.44 1.31 1.55 1.45 1.52 6.65 2.98 3.15 1.96

Ho 0.44 0.24 0.28 0.26 0.28 1.31 0.57 0.59 0.37

Er 1.26 0.71 0.85 0.79 0.82 3.85 1.73 1.77 1.13

Tm 0.18 0.09 0.11 0.11 0.11 0.66 0.25 0.26 0.16

Yb 1.22 0.63 0.78 0.73 0.78 4.19 1.66 1.75 1.10

Lu 0.19 0.10 0.12 0.10 0.12 0.65 0.25 0.26 0.16

Y 12.00 5.41 6.69 5.96 6.43 37.40 12.82 13.32 8.34

ΣREE 101.08 81.73 84.05 80.25 80.23 189.19 149.25 134.90 108.56

LREE 91.70 75.95 77.39 73.96 73.65 164.08 137.00 122.07 100.28

HREE 9.38 5.78 6.66 6.29 6.58 25.11 12.25 12.83 8.28

LREE/HREE 9.77 13.15 11.61 11.76 11.20 6.53 11.19 9.52 12.11

(La/Yb)N 11.94 19.16 15.78 15.90 14.36 5.62 9.38 7.58 9.43

δEu 0.90 1.07 1.10 1.03 1.00 0.68 0.50 0.54 0.61

LOI loss on ignition; subscript N-chondrite-normalized value; Fe2O3
T = all Fe calculated as Fe2O3; δEu = (Eu)N/[(Sm)N × (Gd)N]

1/2 ; chondrite REE
values are after Sun and McDonough 1989
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higher Nb/La ratios (1.02–2.22). This contrast suggests
that the diorite and diabase magmas may have had dif-
ferent source areas.

Magma temperatures

High-temperature and high-pressure experiments indicate that
the Ti content in zircon is closely related to temperature, pro-
ducing a logarithmically linear relationship. That is, the zircon

Ti thermometer has an empirical formula temperature estima-
tion whose error is generally no more than 10 °C. This ther-
mometer is simple and practical, so it is utilized by many
researchers for great practicality (Watson et al. 2006; Zhao
2010; Gao and Zheng 2011).

We obtained data for 30 measuring points in the BTMB
diorite dike (MNT-21), among which 23 are effective points
used in our calculations. Plugging the Ti content measured in
the sample zircon into the formula, the lowest temperature of

Fig. 5 a CL images and ages of single zircon U–Pb of diorite dike (the yellow circle is the sample test point position). b, c LA-ICP-MS zircon U–Pb
concordia diagram of diorite dike in the BTMB, southern margin of the EKOB

Fig. 4 a Chondrite-normalized REE patterns (chondrite data for
normalization taken from Sun and McDonough 1989). b Trace element
spider diagram (primitive mantle data for normalization taken from

McDonough and Sun 1995) for the intermediate–basic dikes in the
BTMB, southern margin of the EKOB
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Fig. 6 Th-U diagrams and chondrite-normalized REE patterns (chondrite data for normalization taken from Sun and McDonough 1989) of Zircon for
diorite dike in the BTMB, southern margin of the EKOB

Table 3 Zircon trace element (ppm) analytical results of diorite dikes in the BTMB, southern margin of the EKOB

Analysis spot La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu ΣREE δEu δCe

MNT-21-01 2.67 42.97 0.77 6.84 9.06 2.55 38.33 13.09 143.46 52.58 228.67 52.04 506.35 91.63 1191.01 0.36 7.33

MNT-21-02 0.19 38.27 0.53 7.74 10.55 3.55 42.04 13.42 141.57 50.61 218.97 49.76 487.29 90.20 1154.69 0.45 29.78

MNT-21-03 0.13 20.41 0.48 6.57 9.10 2.24 40.13 13.84 150.88 53.22 222.06 46.44 425.06 74.37 1064.93 0.30 19.90

MNT-21-04 0.65 28.29 0.56 7.61 11.54 3.48 55.78 18.32 190.14 65.74 273.66 55.65 511.71 89.60 1312.73 0.35 11.53

MNT-21-05 5.57 48.77 2.24 13.60 9.32 2.70 29.97 9.41 99.33 35.61 151.26 34.40 329.55 61.01 832.74 0.45 3.39

MNT-21-06 0.14 18.46 0.18 2.61 4.20 1.04 19.19 6.63 73.35 26.79 110.23 24.73 226.93 38.99 553.48 0.30 27.90

MNT-21-07 1.04 23.25 0.45 3.86 4.70 1.42 20.70 7.15 80.17 31.20 134.36 31.63 304.44 57.67 702.04 0.37 8.39

MNT-21-08 0.29 43.11 0.67 9.11 11.23 3.72 42.16 13.62 143.63 51.44 220.47 50.11 493.75 91.51 1174.82 0.46 23.87

MNT-21-09 0.53 43.61 0.56 7.66 10.40 3.26 40.86 13.58 145.37 52.37 229.25 51.42 501.18 91.43 1191.48 0.42 19.59

MNT-21-10 1.51 27.75 0.42 3.25 3.82 1.16 17.30 6.15 71.52 28.09 125.61 29.22 278.75 51.48 646.02 0.37 8.57

MNT-21-11 0.82 20.80 0.26 2.46 4.30 1.05 22.32 8.68 105.04 42.87 186.31 42.82 405.59 72.73 916.05 0.26 11.11

MNT-21-12 0.02 13.57 0.11 1.78 3.18 0.82 15.03 5.37 60.40 23.20 101.09 22.55 213.90 39.59 500.61 0.30 79.30

MNT-21-13 0.68 43.82 0.76 10.34 12.96 4.37 47.74 14.95 155.33 55.50 238.44 53.94 537.92 98.74 1275.49 0.48 14.95

MNT-21-14 0.15 23.76 0.38 5.23 8.06 2.21 36.91 12.79 140.40 50.87 217.39 46.45 435.17 75.61 1055.39 0.33 24.07

MNT-21-15 0.59 52.95 0.95 13.13 17.57 5.96 66.92 20.88 209.86 73.62 315.97 68.81 681.54 121.69 1650.45 0.47 17.25

MNT-21-16 0.07 20.24 0.28 4.03 6.28 1.80 28.35 10.09 115.98 43.72 187.77 40.85 386.53 68.92 914.91 0.35 35.14

MNT-21-17 1.23 31.87 0.27 2.55 3.55 1.06 17.08 6.32 73.61 29.97 132.07 31.60 305.24 56.45 692.87 0.34 13.50

MNT-21-18 0.39 18.15 0.07 1.18 2.84 0.60 16.20 6.52 77.37 30.95 136.15 32.02 304.34 53.15 679.93 0.21 27.20

MNT-21-19 19.83 60.68 6.87 35.99 12.44 1.73 31.85 11.98 150.64 58.07 270.44 61.65 617.63 107.08 1446.88 0.25 1.27

MNT-21-20 30.87 82.44 12.68 62.14 18.82 1.30 46.86 15.99 156.31 50.47 197.17 44.40 420.86 73.85 1214.16 0.13 1.02

MNT-21-21 2.97 44.64 1.35 12.45 12.02 3.84 41.16 12.93 133.31 47.03 201.30 46.37 459.88 83.09 1102.34 0.47 5.47

MNT-21-22 3.91 19.68 0.64 3.88 3.05 1.08 12.07 4.03 45.00 17.65 79.72 19.08 193.46 37.51 440.76 0.47 3.05

MNT-21-23 4.29 66.93 3.62 20.40 9.64 1.72 24.21 7.77 89.24 35.36 156.90 37.85 375.35 67.50 900.78 0.33 4.16

MNT-21-24 8.62 38.73 3.26 15.72 5.18 0.76 13.28 4.58 51.78 19.86 88.05 20.53 196.80 35.32 502.47 0.27 1.79

MNT-21-25 0.11 25.05 0.26 4.18 5.94 1.76 23.98 8.14 90.62 33.95 147.12 34.32 334.93 60.56 770.93 0.39 35.63

MNT-21-26 0.13 37.74 0.60 9.00 13.74 4.75 53.41 17.08 172.58 60.70 257.17 58.37 572.22 97.65 1355.14 0.47 32.66

MNT-21-27 1.99 51.79 1.89 15.42 12.36 3.34 40.93 12.62 134.85 47.57 198.75 45.37 448.80 75.15 1090.84 0.41 6.54

MNT-21-28 0.12 40.00 0.56 8.23 11.76 3.90 44.35 14.16 149.72 52.69 223.71 51.40 521.64 89.67 1211.91 0.46 38.41

MNT-21-29 0.57 49.84 0.86 11.12 13.84 4.28 49.99 15.45 162.69 57.78 244.82 55.99 555.54 95.07 1317.83 0.44 17.58

MNT-21-30 0.02 13.34 0.14 2.44 4.04 1.05 17.83 6.03 66.12 24.58 104.17 23.36 220.89 38.54 522.55 0.32 67.00

Subscript N-chondrite-normalized value; δEu = EuN/(SmN ×GdN)
1/2 ; δCe = CeN/(LaN × PrN)

1/2 . Chondrite REE values are after Sun and McDonough
1989
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the intermediate–basic dikes in BTMB ranges from 702 to
981 °C, averaging ~ 777 °C. TiO2–SiO2 and P2O5–SiO2

geothermometric measurements also verify that the formation
temperature of the diorite dike is ~ 800 °C (Fig. 7a, b),
confirming that they were formed in a high-temperature
environment.

Tectonic setting

Heat flow at an extremely high temperature is required to melt
large amounts of mafic rocks (England and Thompson 1986;
Thompson and Connolly 1995). However, in general, this
condition holds only in the tectonic setting represented by
continental collision→ continental crust thickening→ crustal
extension and thinning→ asthenosphere uplift (Han et al.
2000; Vanderhaeghe 2009; Bea 2012; Hasterok and Webb
2017). The intermediate–basic dikes in the BTMB formed in
high-temperature environments, and the depletion of Sr, P, and
Ti indicates characteristics of continental arc granite, which
may be related to the collision of the Bayan Hara and East
Kunlun Blocks along the BTMB in Late Hercynian–Early
Triassic.

Generally, the geochemical–element ratios of island arc
basalts and partially depleted mid-ocean ridge basalts are
Nb/La < l, Hf/Ta > 5, La/Ta > 15, and Ti/Y < 350, while those
of intraplate basalts, transitional mid-ocean ridge basalts, and
enriched mid-ocean ridge basalts are considerably different
(Condie 1989; Fitton 2007; Niu 2016). The diabase dikes in
the BTMB have Nb/La ratios of 0.25–0.33, Hf/Ta ratios of
3.25–8.19, La/Ta ratios of 30.36–74.63, and Ti/Y ratios of
174.85–346.53. This suggests that the formation settings of
these diabase dikes are unrelated to the lithotectonic settings
of intraplate basalt, transitional mid-oceanic ridge basalt, and
enriched mid-oceanic ridge basalt, as is the case for island arc
basalt and depleted mid-ocean ridge basalt. The element ratios

of island arc basalts are Th/Yb > 0.1, Th/Nb > 0.07, Nb/La <
0.8, and Hf/Th < 8, whereas those of depletedmid-ocean ridge
basalts are considerably different (Condie 1989; Fitton 2007;
Niu 2016). The diabase dikes in the BTMB have Th/Yb ratios
of 6.37–8.38, Th/Nb ratios of 0.95–1.52, Nb/La ratios of
0.25–0.33, and Hf/Th ratios of 0.11–0.54, which are clearly
of island arc nature. The diorite dike in the BTMB has Nb/La
ratios of 1.02–2.22, Hf/Ta ratios of 0.97–2.20, La/Ta ratios of
5.80–13.44, Ti/Y ratios of 96.18–405.17, Th/Yb ratios of
4.95–7.70, Th/Nb ratios of 0.23–0.64, and Hf/Th ratios of
0.11–0.76, mostly similar or close to the ratios of the diabase
dikes.

Therefore, it is after the Bayan Hara Block subduction or
collision with the East Kunlun Block in Late Hercynian–Early
Triassic that mantle melt was enriched during crustal relaxa-
tion, was emplaced up along tensile faults, and was contami-
nated by crustal materials, forming the Late Triassic dikes.

Tectonic significance

Since the Buqingshan–A’nyemaqen ocean subduction, the
EKOB developed several calcium metaluminous potassium
basic character arc magmatic rocks during the subduction
stage of 260–240 Ma (Guo et al. 1998; Yang et al. 2005; Mo
et al. 2007; Chen et al. 2013a, b, c, 2017a, 2018a, b, c; Liu
et al. 2014; Chen et al. 2016; Hu et al. 2016; Hu et al. 2017;
Zhang et al. 2017; Li et al. 2018a; Fig. 8a). Intrusive rocks in
the East Kunlun area that are associated with the 240 to
225 Ma collision between the Bayan Hara and East Kunlun
Blocks are rare. This stage of intrusive rocks have the syn-
collision granite characteristics (Zhang et al. 2012; Xia et al.
2014; Xiong et al. 2015; Chen et al. 2018b; Fig. 8b). After the
Late Triassic, post-collision granitoids are represented by the
stitching Gerizhuoto diorite pluton in the BTMB, which sug-
gests that by then, the Buqingshan–A’nyemaqen Ocean had

Fig. 7 a TiO2-SiO2 (after Harrison andWatson 1984) and b P2O5–SiO2 (after Green and Pearson 1986) diagrams for diorite dike in the BTMB, southern
margin of the EKOB
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already been closed (225.8 ± 1.5 Ma, Li et al. 2013c; Fig. 8c).
In the southern part of the EKOB, north of the BTMB, the
angular unconformities between the Babaoshan Formation
(T3b) and the overlain Middle Triassic Naocangjiangou
Formation (T2n) and between continental volcanic rocks and
the underlying strata of the Upper Triassic Erashan Formation
(T3e) in the northern part of the East Kunlun area mark the end
of continental collision between the Bayan Hara and East
Kunlun Blocks (Liu et al. 2011a; Li et al. 2012).

Comparison of dikes in the BTMB with the 226 Ma
Binggou mafic dike swarm of the EKOB (Liu et al. 2017)
reveals that at least since the Late Triassic, the EKOB had
shifted from compressional to extensional environments (Liu
et al. 2017), and intermediate–basic dikes in the BTMB
formed later than the various abovementioned intrusive rocks.
These results show that at ~ 225 Ma, the BTMB and the ad-
jacent area had entered a post-orogenic extension stage (Fig.
8c), as also indicated by the development of the stitching

pluton and mafic dike swarm. This implies that the
intermediate–basic dikes in BTMB are the product of the
post-orogenic intracontinental extension tectonic setting, sug-
gesting that in 225–205 Ma, the BTMB was at the post-
orogenic stress–relaxation stage of Bayan Hara Block
subduction–collision with the East Kunlun Block (Fig. 8c).
Decompression melting of the post-collision stage lifted the
thermal interface, thereby inducing the melting of the mantle
wedge and the formation of the abovementioned dikes.

Conclusions

Our comprehensive geochronological and geochemical study
of the intermediate–basic dikes in the BTMB (along the south-
ern margin of the EKOB, Tibetan Plateau, China) provides the
following conclusions:

(1) Geochemical analyses show that the dikes have the char-
acteristics of arc magmatic suites. REEs have low con-
centrations and incline to the right with weak negative Eu
anomalies. The diorite dike magma was formed at high
temperature (~ 777 °C) by partial melting of mantle ma-
terial and possibly was contaminated by crustal material
when ascending.

(2) The zircon U–Pb age of the diorite dike is 205 ± 1 Ma
(MSWD= 0.88), which shows that the intrusion formed
in the Late Triassic (Rhaetian) and thus also represents
the latest tectonic magmatism in the BTMB.

(3) The intermediate–basic dikes in the BTMB are the prod-
ucts of enriched mantle upwelled and emplaced in the
crustal relaxation period after the subduction–collision of
the Bayan Har and East Kunlun Blocks during the Late
Hercynian–Early Triassic.
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