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Abstract
Land use/cover change (LUCC) simulation models are helpful tools for decision makers because of their capacity of predicting
the landscape dynamics under various scenarios and thereby developing countermeasures. Developing LUCC models with high
reliability still remains challenging due to complicated influencing of natural and anthropogenic factors. An adding/deleting
approach is proposed in this study to explore whether and to what extent it can improve the accuracy of a hybrid LUCC model
involvedwith cellular automata,Markov chain, and artificial neural network in the Qeshm Island, the biggest island in the Persian
Gulf. The accuracy assessment was conducted by comparing the simulation results obtained from the models with the maps
derived from Landsat image in 2014. The results revealed that the adding/deleting approach could improve the prediction
accuracy of the model for the majority of land use classes as the area of the correctly predicted classes increased to 7.2 km2,
which is greater than 6.09 km2 without using the approach. We further compared the results derived from the proposed approach
with those from cellular automata-Markov chain-artificial neural network, Markov chain-artificial neural network, and cellular
automata-Markov chain-logistic regression, resulting in the Figure ofMerit index of 7.8 with this approach, compared to 6.7, 5.1,
and 4.5 with the other three models mentioned above. This study demonstrates that the proposed approach is effective for
improving the performance of LUCC modeling.
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Introduction

Land use/cover (LU/LC) and its underlying anthropogenic
exploitation are crucial links between human activities and
the natural environment on the Earth (Liu et al. 2017a, b;
Muceku et al. 2016). Spatiotemporal LUCC simulations are
beneficial and repeatable tools for studying and analyzing
causes, trends, and consequences of alternative future land-
scape dynamics relative to socio-economic and natural envi-
ronmental driving forces (Jia et al. 2018; Liu et al. 2017a, b;
Verburg et al. 2004). The experimental modeling of land use
changes is a complicated spatial dynamic and a nonlinear
process (Verburg et al. 2002) to identify the patterns of chang-
es and determine the effective variables that form the basis for
modeling and prediction of future regional changes
(Sangermano et al. 2012). Land change simulation is empha-
sized as the changing processes are accelerated due to socio-
economic drivers or intense human activities.

Various approaches have been proposed to model LUCC
including a multi-agent systems model (Tian and Qiao 2014;
Castella and Verburg 2007), generalized linear models,
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unbalanced support-vector machines (Huang et al. 2009), or
aggregated multivariate regression models (Yu et al. 2011;
Zang and Huang 2006). The advantages and disadvantages
of LUCC models have been discussed widely in the literature.
For instance, the Markov chain approach can be used to pre-
dict land use changes (Liu et al. 2017a, b), but it fails to
simulate the changes in the spatial distribution (Du et al.
2010). In addition, a Markov chain optimization procedure
provides adequate information to support decisions; yet, it
fails to present land use dynamic variations (Karimi et al.
2018; Yang et al. 2012). Hybrid models, obtained from inte-
gration of several individual models, have been recommended
as a more viable modeling strategy (Marquez et al. 2019;
Ghosh et al. 2017; Wang and Murayama 2017). For instance,
the integration of the cellular automata (CA) and the Markov
chain approaches has been used for simulation of LUCC,
resulting in an improved modeling performance (Ghosh
et al. 2017; Jokar Arsanjani et al. 2013). Moreover, to opti-
mize probability maps of changes, genetic algorithm or neural
network has been recently applied for LUCC modeling
(Soares-Filho et al. 2013). The main goal behind integration
of these models is to eliminate their defects while taking ad-
vantages of each of them.

Although integrated models are frequently and commonly
used to study LUCC, there is still a limited understanding of
the relationship between these factors and the causal chains
constituting LUCC processes (Verburg et al. 2006). Generally,
driving forces and variables of LUCC could be divided into
two categories that include socio-economic and geographical
factors (Jia et al. 2018). The first category often focuses on
topography, location, and urban infrastructures, while the sec-
ond category concentrates on GDP, amount, and density of
population (Zhang et al. 2013). The selection of spatial and
attribute variables for modeling and simulation procedures
depends on such factors based on the objective of the study
as well as the data availability. Location of a study area also
affects the variables selection which specifies the parameters
in the modeling procedure. But in addition to accessing the
required data (Samardžić-Petrović et al. 2017), an important
issue is which variables positively affect the final accuracy.

Improving the accuracy of modeling land use changes has
always been a challenge in the field of land use change studies
and researchers have explored different solutions for improv-
ing the accuracy of models (Shafizadeh-Moghadam et al.
2017; Kazemzadeh-Zow et al. 2017; Yirsaw et al. 2017;
Chang-Martinez et al. 2015; Olmedo et al. 2015; Geri et al.
2011; Pontius and Malanson 2005). One option is to screen
effective parameters by calibration procedure so as to improve
the accuracy of models (Verstegen et al. 2014). In this view, it
is expected that selection of effective variables, and excluding
those that are considered less important, may improve the
structure of a model and consequently enhance its perfor-
mance (Wang et al. 2011). In addition, this approach can be

effectively used to interpret and identify the factors that are
important in land use changes. Given the difference in the
causal-relationship patterns affecting LUCC processes in geo-
graphical regions, with the aid of this approach, we can ad-
vance our understanding of such differences and gain a better
insight into the causal factors affecting the LUCC patterns.
Furthermore, the analysis of the variable importance can help
to reinforce the model structure, identify the critical inputs,
and prioritize the tasks for updating, modifying, and simplify-
ing a model (Ligmann-Zielinska 2013; Lilburne and Tarantola
2009). Moreover, according to the parsimony rule proposed
by William of Ockham, the fourteenth-century philosopher,
we should exclude factors that we do not have a proper un-
derstanding of and go straight forward to Bthe most accurate
solution to a problem that is also the simplest and the shortest
solution^. Hence, the inclusion of the variables that positively
affect the accuracy of the results and the exclusion of the
variables that are not important may contribute to end up with
a parsimonious model and may also improve its accuracy.

In this sense, the main aim of this study is to explore wheth-
er and to what extent an adding/deleting approach can im-
prove the accuracy of a hybrid LUCCmodel, in which cellular
automata, Markov chain, and artificial neural network models
are integrated. Adding/deleting approach is used as a tech-
nique for sensitivity analysis to measure the effect of param-
eters on different phenomena. To the best of our knowledge,
this is the first time that an adding/deleting approach is devel-
oped for improving LUCC modeling. We have also applied
special parameters for coastal regions such as BDistance to
coastline^, BDistance to Mangrove forest^, and BDistance to
Ports^ as effective variables in LUCC modeling that could be
considered as other innovations in this study. The result of the
proposed approach has been compared with other commonly
used hybridmodelingmethods including CA_MC_ANN (cel-
lular automata-Markov chain-artificial neural network),
MC_ANN (Markov chain-artificial neural network), and
CA_MC_LogReg (cellular automata-Markov chain-logistic
regression) to validate the proposed method. Moreover, this
study aims to obtain a sufficient understanding of the trend of
LUCC in the Qeshm Island and identify the variables that
have a positive impact on LUCC modeling process.

Materials and methods

Study area

Qeshm Island with an area of approximately 1500 km2, is
located in the south of Iran as the biggest island in the
Persian Gulf from 55°14′58″E to 56°17′27″E and from
27°00′00″N to 26°32′04″N (Fig. 1). Qeshm is a large and
diverse landscape that represents great ecological richness
due to its geomorphology, climate, and hydrology. We can
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also see a diverse architecture and culture in this coastal zone
that contains active ports, which play an effective role in
connecting the island, as Free Zone Area, to the other com-
mercial centers in the region for trading purposes. In addition,
fisheries, tourism, and energy are related activities that have
shown to highly impact the economic performance of the area
(Bayani 2016). Furthermore, Mangrove Forests in this island
shaped the largest mangrove community in Iran’s coasts that
turned this island into a very important area in terms of envi-
ronmental resources.

Data preparation

Landsat data, in particular, are an irreplaceable source of sat-
ellite images, as they offer an extensive archive for retrospec-
tive Land Use/Land Cover (LULC) studies (Shafizadeh-
Moghadam et al. 2017). We used Landsat images (the follow-
ing table-totally 6 Scenes) from USGS Landsat Archive-
Level-1 (Table 1):

The topographic map of the Qeshm Island, generated by
Iran’s National Cartographic Centre at the scale of 1:25,000
and the Google Earth software were used to extract training
data (Keshtkar et al. 2017).

In this research, changes were detected using the post-
classification method. First, cloud-free Landsat images were

selected (level 1 products) and downloaded from the USGS
archive as the dates of the images were close to the plant
growth season (in the spring). The study area was identified
and masked on the images and to use all of the image bands in
the classification process, all bands (except for the thermal
bands due to the spatial resolution) of each image were com-
bined using the Layer-Stacking command and the mosaic of
images was created for further processing. In the processing
stage, first, the following six classes were defined in the clas-
sification phase: built-up, agricultural, dense vegetation, man-
grove, water body, and barren land (Table 2).

Given the importance of the two classes, BBuilt-up^ and
BAgriculture^, we used an on-screen digitizing method to draw
their boundaries using high-resolution satellite images derived
from Google Earth software, in conjunction with topographic

Caspian 
Sea

Oman Sea

QeshmIsland

Islamic Republic of 
Iran

Islamic Republic of 
Iran

Fig. 1 Location of the study area in the south of Iran in the north of Strait of Hormuz between the Persian Gulf and Oman

Table 1 List of Landsat data

No. Satellite Date Row Path

1 Landsat7 2002-05-25 041 172
2 Landsat7 2002-05-09 042

3 Landsat5 2008-05-17 041

4 Landsat5 2008-05-17 042

5 Landsat8 2014-05-18 041

6 Landsat8 2014-05-18 042
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maps and pan-shaped images to make the identification of these
classes more efficient. The remaining four land use classes were
detected using the maximum likelihood (ML) method given the
training samples from those classes. The maximum likelihood
procedure is the most widely used classifier of remotely sensed
imagery and is based on Bayesian probability theory (Eastman
2015, Ozturk 2015). We then merged the output of the classifier
to the two classes, extracted from the on-screen digitizing, to
obtain the final land use maps consisting of six classes. In order
to evaluate the accuracy of the maps, 300 control points were
randomly drawn from the study area for each year, and the true
classes were identified at each location using the visual interpre-
tation of the corresponding high-resolution images derived from
Google Earth and also the pan-shaped Landsat images. By com-
paring the true classes with the generated land use maps, several
accuracy metrics were calculated including the overall, user and
producer accuracy as well as the kappa coefficient (Table 3).

Figure 2 illustrates the classification results using the com-
bination of on-screen digitizing and supervised classification-
ML on the Qeshm Island in the form of Land use maps pre-
pared in six classes.

Simulation of LUCC

Cellular automata

Cellular automata, defined in a raster space, is a modeling tech-
nique that is widely used in simulations of natural and synthetic
processes due to its discrete dynamic nature. In a model based
on the cellular automata, space is defined as a raster lattice and
each unit is called a cell. This model is developed based on
interactions between the following components: (1) the

network space, which is known as the lattice; (2) cells that
constitute the lattice; (3) the cell state that represents the quality
and the states of the cell; and (4) the transition rules that control
the changes of the cell state (Mitsova et al. 2011). The transition
rules can be either global or local. In this study, the Markov
chain and artificial neural network (ANN) models were
adopted in our hybrid model as a data-driven approach to gen-
erate global and local rules. The cellular automata then updated
the lattice cells discretely and simultaneously according to the
local and global rules. The value of each new cell is determined
based on the values of a set of variables at the cell, as well as at
the neighboring cells, as the output of the modeling process.
The cellular automata model is obtained using eq. 1:

S t;tþ1ð Þ ¼ f S tð Þ;N
� � ð1Þ

where S denotes the limited and discrete cell state and N is the
cell context. Further, t and t + 1 stand for the two different
times, and f denotes the transition rules of the cell states in
the local space (Sang et al. 2011).

Markov chain model

The Markov chain (MC) turned to be an important prediction
method in the field of geographical research that can be used
in the prediction of geographical features with no aftereffect
(Sang et al. 2011). A model based on the Markov chain can
express land use transitions between two periods of times that
will be used to map the changes. The transitions are generated
and put in a probability matrix of transitions that provides a
basis for predicting and mapping future changes. The Markov

Table 3 Summary of mapping accuracy obtained for different years

Year Error count Sample count Overall accuracy User’s accuracy Producer’s accuracy Kappa index

2002 32 300 89.33 90.35 89.33 0.87

2008 33 300 89.00 89.72 89.00 0.86

2014 27 300 91.00 90.18 91.33 0.89

Table 2 List of LULC classes and definitions for each class

No. Class name Description

1 Agriculture Land used for cultivation including orchards, cultivated land of all kinds of agricultural products

2 Barren_land Unused land, including barren land, wild grass ground, alkaline land, wetland, sand, waste land.

3 Built_up Residential area, Includes urban, rural, industrial, all kinds of road, airport, surrounded
enterprise area and generally human-made area

4 Dense_vegetation Densely covered vegetation range is recognizable on Landsat which is outside the range of
the Built up and Agriculture classes.

5 Mangrove The range of mangroves, both natural and artificial

6 Water body Includes sea area and water bodies inside the island
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chain model uses the conditional probability of Bayes’ formu-
la to predict the land use changes (eq. 2):

S tþ1ð Þ ¼ p ijð Þ*S tð Þ ð2Þ

where S(t) and S(t + 1) are the system states at times t and t + 1,
respectively. In addition, p(ij) is the transfer probabilitymatrix for
one state, which is obtained using eq. (3) (Sang et al. 2011):

pij ¼
p11 p12 … p1n
p21 p22 … p2n
::: ::: … …
pn1 pn2 … pnn

2
664

3
775 0≤Pij < 1 and ∑

N

j¼1
Pij ¼ 1; i; j ¼ 1; 2;…; nð Þ

" #

ð3Þ

The Markov chain models are considered effective means
of modeling land use evolution and provide indices for deter-
mining the directions and changes in land uses (Eastman
2015; Benito et al. 2010).

Multi-layer perceptron neural network

We used an artificial neural network (ANN) algorithm
with a multi-layer perceptron (MLP) setting to calculate
the probability of potential changes for the land uses in
our study area. ANN is a learning algorithm, composed of
several interconnected networks of processing units (arti-
ficial neurons) that is inspired by the biological neural
network. This algorithm can learn from data and detect

Fig. 2 Land use maps of Qeshm
Island for 2002–2014
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patterns with nonlinear structure by converting the system
inputs to the user’s desired outputs. In ANN, artificial
neurons are organized into layers. An MLP is a form of
ANN with at least three layers that can be used to estimate
the inherent relationships between the inputs and outputs
of a model. It is also the most commonly used network
model for image classification in RS (Yuan et al. 2009).
The combination of the MLP approach and the back-
propagation learning algorithms (or BP which is used in
ANN to calculate the error contribution of each neuron
after a batch of data is processed; for example, in image
recognition multiple images) is one of the most common
models of neural networks (Kazemzadeh-Zow et al.
2017). A typical MLP network is composed of an input
layer, one or several hidden layers, and an output layer
(Eastman 2015) which are used for entering data, process-
ing data, analyzing data, and producing outputs, respec-
tively (Yuan et al. 2009). In this research, the transition
potential maps (TPM) values based on the land use
changes between two time periods, 2002 and 2008, are
used as the output layer (also called response variable),
and the factors (also called the predictors) that derive the
changes are organized in the input layer. In addition, the
hidden layer was used to identify the relationships be-
tween the modified pixels and the criteria.

The MLP neural network links the response variable to the
predictors using two procedures, forward and backward propa-
gation steps, which are taken to make the corrective changes to
the neuron connectionweights. In the training stage, each sample
is added to the model input layer and the receptor node collects
all of the weight signals transmitted from all of the nodes to the
node connected to the previous layer. Equation4 is utilized to
calculate the input received by a simple node, j, in MLP.

net j ¼ ∑
m

i¼1
wijoi ð4Þ

Where netj refers to the input that a single node j receives; wj

represents the weight between node i and node j and oi is the
output from node i. The output from a node i was calculated
through eq. (5):

oj ¼ f net j
� � ð5Þ

It must be noted that the f function is normally a sigmoidal
nonlinear function used to calculate the total input weight
before the signal reaches the next layer. During this process,
after forwarding the signals, the activity of the output nodes is
compared to the expected activity. However, under special
conditions, the actual output of the modeling process differs
from the target output due to the network errors. In this case,
eq. 6, which is known as the delta rule, can be used to

backward the errors so as to correct the relationships between
the network components.

Δwji tþ1ð Þ ¼ ηδjioi þ αΔwji tð Þ ð6Þ

In this relation, η is the learning speed, ais the stimulus
factor, and δis the calculation error. The forward and backward
transmission process continues until the features of all land
use classes are taught to the network with the aim of obtaining
the proper weight for the accurate relationship between the
input layer and the hidden layer(s) as well as between the
hidden layer(s) and the output layer. Equation (7) is used to
calculate the number of hidden nodes.

Nh ¼ INT
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ni*No

p� �
ð7Þ

where Nh, Ni, and NO show the number of the hidden nodes,
input nodes, and output nodes of the network, respectively
(Eastman 2015).

Sensitivity analysis through adding/deleting approach

A challenging problem in modeling land use changes is the
calibration of the models (Van Vliet et al. 2016; Wang et al.
2012; Wang et al. 2011; Silva and Clarke 2002). To achieve
more accurate models, integrated methods are proposed with
various algorithms (Yirsaw et al. 2017; Chang-Martinez et al.
2015;Muceku et al. 2015). Sensitivity analysis can be used for
a better understanding of components on modeling procedure,
identifying of errors, and performance of variables (Li et al.
2014). In order to improve the calibration of a land use change
model, the present study utilizes a procedure to select the
effective variables in the modeling and explores whether this
procedure improves the accuracy of the model.

We used the adding/deleting procedure through the repetitive
model calibration to examine the effect of the input variables
that may also be considered as a sensitivity analysis procedure.
This method measures the sensitivity of the model to various
combinations of the variables by deleting and adding variables
to the model (Ligmann-Zielinska 2013). Through a repetitive
model calibration, every time a variable is excluded from the
model to measure its impact on the performance of the model.
Finally, the variables that have no positive effects on the accu-
racy of the model will be excluded from the model structure.
This will result in a parsimonious model that is expected to also
improve the accuracy of the modeling results.

CA-Markov

There are various approaches to modeling LULC, such as
equation-based models, system models, statistical techniques,

333 Page 6 of 17 Arab J Geosci (2019) 12: 333



expert models, evolutionary models, cellular models (includ-
ing cellular automata and Markov chain) multi-agent (Parker
et al. 2003), and hybrid models including CA-Markov
(Yirsaw et al. 2017; Chang-Martinez et al. 2015). In this study,
a hybrid model based on coupling cellular automata and
Markov chains (hear after CA-Markov) was used which is a
multi-criteria evaluation method that simultaneously uses CA
and Markov chain modules. Using the expected value of
change through Markov chain analysis, CA–Markov applies
a contiguity kernel to ‘grow out’ a land use map to a later time
period using a CA function (Jokar Arsanjani et al. 2011).
Thus, this method has the ability to convert the results of the
Markov chain by means of a CA function to spatially explicit
outcomes (Pontius et al. 2004).

CA–Markovmodel is a robust approach due to its ability to
employ Geographic Information Systems (GIS) and remote
sensing (RS) data and quantity estimating as well as modeling
the spatial and temporal dynamics of LUCC (Jokar Arsanjani
and Kainz 2011). In the CA-Markov, the CA approach is used
to control Markov’s strict function for considering both the
spatial and temporal changes at the same time. A range of data
including demographic, biophysical, and socio-economic data
can be used in the model to determine the initial conditions,
and then parameterize the model to generate the probability of
transitions, that can be used to define the neighborhood rules
and preparing the transition potential maps (TPM)
(Kamusoko et al. 2009). Figure 3 illustrates the overall pro-
cess of this study.

Validation

In order to validate the modeling results, the produced maps
by different approaches have been compared with land use
map in 2014. To describe the difference between predicted
maps and real map, disagreement parameters recommended
by Pontius and Millones have been used in this study.
According to this method, quantification error and allocation
error are presented to explain the accuracy of the modeling
process. Quantification error or quantity disagreement is de-
fined as the number of pixels of a category in the predicted
map which are not matched with the corresponding cells in the
original map. Likewise, location error or allocation disagree-
ment would happen when the position of a class in predicted
maps is not compatible with a real map. In this method, the
Figure of Merit (FOM) is derived through eq. (5) to show
compatibility between changes in predicted and observed
maps which range from 0 to 100% (Tajbakhsh et al. 2018;
Pontius and Millones 2011).

FOM ¼ B= Aþ Bþ Cþ Dð Þ ð8Þ
where A is the amount of observed change projected as per-
sistence; B is the area of observed change predicted as change

correctly; C is the observed change projected as change but in
an incorrect class; and D is the area of error because of the
observed persistence projected as change (Tajbakhsh et al.
2018; Pontius and Millones 2011).

In addition to the above method, the kappa coefficient
which is still used in many similar studies (Alilou et al.
2018; Rimal et al. 2018) was used to validate the results of
this study.

Results

Model configuration

In this study, the CA_Markov_ANN hybrid model integrated
with adding/deleting applied to screen variables has been used
to simulate LU/LC of 2014 based on LU/LC maps of 2002
and 2008. Markov chain and ANN output have been used as
inputs of the CA model in order to predict LUCC. The initial
required data for LUCC modeling are LU/LC and variables
which affect LU/LC changes (Yang et al. 2015). To this end, at
first, LU/LC maps were extracted for three time intervals
(2002, 2008, and 2014), and effective variables on land chang-
es were prepared according to the literature survey, previous
studies carried out in this field and available information for
the study area. Based on the former studies considering
modeling LUCC, two types of information should be gener-
ated from the initial data for modeling process: (1) quantity of
changes and (2) transition potential maps-TPM (Jia et al.
2018; Xu et al. 2018; Kazemzadeh-Zow et al. 2017; Zhai
et al. 2016; Brown et al. 2013). For this purpose, Markov
chain was used to generate Bquantity of changes^ for each
class separately. In fact, based on the changes that took place
between 2002 and 2008, the probability of a possible change
has been estimated for 2014 through using MLP. At this stage,
in order to improve the accuracy of the modeling results, the
disturbing variables were identified by using the sensitivity
analysis (adding/deleting approach) method and were elimi-
nated from the model.

In this study, 17 variables were used in the study area
(Table 5). It has been tried that these variables be selected from
4 mainly categories include utilities, socio-economic, physi-
cal, and finally environmental factors that were earlier consid-
ered by Aburas et al. in their study. First, all 17 variables
(listed in Table 5) were introduced into the model and the
model was run. To validate the result of modeling, the pro-
duced map was compared with observed LU/LCmap of 2014.
Each time, one variable was removed and the model was run
to simulate LUCC for every class separately, and each time,
the result was compared with the real map of 2014 and accu-
racy of the result was compared with the case where all vari-
ables have been used. Indeed, the variables which deletion
increased the accuracy of the results were known as disturbing
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variables and were excluded from the model in the final mod-
el. This process was repeated for all six classes. Comparison
between the results of the final and initial models demonstrat-
ed that the accuracy of the modeling improved by identifying
and eliminating the disturbing variables.

Predicting LUCC was done through using the land change
modeler (LCM) which is developed by Clark University in
IDRISI-TerrSet software. Transition potential map (TPM)
and the quantity of changes in land use maps were used to

assess the simulation in 2014 (Tajbakhsh et al. 2018). Markov
chain as the most common stochastic method (Kazemzadeh-
Zow et al. 2017) was used to obtain TPM. The summary of
Markov probability matrix (Table 4) shows that the highest
probability is related to the transitions of different classes to
BBuilt_up^. Among these classes, BAgriculture^ has the
highest probability to be changed into the BBuilt-up^ areas,
and then BDense_Vegetation^, BBare_Land^, BWater_Body ,̂
and BMangrove^ were in the next ranks, respectively.

Fig. 3 Flowchart of the
methodology and main steps in
the study
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Modeling the transition potential maps using MLP
neural network

Modeling of the potential land use change transitions links the
changes between different classes in a time period to the vari-
ables that may derive the changes (such as slope, proximity to
the road, and other variables). For example, it can show the
potential of transition from barren-land to built-up at each cell
in the form of probability. Switching from one land use class to
another is introduced with the aid of sub-models known as the
transition models which is a key parameter for MC (Zhai et al.
2016). Selection of the sub-models was also assessed in this
research based on the dominance of the changes that had oc-
curred in one region in different scenarios. In this regard, the
scenarios containing variation prediction sub-models were se-
lected using trials and errors, and eventually, the scenario offer-
ing the best description of the regional changes from 2008 to
2014 was used to predict the changes. In this study, in order to
predict the changes in the land use map of 2014, 23 sub-models
of the transitions from barren-land to built-up and agriculture,
and also the transitions from agriculture to built-up were fitted
usingMLP-ANN. Figure 4 shows the rate of potential change of
each class to other classes for 2014.

Using adding/deleting approach to improve
the model performance

In this study, through a repetitive modeling process, one of the
variables was removed at each run, and its performance was
compared with the model used all the variables. Figure 5
shows the final predicted map for 2014.

Table 5 shows the results of adding/deleting procedure in
evaluating the effects of different variables on the model perfor-
mance for each land use class. Therefore, in this process, the
impact of each variable was measured on the modeling process
and in order to increase the accuracy of the simulation, the in-
clusion of variables with a negative impact were prevented in the
model. Out of the 17 variables used in the models, BElevation^,
BDistance toMangrove forest^, and BDistance to the road^ were

the only variables that were involved in the modeling of the
changes of all the six classes. Elevation which is known as a
geographical driver was used to develop a new approach for
LUCC simulation in China (Xu et al. 2018) and the positive
impact of BDistance to Mangrove forest^ as one of the specific
variables in coastal areas was considerable. However, BDistance
to Vegetation^, BDistance to built-up areas^, BDistance to
coastline^, and BSoil Condition^ had a positive effect on improv-
ing the accuracy of the models for only three land use classes.

According to the results of this section, the correctly pre-
dicted land use changes increased from 6.09 to 7.2 km2 after
applying the adding/deleting procedure. Increasing the accu-
racy of modeling has predominantly occurred in Barren lands
and Mangrove classes (Table 5).

Table 6 shows the level of accuracy for each land use class
before and after using the adding/deleting procedure. The re-
sults revealed that, with the exception of the BDense
Vegetation^ class, the accuracy of the predicted changes for
all the land use classes increased after calibrating the model by
adding/deleting procedure. For BDense_Vegetation class^, the
accuracy was reduced by approximately 0.01 km2, which is
not a big number in comparison with the size of the study area.
This class, which is much affected by the annual precipitation,
suffered from large changes. In total, the areas that were cor-
rectly predicted increased by more than 1.1 km2 overall after
using our approach, which represents more than 18% of the
study area that has been changed.

Among all the classes of the land use maps, the highest
increment in the level of accuracy was attributed to
Bare_Land, Mangrove, and Agriculture. In addition, the highest
and the lowest numbers of the variables that had a positive effect
on the accuracy of a class belonged to the prediction by the
Wate r_Body c l a s s ( i . e . , 15 va r i ab l e s ) and the
Dense_Vegetation class (i.e., 10 variables), respectively (Fig. 6).

Results of validation

To validate the methods of modeling in this study, the 3D
method which is suggested by Pontius-Millones has been

Table 4 A summary of the Markov probability matrix for simulating the transition between the primary and final cellular states

2008–2014-Probability of changing to:

Class name AGRICULTURE BARE_LAND BUILTAREA DENSE_VEGETATION MANGROVE WATER_BODY

AGRICULTURE 0.953 0.0292 0.0103 0.0075 0 0

BARREN_LAND 0.0013 0.9894 0.0038 0.0022 0.0024 0.001

BUILT_UP 0 0.0004 0.9996 0 0 0

DENSE_
VEGETATION

0.0129 0.7085 0.0096 0.2545 0.0139 0.0005

MANGROVE 0 0.0206 0 0.0043 0.97 0.0051

WATER_BODY 0 0.0047 0.0004 0 0.0062 0.9887
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used. This technique has been recently used in similar
studies (Varga et al. 2019; Tajbakhsh et al. 2018; Yao
et al. 2017). In this method, the FOM is derived through
the percentage of Bchange simulated correctly^ dividing
on all agreement/disagreements. As seen in Table 7, the
main sector of the study area (more than 96%) is simulat-
ed correctly as persistence in four methods. It has also
been reported in a study conducted by Tajbakhsh et al.
(2018), and due to its extensive range, this section is re-
moved from the graph in Fig. 7. According to table, the
Bchange simulated correctly^ range and the FOM factor
(as the final factor for accuracy evaluation in 3D method)
in the proposed method of this study are more than other
methods used for comparison. Also, the percentage of
BPersistence simulated as change^ as one of the disagree-
ments is lower than others. Details of this comparison are
also evident in the diagram shown in Fig. 7.

In addition to the Pontius-Millones method, in this
research, the standard Kappa index, which is also used
in many other modeling LUCC studies (Yulianto et al.
2018; Kazemzadeh-Zow et al. 2017; Zhai et al. 2016;
Han et al. 2015) was used to measure the accuracy of
the model predictions and verify the validation of the
modeling. In this approach, the general correction is the
proportion of the similar pixels to the total number of
pixels which is being compared. Therefore, in order to
validate the results of the CA-Markov combinational
model, the simulated maps from 2014 were compared
with the real map and the Kappa standard coefficient
for the results was 0.94. The results of the comparison
by the differentiation of the land use classes are shown
in Table 8. As illustrated in the table, the maximum of
the Kappa coefficient is related to the barren land and
water body which have a larger area in comparison with

Fig. 4 Changes potential maps
based on land use classes for
2014. Agriculture (a), Barren_
land (b), Built_up (c), Dense_
vegetation (d), Mangrove (e),
Water body (f)
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other classes. Also, a visual comparison between simu-
lated map from 2014 after adding/deleting with the sim-
ulated map before adding/deleting demonstrates incre-
ment of accuracy in the simulated map using adding/
deleting approach (Fig. 8).

Discussion

In general, the accuracy has always been an important issue in
studies whose purpose is to model and predict changes of
phenomena or their behaviors including LUCC. This is even

Table 5 The values in the table show the amount of increment or
decrement in the areas that are predicted correctly as the result of the
deletion of the variable for each land use class. The negative values
represent the variables whose elimination from the model reduces the

accuracy of the simulation. Conversely, the positive numbers represent
variables whose elimination improves the accuracy of the model. The last
two rows of the table show the changes that were correctly predicted by
the models before and after applying the adding/deleting procedure

No. Variables Agriculture Barren land Built up Dense vegetation Mangrove Water

1 Soil condition − 4.14 23.58 20.7 12.69 − 8.82 − 9.63
2 Distance to agricultural lands − 3.24 − 35.73 − 126.72 13.68 − 3.78 − 7.29
3 Distance to village − 0.99 14.04 − 89.01 − 2.88 − 14.13 − 28.26
4 Distance to built-up areas − 4.32 10.71 − 119.16 18.27 − 15.12 2.52

5 Distance to coastline 1.44 − 18.99 127.44 20.79 − 11.79 − 32.67
6 Elevation − 4.14 − 3.15 − 68.74 − 1.53 − 4.32 − 21.78
7 Evidence Likelihood transformation − 5.31 − 0.18 − 115.65 − 5.4 − 0.54 − 14.94
8 Distance to Fault 0.27 − 8.91 − 146.52 11.52 23.67 − 6.3
9 Slope condition 6.57 14.76 − 89.28 − 10.08 − 23.31 − 8.37
10 Distance to Industries − 0.18 − 10.26 25.38 0.36 7.74 − 19.98
11 Distance to Mangrove forest − 0.54 − 46.8 − 83.52 − 23.58 − 10.71 − 13.32
12 NDVI condition 11.25 − 32.76 − 126.63 − 19.98 − 22.59 − 48.51
13 Distance to road − 3.8 − 7.86 − 47.73 − 13.06 − 12.3 − 23.45
14 Distance to Ports − 1.35 12.96 − 50.94 16.56 − 20.34 − 35.28
15 Distance to Protected areas 2.52 − 4.86 − 138.24 − 13.32 24.12 − 19.98
16 Distance to Vegetation − 2.07 − 16.11 18.63 − 20.07 12.78 4.86

17 Geology condition 43.65 − 45.81 − 133.74 5.22 − 1.53 − 30.69
18 Correct simulated changes before adding/deleting 39.78 176.94 134.01 82.53 113.76 62.73

19 Correct simulated changes after adding/deleting 49.68 244.98 136.44 81.45 144.36 63.27

Fig. 5 Land cover simulation for 2014
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more important in modeling and simulation of land use chang-
es (Olmedo et al. 2015) as achieving such the model with high
accuracy is a difficult task, and using the suitable modeling
approach in order to achieve the goals, is essential (Brown
et al. 2013). Cellular automata (CA) has been widely used to
simulate spatiotemporal properties of complex systems and
environments (Yang et al. 2012; Clancy et al. 2010).
Recently, hybrid models in which CA was integrated with
other models such as Markov chains, logistic regression, neu-
ral network, etc. have been developed to simulate and predict
LUCC (Rimal et al. 2018; Yirsaw et al. 2017; Chang-Martinez
et al. 2015). Each of these models individually has capabilities
and also can act as a complementary of others. More or less,
CA-Markov modeling has given promisingly accurate and

reliable results in most of their applied fields in the geographic
and spatial domain (Ghosh et al. 2017), such a way that it can
be said CA-Markov has become the most commonmethod for
LUCC simulation (Yulianto et al. 2018). In fact, it can be
claimed that the result of modeling using this method is com-
parable to actual LULC changes (Halmy et al. 2015).
Nevertheless, attempts to increase the accuracy of this model
and other LUCC modeling approaches are followed by the
scientific community (Brown et al. 2013).

In this study, CA-Markov was used to model LUCC in the
Qeshm Island. In addition, the ANN was used to simulate the
behavior of the pixels due to its ability to model nonlinear
relationships in complex systems (Yang et al. 2015;
Pijanowski et al. 2014). Although the ANN can determine

Table 6 Validation of the model before and after adding/deleting approach

Validation after adding/deleting

Land covers Correct predicted changes, km2 False predicted changes, km2 Correct predicted changes/simulated changes

Agriculture 0.50 2.29 0.17

Barren_land 2.45 10.79 0.18

Built_up 1.36 0.13 0.91

Dense vegetation 0.81 2.63 0.24

Mangrove 1.45 1.05 0.58

Water_body 0.63 9.23 0.06

Total area 7.20 26.14 0.21

Validation before adding/deleting

Land covers Correct predicted changes, km2 False predicted changes, km2 Correct predicted changes/simulated changes

Agriculture 0.40 2.29 0.15

Barren_land 1.77 11.02 0.14

Built_up 1.34 0.13 0.91

Dense vegetation 0.82 1.02 0.45

Mangrove 1.13 1.13 0.50

Water_body 0.63 8.96 0.06

Total area 6.09 24.57 0.19
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Fig. 6 Green bars show the correct predicted changes after adding/deleting and the red bars show correct predicted changes before adding/deleting (a
left, unit: km2)- ). The number of variables used to model in every class (b right)
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the locations of the changes, it has low efficiency for deter-
mining the amount and type of changes. The empirical and
dynamic methods are used to solve this problem. The Markov
model can depict the direction of LUCC shifts and predict the
future land requirements for land use categories by taking into
account the influence of related factors on land use require-
ments (Han et al. 2015). Therefore, a hybrid model, which
combines these three parts, can increase the modeling efficien-
cy. The high accuracy of this hybrid method was mentioned
by Zhai et al., but this does not mean that this model is perfect
(Zhai et al. 2016) and improving the efficiency of this method
is still required.

Variables used for LUCC modeling can help us to under-
stand the causes of change and are also an important part of
the simulation (Zhai et al. 2016). Furthermore, identifying
and determining the variables affecting the pattern of land
use changes is one of the issues that help us ameliorate the
performance of the model (Aburas et al. 2016; Mishra et al.
2014). Given that the pattern of land use changes varies

from region to region and depends on geographical condi-
tions and characteristics, it is difficult to come up with a list
of definite and identical variables. Different set of variables
have been employed for modeling LUCC in various studies
(Zeng et al. 2015; Chowdhury and Maithani 2014).
Previously, efforts have been made to identify the variables
that are more appropriate for the modeling process of LUCC
(Zhai et al. 2016). For example, in a study by Dubovyk
et al., two sets of factors were introduced including firstly,
the factors determined by the experts and secondly, the fac-
tors that could be selected through the literature (Dubovyk
et al. 2011). Aburas et al. (2017) also mentioned that vari-
ables could be selected based on experts’ experiences (). In
our study, however, we used the adding/deleting approach
that is also useful to explore the contribution of different
variables to account for the changes in the models. We argue
that incorporating such the approach in studies can help us
identify the effective or useless variables, and consequently,
improve the model calibration.

Table 7 Validation of the used modeling approach in comparison with
other modeling methods include CA_MC_ANN (cellular automata-
Markov chain-artificial neural network), MC_ANN (Markov chain-

artificial neural network), and CA_MC_LogReg (cellular automata-
Markov chain-logistic regression)

Component Factor
name

Agreement/
disagreement

CA_MC_ANN_SA CA_MC_ANN MC_ANN CA_MC_LogReg
Proportion (%)

Persistence simulated correctly – Agreement 96.288 96.3433 96.4059 96.5314

Persistence simulated as change D Disagreement 2.3728 2.4244 2.4244 2.5089

Change simulated as change to wrong category C Disagreement 0.0743 0.0671 0.0671 0.0702

Change simulated correctly B Agreement 0.2893 0.245 0.1824 0.1575

Change simulated as persistence A Disagreement 0.9755 0.9202 0.9202 0.732

Total 100 100 100 100

Simulated change 2.7365 2.7365 2.6739 2.7366

Observed change 1.3392 0.3121 0.2495 0.9597

Allocation disagreement 1.64 1.72 1.23 1.15

Quantity disagreement 1.79 1.69 2.1 2.17

FOM 7.795 6.6996 5.0747 4.5411
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Fig. 7 Agreement and
disagreement components in 1-
CA_MC_LogReg, 2-MC_ANN,
3-CA_MC_ANN, and 4-CA_
MC_ANN_SA
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Analyzing and comparing the simulated with the observed
maps for the year 2014 shows that the CA-Markov model is
generally reliable for modeling and predicting the LUCC in
the Qeshm Island. However, as also discussed by Zhou et al.
(2012) in their study, for classes that are highly sensitive to
environmental or socioeconomic factors (i.e., the changes in
these factors can lead to notable changes in the classes), we
may need further information or appropriate incorporations of
additional variables in the modeling process. For example, a
Built-Up class is affected by management decisions and re-
gional development plans. Thus, we need to incorporate the

management policies into the modeling process to obtain
more accurate results for this class. While the CA-Markov
model implements the contiguity rule to simulate changes in
a land use class due to the proximity of the class to a similar
class within the scope of the study (Kamusoko et al. 2009) and
does not consider socio-economic factors and policies in
modeling process. This issue has also been highlighted in a
study performed by Jokar Arsanjani et al. (2011).

The strong reliance of the Dense_Vegetation class on the
precipitation, which can cause difficulty in the process of sim-
ulation and prediction of its changes, is a significant issue in

Fig. 8 Comparison of the simulated map after adding/deleting (top) with the simulated map before adding/deleting (down)

Table 8 Kappa standard coefficient for each class

Categories AGRICULTURE BARREN_LAND BUILT-
UP

DENSE_VEGETATION MANGROVE WATER_BODY

K-standard 0.87 0.97 0.74 0.24 0.95 0.96
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this study.While in areas where precipitation is not considered
a limiting factor (for example, in the eastern and southeastern
parts of China), it is expected that socio-economic factors play
a major role (Shi et al. 2018). This means that, due to the
importance and influence of managerial factors and human
decisions on land use changes in the region, the results
showed in order to achieve a higher accuracy, we need to
apply bio-physic, socio-economic and human variables in
the modeling process (Guerrero et al. 2018; Jokar Arsanjani
et al. 2011). For instance, multi-agent models have recently
been developed to simulate land use changes; hence, taking
human behavior into the expansion of built-up usage would
certainly increase prediction accuracy (Jokar Arsanjani and
Kainz 2011; Parker et al. 2003). Despite the problems men-
tioned above, the present study achieved its goal of identifying
effective and disturbing variables using the adding/deleting
technique and ultimately improved the accuracy of the results.
With taking the achievements of this research into account,
using the adding/deleting method can improve the accuracy of
BCellular Automata-Markov Chain-Artificial Neural
Network^ for land use changes modeling.

Conclusions

We developed an adding/deleting approach in this study as an
innovation to improve efficiency of model and then applied it
in the Qeshm Island to explore whether it could identify the
effective and disturbing variables in the hybrid land change
model and improve the accuracy of the simulation. We iden-
tified the disturbing variables using the proposed approach
and then excluded them from the hybrid model, which ulti-
mately resulting in an increased accuracy of the land use
change predictions. The area of the correctly predicted classes
increased to 7.2 km2, which was greater than 6.09 km2 with-
out using the proposed approach. Among 17 variables that
have been used in the modeling process, BElevation^,
BDistance to Mangrove forest^, and BDistance to the road^
were introduced as the positive variables used to simulate all
classes. Therefore, the significance of these variables is more
than other variables.

The proposed adding/deleting approach and its integration
with CA-Markov for screening the effective and disturbing
variables can help to improve the performance of model.
The findings confirmed the importance of model configura-
tion and the appropriate framework of the effective elements
in the modeling process in the study area since these elements
can affect modeling outputs in different ways. Particularly,
socioeconomic and managerial factors should be seriously
taken into consideration when performing LUCC modeling.
Due to the climatic conditions in the study area, which is
located in a dry climate, the strong dependence of vegetation
on annual precipitation is evaluated as a challenge in the

modeling process. However, this issue is recommended to
be assessed in similar climates. Furthermore, this article is
limited to the Qeshm Island in the Persian Gulf and the imple-
mentation of the same approach for other regions especially in
different climate zones and different countries is highly
recommended.
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