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Abstract
Knowledge of inherent spatial variability of soil physical and chemical properties is needed for more accurate site-
specific management of soil nutrients. In this study we investigated the spatial variability of a wide range of soil physical
and chemical properties including soil texture fractions (percentages of sand, silt, and clay denoted as Sand, Silt and
Clay, respectively), soil water content (WC), bulk density (BD), gypsum, organic carbon (OC), electrical conductivity
(EC), pH, Ca, Mg, Na, exchangeable sodium percentage (ESP), sodium absorption ratio (SAR), available phosphorous
(AP), and available potassium (AK) in a saline-alkaline soil catena in Sistan Plain, southeast of Iran. Soil samples were
collected from two depths (0–15 and 15–30 cm) on a nearly regular grid at 113 sites over an 85-ha agricultural field.
Statistical analysis of soil properties showed that Na, Mg, Ca, WC, EC, ESP, and SAR have a large coefficient of
variation (CV) (more than 50%) and BD and pH have a low CV (less than 15%) for both layers. The correlation among
soil properties varies for two layers; while Silt, WC, EC, ESP, Na, and gypsum are statistically (p < 0.01 and p < 0.05)
correlated with most of physical and chemical properties in topsoil, Sand, EC, and OC are the most dominant properties
in subsoil. Geostatistical autocorrelation analysis of soil properties were examined based on the Brange of spatial
continuity^ and Bnugget to sill^ ratio. Accordingly, AP and subsoil ESP have the lowest spatial correlation while texture
fractions are the most auto-correlated variables in space. The spatial structure of soil properties followed either a
spherical or an exponential model with a minimum correlation distance of 70 m for AP to almost 800 m for soil
fractions. The results indicated that spatial continuity generally increases and decreases with depth for soil physical
and chemical properties, respectively. The difference in spatial variability of soil properties could be attributed to internal
factors (e.g., the forming processes of soil) as well as external factors (e.g., human activities). The maps of soil physical
and quality parameters were generated using either kriging or inverse distance weighting methods depending on cross-
validation results. In general, topsoil layer has a greater amount of EC, ESP, SAR, pH, Na, Ca, Mg, and OC than subsoil
while Silt, WC, and gypsum were often higher in subsoil. OC maps showed that the whole area is relatively low in
organic carbon, mainly due to hot and dry climate and windy conditions in Sistan. The maps of soil nutrients provide
useful information for adapting an efficient and precision agricultural production management.
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Introduction

Knowledge of spatial variability of soil physical and chemical
properties helps to better understand the complicated relation-
ship between soil and the environment (Goovaerts 1998;
Afrasiab and Delbari 2013) and to determine an appropriate
soil use management practice (Bouma et al. 1999; Safadoust
et al. 2016a) such as variable rate application of soil nutrients
(Geypens et al. 1999). It also allows for establishing an opti-
mum sampling strategy (Blumfield et al. 2007; Brus and
Heuvelink 2007; Wang et al. 2008), which may reduce sam-
pling costs. Moreover several environmental models are get-
ting popular for modeling many processes such as soil erosion
and runoff (Morgan 2005; Stang et al. 2016), crop production
(Basso et al. 2007; Basso and Ritchie 2015), and leaching of
pollutants (Vachaud and Chen 2002; Safadoust et al. 2016b) in
recent years. In order to minimize error propagation through
these models, they must be based on an accurate characteriza-
tion of the spatial variability of the soil properties used as input
parameters (Goovaerts 1999). Knowledge of spatial variabil-
ity of soil quality parameters such as soil organic carbon
(SOC), soil texture, electrical conductivity (EC), and pH is
essential for risk assessment and decision-making, e.g., giving
correct site-specific recommendations or identifying the areas
prone to degradation especially when agricultural productivity
and environmental quality have to be sustained for future gen-
erations (Reeves 1997). Soil degradation decreases soil eco-
system services and agronomic production, and lessens eco-
nomic growth, especially in countries where agriculture plays
an important role in economic development (Lal 2015).
Knowing the concentration of soil chemicals can be very im-
portant in presenting strategic plans for soil quality improve-
ment and fertilizer management (Schepers et al. 2000). For
example, in terms of agriculture, the exchangeable potassium
content of about 170mg/kg of soil is considered optimal while
less or more than this amount may lead, respectively, to poor
soil quality or environmental hazards (Karlen et al. 1994).

During last decades, several studies have shown that most
soil properties including soil nutrients are continuous vari-
ables and have a tendency to change gradually (Tabor et al.
1985; Trangmar et al. 1985; Mulla 1991; Wollenhaupt et al.
1994; Goovaerts 1998; Western et al. 1998; Delbari et al.
2011; Vasu et al. 2017; Ma et al. 2017). Geostatistics provides
a set of useful tools for quantitatively and qualitatively char-
acterizing the spatial variability (via semivariogram) and esti-
mation of soil attribute values at unsampled locations (using
kriging). The geostatistical approaches are well known for
their capability of modeling spatial variability of soil proper-
ties and their associated uncertainty which result in a reliable
and comprehensive network of soil information for the sus-
tainable management of agricultural lands on either a field or
regional scale (Goovaerts 1999; Delbari et al. 2009; Delbari
et al. 2010). This could finally result in higher quality and

quantity of agricultural productions and lower environmental
hazards (Amini et al. 2005). A number of interpolation
methods such as inverse distance weighing (IDW), ordinary
kriging (OK), log kriging (LOK), and cokriging (COK) are
used by several researchers to predict the spatial distribution
of chemical, physical, and biological properties on the field
and regional scales (Brouder et al. 2005; Kravchenko and
Bullock 1999; Robinson and Metternicht 2006; Bogunovic
et al. 2017; Delbari et al. 2011; Rosemary et al. 2017). Each
of these methods can be more efficient in terms of soil char-
acteristics, sample densities, number of samples, data distri-
bution pattern, and natural conditions governing the study
field (Brouder et al. 2005; Gotway et al. 1996; Laslett et al.
1987). IDW can be used to map the spatial distribution of any
soil property measured for spatially distributed samples
(Burgess and Webster 1980). A higher distance weighting
power may result in a significant improvement of estimation
accuracy (Kravchenko and Bullock 1999). Among kriging
variants, OK provides the Bbest linear unbiased estimate^ of
a regionalized variable at unsampled locations, where Bbest^
is defined in a least squares sense, as it aims to minimize the
variance of estimation error (Goovaerts 1997). OK, however,
may not provide the optimum result for a highly skewed data
distribution. In such cases, an appropriate transformation
function should be used beforehand. Moreover, if the property
of interest is sparsely sampled or poorly correlated in space, its
estimation could be improved by COK taking into account
secondary variable(s) (Goovaerts 1998). Geypens et al.
(1999) investigated the spatial variability of foil fertility pa-
rameters (i.e., P, K, Ca, Mg, and Na) in fields of different land
use, in a Gleyic Podzol of Belgium. They found different
ranges of spatial correlation for selected soil parameters indi-
cating that a different sampling strategy should be adapted to
the different soil parameters and the soil use. Cotway (1996)
showed that for two elements of soil organic matter (OM) and
nitrogen (N), IDW was better than the kriging method. Sun
et al. (2003) evaluated the temporal and spatial variations of
some soil quality properties and reported that soil properties
exhibit a high amount of statistical variance. The highest and
lowest amounts of the coefficient of variation were seen for
phosphorus and pH, respectively. Statistical analysis showed
that all soil properties (pH, OM, available phosphorus (AP),
and available potassium (AK)) exhibit a degree of spatial cor-
relation. The ratio of Bnugget to sill^ indicated a strong spatial
correlation for pH and a moderate spatial correlation for other
soil attributes. Robinson and Metternicht (2006) reported that
OK and COK are appropriate methods for estimating soil
electrical conductivity (EC) and organic matter while IDW is
the best method for interpolating acidity (pH) in the southwest
of Australia. Ayoubi et al. (2012) investigated the spatial var-
iability of 14 soil physical and chemical properties in
Sorkhonkhata region using geostatistical methods. Their
results showed a moderate spatial correlation for many of
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soil properties. Bogunovic et al. (2017) successfully charac-
terized the spatial variability of soil pH, OM, AP, and AK at
both local and regional scales.

Sistan Plain, located in the southeast of Iran, is character-
ized by a low precipitation and high evaporation rate. As it is
typical for soils in arid and semi-arid regions including Iran,
soils in Sistan Plain are affected by high amounts of salt and
sodium contents, which may adversely influence soil aggre-
gation and structure and intensify soil erosion. Sistan Plain is
also confronted by soil degradation and desertification caused
by extreme wind erosion due to prolonged drought and exis-
tence of high speed B120-day^ wind. However, growing pop-
ulation and their need for food supply as well as dependence
of Sistan economy on agriculture have imposed a lot of pres-
sure on soil and water resources. Therefore, the knowledge of
the spatial variation of soil quality properties is needed for
better management of soil and water resources and ensuring
sustainable agricultural production over the study area. The
objectives of this research were (i) to explore the inter-
relationship between soil physical and chemical properties
and their vertical variation in two successive layers of a salt-
affected soil and (ii) to map the spatial distribution pattern of
underlying soil attributes and nutrients by comparing OK,
IDW, and COK in a saline-sodic soil in Sistan Plain, south-
eastern Iran.

Methodology

Study area

The study area (30° 55′N latitude and 61° 31′E longitude) is a
part of Sistan Plain located in Sistan and Baluchestan
Provinces, roughly 25 km south of Zabol and approximately
14 km from the Afghanistan borders. It covers an area of about
85 ha and includes a set of experimental plots that are moni-
tored for irrigation and soil nutrient balance. Geologically,
Sistan Plain is an alluvial plain and has very gentle slopes
(0.025%) from the southeast toward the northwest. The study
area is about 480 m above sea level. Sistan Plain has a hot and
dry climate. The long-term average annual temperature at the
site is 22 °C with minimum and maximum temperatures of −
10 °C and 51 °C, respectively. The long-term (40 years) aver-
age annual rainfall and evaporation are 60.8 and 4820.54 mm,
respectively. Helmand River, originating from Afghanistan, is
the main source of irrigation in the Zabol irrigation district.
The 120-day wind of Sistan is the strongest wind in Iran with a
speed of up to 120 km per hour, which blows almost from late
May to late September (about 4 months). The wind originates
from the central deserts in Iran and blows in a fairly constant
direction (mainly from south to north) to Sistan and
Baluchestan Provinces.

The soils of Sistan Plain have low pedogenic development
and are mostly Aridosols and Entisols (Mirakzehi et al. 2018).
Sistan Plain was used to have very fertile soils and various
agricultural productions. However, for many years, it is
confronted with severe salinization and soil degradation due
to frequent droughts and wind erosion. The major crops are
wheat, barley, and corn, which are cultivated under conven-
tional agricultural tillage.

Soil sampling and measurements

The soil was sampled at 123 sites on a relatively regular grid
of about 70-m interval (Fig. 1). Regular sampling is proved to
be more accurate in predicting spatial distribution than ran-
dom sampling (Hirzel and Guisan 2002). The locations of the
samples were determined using a differential global position-
ing system (GPS) unit. Samples were collected at the end of
November 2014 before planting. At each site, 1 kg soil sam-
ples were taken from two depths: 0–15 cm and 15–30 cm. The
samples were transferred to the laboratory, air dried, and then
crushed to pass through a 2-mm sieve. The samples were
analyzed for the physical and chemical properties including
percentages of sand, silt, and clay contents, denoted as Sand,
Silt, and Clay, by the hydrometer method (Gee and Bauder
1986), volumetric soil water content (WC) using a portable
time domain reflectometer (TDR), Na concentration by a
flame photometer, Ca and Mg concentrations by EDTA titra-
tion, organic carbon (OC) by the modified Walkley Black
method (USDA-NRCS 1996), EC with a EC meter
(Rhoades 1996), and pH with a pH meter (Thomas 1996).
Gypsum percentage was determined by precipitation with ac-
etone (US Salinity Laboratory Staff 1954), soil available phos-
phorous (AP) was measured by Olsen et al. (1954), and avail-
able potassium (AK) was estimated by the method of
Schollenberger and Simon (1945) using a flame photometer.
Additionally, at each site, undisturbed soil samples were ob-
tained from both depths using 100-cm3 steel cores to deter-
mine soil bulk density (BD; Blake and Hartge 1986).

Statistical analysis and data transformation

Descriptive statistics including mean, variance, standard devi-
ation, minimum, maximum, skewness, and kurtosis values
were calculated for each soil property. To determine the inter-
relation between soil properties and sampling depths, Pearson
correlation coefficients were computed. In order to achieve a
proper interpretation of geostatistical interpolation, data fre-
quency distributional should follow a normal distribution
(Clark 1979; Goovaerts et al. 2005; McGrath et al. 2004).
On the other hand, the deviation from the normal distribution
will affect the stability of the variance and hence
semivariogram. Therefore, the normal distribution of raw data
was investigated by Kolmogorov-Smirnov (K.S.) test. In
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cases where the data were not normally distributed, two log-
arithmic and Box-Cox transformations were used to normalize
the data (Fu et al. 2010; Thayer et al. 2003). Logarithm trans-
form is used for the positively skewed distributions (McGrath
et al. 2004). Box-Cox is a more powerful, widely used trans-
formation when logarithm transform is not appropriate, e.g.,
for negatively skewed distributions (Box and Cox 1964;
Gallardo and Paramá 2007). All the statistical tests were per-
formed using the SPSS statistical software, version 11.0
(Norušis 2002).

Geostatistical analysis

The first step of a geostatistical analysis is to investigate the
spatial continuity of underlying soil property. The (cross)
semivariograms functions describe the spatial (cross) correla-
tion between data values (Isaaks and Srivastava 1989).
Suppose z (ui), i = 1,…, n represents the values of a soil attri-
bute at n sampling locations. The experimental (cross)
semivariograms are calculated using the following equation:

γvw
* hð Þ ¼ 1

2N hð Þ

� ∑
N hð Þ

i¼1
zv ui þ hð Þ−zv uið Þ½ � zw ui þ hð Þ−zw uið Þ½ �f g

ð1Þ

where γvw
* is the experimental semivariogram when v = w

and cross-semivariogram when v ≠w and N(h) is the number
of pairs of regionalized variables zv (ui) and zw (ui) at a given

separation distance h. To obtain (cross) semivariogram value
for any given h, a theoretical model should be fitted to the
experimental values. The theoretical semivariogram models
applied in this study were often either a spherical (Eq. 2) or
an exponential (Eq. 3) model (Isaaks and Srivastava 1989;
Goovaerts 1997):

γ hð Þ ¼ C0 þ C
3

2

h
a
−
1

2

h
a

� �3
" #

for h≤a

C0 þ C otherwise

8><
>: ð2Þ

γ hð Þ ¼ C0 þ C 1−exp −
3h
a

� �� �
ð3Þ

where C0 is the nugget effect, C is the partial sill, and a
is the practical range (for exponential model practical
range is the value of h when h reaches 95% of the sill
value). The nugget effect often arises from a combination
of measurement errors and small-scale spatial variation
(Journel and Huijbregts 1978). The semivariogram model
and its parameters are then used to estimate the soil prop-
erties at unobserved locations through ordinary (log)
kriging and cokriging.

Ordinary kriging (OK) predicts the value of a soil property
at an unsampled location,̂z u0ð Þ, as a linear weighted average
of n(u0) neighboring observations (Goovaerts 1997):

ẑ̂ u0ð Þ ¼ ∑
n u0ð Þ

i¼1
λiz uið Þ with ∑

n u0ð Þ

i¼1
λi ¼ 1 ð4Þ

Fig. 1 Location of sampling points and land use map of study field
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where λi are the ordinary kriging weights that minimize the
estimation variance and provide an unbiased estimator, i.e.,
E ẑ u0ð Þ−z u0ð Þf g ¼ 0. The weights λi are determined through
the following OK system:

∑
n u0ð Þ

j¼1
λ jγ ui; u j

� �þ μ ¼ γ ui; u0ð Þ i ¼ 1; :::; n u0ð Þ

∑
n u0ð Þ

j¼1
λ j ¼ 1

8>>><
>>>:

ð5Þ

where μ is the Lagrange multiplier.
The OK estimation variance is computed as follows:

σ2 ¼ ∑
n

i¼1
λiγ ui; u0ð Þ þ μ ð6Þ

If a normal distribution of errors is assumed, OK variance
corresponding to each estimate can be used to generate a con-
fidence interval for that estimate (Goovaerts 1997).

OK does not require the data to have a normal distribution;
however, OK predictor performs better if data histogram is not
highly skewed. Normalizing the data distribution suppresses
outliers and improves data stationarity. Log-normal transform
is commonly used to symmetrize the distribution, and OK is
then performed on log-normal transforms of the observed
values.

The cokriging (COK) estimator ẑv u0ð Þ at unsampled loca-
tion u0, assuming that there is one auxiliary variable zw cross-
correlated with the main variable zv, is given as (Isaaks and
Srivastava 1989)

ẑ̂v u0ð Þ ¼ ∑
n u0ð Þ

i¼1
αi⋅zv uið Þ þ ∑

m u0ð Þ

j¼1
β j⋅zw u j

� � ð7Þ

whereαi andβj are theweights assigned to the known values
of the primary and secondary variables zv and zw, respectively,
and n(u0) and m(u0) are the number of primary and secondary
observations. Like for OK, the COK estimator is required to be
unbiased and have a minimum variance of errors. To obtain an
unbiased estimator, the sum of weightsαi should be unity while
the sum of weights βj should be zero (Goovaerts 1997).

For COK, a linear model of co-regionalization with an iso-
tropic spherical model is used to describe the spatial variability.
In cases where both exponential and spherical models may be
successfully fitted to the experimental semivariograms, the
spherical model is considered to be more effective ensuring
semi-positive definiteness (Goulard and Voltz 1992).

In this study GS+ software (Robertson 2008) was used to
compute experimental semivariograms and to find the best
fitted theoretical model to the experimental points considering
the highest regression coefficient (r2) and the least residual
sum of squares (RSS) values. The spatial interpolation of soil
properties and mapping were performed within the spatial
analyst extension module in ArcGis 10.2.

Evaluation of estimation methods

A cross-validation technique (Isaaks and Srivastava 1989)
was applied to evaluate the performance of the estimation
approaches used. The cross-validation test includes removing
one observed value from the dataset and then estimating the
value at that location using the remaining data through each
interpolator. The validation criteria used are given as follows:

MBE ¼ 1

n
∑
n

i¼1
z uið Þ−ẑ̂ uið Þð Þ ð8Þ

MAE ¼ 1

n
∑
n

i¼1
j z uið Þ−ẑ̂ uið Þð Þj ð9Þ

RMSE ¼ 1

n
∑
n

i¼1
z uið Þ−ẑ̂ uið Þð Þ2 ð10Þ

where z(ui) and ẑ uið Þ are the observed and estimated soil
properties, respectively, at any location i. These statistics de-
termine the closeness of the estimated values to observed
values. An appropriate interpolation method should have an
MBE close to zero, less amount of MAE and RMSE, and a
correlation coefficient (R) close to 1.

Results and discussion

Statistical analysis

A summary statistics of soil properties is given in Table 1. The
mean values for Na, Mg, and Ca as well as EC in 0–15 cm are
more than those in 15–30 cm, which means that salts are accu-
mulated in surface layer mainly due to the high amount of evap-
oration from the soil surface and low precipitation. Soil texture
fractions are almost the same in terms of their mean values. The
soil texture contains approximately 50% Sand, 30% Silt, and
20% Clay, and the dominant soil texture classes are sandy loam
and loam according to the soil texture triangle defined byUSDA
(Soil ScienceDivision Staff 2017). As seen in Table 1, thewhole
field is low to medium in organic carbon; OC ranges from 0.37
to 3.31(%) with a mean value of about 2%. The low concentra-
tion of OC in topsoil (0–30 cm) is expected in hot and arid
regions due to high evaporation and wind erosion (Salem
1989), and low primary production (Ontl and Schulte 2012).

As shown in Table 1, all the samples are alkaline in reac-
tion, and strongly calcareous in nature. For several samples
selected randomly within the study area, the percent of Lime
was also measured. The results (not shown) indicated that all
samples have a high amount of Lime (about 39% on average)
for both depths. The high level of Lime in Aridisols and
Entisols orders is common. Lime increases the biological ac-
tivity of the soil; however, it may cause carbonation or envi-
ronmental impact (Jawad et al. 2014). Excessive lime creates a
hard layer in the soil and, as a result, provides unfavorable
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conditions for the absorption of some nutrients by the plant.
The use of sulfuric acid and other acidifying substances in
calcareous soils can increase the solubility of the
micronutrients, such as P, Fe, Mn, Zn, and Cu, since it
removes soil bicarbonate from the soil and lower soil pH.
Table 1 also shows that both layers contain high amount of
gypsum, which is a common component in arid and semi-arid
areas. However, the mean value of gypsum for subsoil
(32.01%) is roughly two times greater than that for topsoil
(16%). That means gypsum is moved downward by irrigation
water and deposited in deeper layers. Gypsum in small per-
centage is useful for plant growth as it tends to prevent the
formation of an alkali soil. However, a high quantity of gyp-
sum causes low crop yield due to unbalanced uptake of nutri-
ents by the plant roots (Van Alphen and de los Ríos Romero
1971). According to a classification proposed by Warrick

(1998), Na, Mg, Ca, WC, EC, ESP, SAR, and AP have a large
coefficient of variation (CV) (more than 50%) for both depths
and Sand, Silt, Clay, OC, AK, and gypsum have a moderate
CV (between 25 and 50%). Low CV (less than 15%) was seen
for BD and pH. Low CV for pH in agricultural soil is reported
by many researchers (McBratney and Webster 1983;
Boekhold and Van der Zee 1992; Chung et al. 1995; Bhatti
et al. 1999; Bogunovic et al. 2017; Vasu et al. 2017; Rosemary
et al. 2017). Vasu et al. (2017) and Rosemary et al. (2017) also
reported a moderate CV for OC. Rosemary et al. (2017) re-
ported a high CV for EC and a moderate CV for Silt and Clay.
Na and EC similarly have the highest CV values (> 150%) for
both depths, meaning a large variability of these properties
across the study area. The high variation of salinity could be
due to anthropogenic factors such as land use and irrigation
(Zhang et al. 2014).

Table 1 Descriptive statistics of soil properties in depths of 0–15 cm and 15–30 cm

Variable Depth
(cm)

Maximum Mean Minimum Standard
deviation

Coefficient of
variation (%)

Sand (%) 0–15 71.88 48.58 20 12.13 24.95

15–30 83.76 49.54 19.2 13.38 27

Clay (%) 0–15 37.2 20.53 10.4 5.54 26.98

15–30 65.8 20.13 8 7.41 36.81

Silt (%) 0–15 50.2 30.88 5.6 9.33 30.21

15–30 57.2 30.52 9.6 10.71 35

BD (gr/cm3) 0–15 1.72 1.42 1.14 0.10 6.98

15–30 1.71 1.53 1.18 0.09 6.13

WC (%) 0–15 39 13.52 2.1 7.47 55.25

15–30 35.1 16.06 2.3 7.86 48.94

EC (dS/m) 0–15 34 3.66 0.72 5.54 151.36

15–30 17.19 2.18 0.49 2.71 124.31

ESP (%) 0–15 22.14 3.46 0.38 3.54 102.31

15–30 20.96 3.08 0.082 2.99 97.07

SAR 0–15 20.14 3.14 0.85 2.57 81.84

15–30 18.84 3.00 0.47 2.33 77.67

pH 0–15 8.95 8.5 7.96 0.21 2.47

15–30 8.86 8.48 7.8 0.20 2.35

Na (mg/kg) 0–15 92.06 10.94 1.25 17.33 158.4

15–30 61.39 7.19 1.40 8.90 123.75

Ca (mg/kg) 0–15 26 5.68 1.4 4.44 78.16

15–30 13.4 3.45 0.8 2.16 62.59

Mg (mg/kg) 0–15 41.6 7.74 0.8 7.53 97.28

15–30 31.2 5.09 0.4 5.30 104.11

OC (%) 0–15 3.31 2.08 0.37 0.63 30.28

15–30 3.29 1.84 0.29 0.60 32.4

Gypsum (%) 0–15 38.99 16.81 8.50 4.95 29.44

15–30 58.43 32.01 17.12 7.26 22.68

APa (ppm) 0–15 148.67 45.02 3.71 52.71 117

AKa (ppm) 0–15 448.00 163.76 80.00 60.29 36.82

a AP and AK were only measured in the topsoil

68 Page 6 of 18 Arab J Geosci (2019) 12: 68



It is natural not to follow a normal distribution for some soil
data, as mentioned by McGrath and Zhang (2003). However,
to achieve a better interpretation of geostatistical analyses,
data distribution should at least follow a distribution near-
normal distribution (Zhang 2006). As seen in Table 1, the
values of skewness are very small for BD and soil texture
fractions except for clay content in the deeper layer. WC and
OC in topsoil, Ca in the subsoil, and Na, Mg, EC, ESP, and
gypsum in both topsoil and subsoil are strongly positively
skewed while pH is negatively skewed. The natural logarithm
is used to transform the frequency distribution of positively
skewed variables (except for EC and Na) to a nearly normal
distribution before using geostatistical analysis (Table 2). A
weighted technique, which can approximate true population
statistics more closely (Haan 2002), is used to back transform
the data, afterward. For EC and Na, Box-Cox transform is
used to normalize the data distribution (Table 2).

The Pearson correlation coefficients between the pairs of
soil properties are calculated and presented in Table 3. As seen,
there are statistically (p < 0.01 and p < 0.05) significant corre-
lations between some soil physical and chemical properties at
topsoil and subsoil. The existence of such a positive and neg-
ative correlation between soil physical and chemical character-
istics allows us to take advantage of multivariate interpolation
methods such as COK. Soil texture fractions and especially
Sand and Silt have a statistically significant (p < 0.01) positive
or negative correlation with many of soil properties such as
WC, EC, ESP, Na, OC, and AK for 0–15-cm depth. These
relations decreased for the subsoil. There is a high statistically

significant (p < 0.01) correlation between EC and ESP, SAR,
pH, Na, Ca, Mg, gypsum, and AK for topsoil. EC is also
correlated (p < 0.01) to ESP, SAR, pH, Na, Ca, and Mg at
subsoil. Topsoil pH has a significant (p < 0.01) negative rela-
tion with SAR, ESP, EC, Na, Ca, Mg, and gypsum. However,
pH was only significantly (p < 0.01) negatively related to EC,
Na, Ca, andMg at subsoil. The results also showed a significant
negative correlation between OC and Sand (r = − 0.363,
p < 0.01) and positive correlation between OC and Silt (r =
0.362, p < 0.01), and Clay (0.174, p < 0.05) for topsoil.
Similarly, OC is correlated negatively with Sand (r = − 0.435,
p < 0.01), and positively with Clay (r = 0.456, p < 0.01), Silt
(r = 0.22, p < 0.01), and WC (r = 0.283, p < 0.01) for subsoil.
The fact that OC is positively correlated with percent Clay is
also reported by Adhikari and Bhattacharyya (2015), Nichols
(1984), Safadoust et al. (2016a), and Sakin (2012a). Our find-
ing confirms that of Adhikari and Bhattacharyya (2015) and
MacCarthy et al. (2013), who found a negative correlation
between Sand and OC. However, Sakin (2012b) stated that
Sand is positively correlated with OC. MacCarthy et al.
(2013) reported a negative correlation between OC and BD.
Evrendilek et al. (2004) reported a positive correlation between
OC and the amount of moisture available to the soil and a
negative correlation between OC and BD as well as soil pH.
As seen in Table 3, except for OC, the correlation between soil
properties decreased with depth. The higher amount of statisti-
cally (p < 0.01 and p < 0.05) significant correlation with other
properties belong to Silt, WC, EC, ESP, Na, and gypsum in
topsoil and Sand, EC, and OC in subsoil.

Table 2 Kolmogorov-Smirnov statistics for soil properties before and after transformation

Topsoil (0–15 cm) Subsoil (15–30 cm)

Transform Skewness Kurtosis P (K-S) Transform Skewness Kurtosis P (K-S)

Sand (%) – − 0.072 − 0.76 0.735 – − 0.106 − 0.431 0.822

Clay (%) – 0.524 0.076 0.174 log 0.106 1.045 0.442

Silt (%) – − 0.004 − 0.572 0.725 – 0.316 − 0.359 0.429

BD (gr/cm3) – 0.041 0.693 0.90 – − 0.578 0.958 0.697

WC (%) log − 0.215 − 0.27 0.737 – 0.387 − 0.783 0.385

EC (dS/m) Box-Cox 0.044 − 0.591 0.44 Box-Cox 0.109 0.336 0.741

ESP (%) log 0.821 1.68 0.326 log − 0.351 3.24 0.376

SAR log 0.94 3.510 log 0.81 2.92

pH – − 0.844 − 0.064 0.113 – − 0.898 1.081 0.428

Na (mg/kg) Box-Cox − 0.164 0.993 0.115 Box-Cox 0.002 0.931 0.535

Ca (mg/kg) – 0.663 − 0.045 0.06 log 0.562 0.893 0.09

Mg (mg/kg) log 0.494 0.245 0.211 log 0.487 1.711 0.132

OC (%) log − 0.56 − 0.049 0.852 – 0.22 − 0.306 0.847

Gypsum (%) log 0.48 0.31 0.109 log 0.15 0.55 0.06

AP (ppm) log 0.54 − 0.93 – – – –

AK (ppm) log 0.54 0.48 – – – –
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Geostatistical analysis

Autocorrelation analysis

Experimental semivariograms are first calculated for each soil
property for both depths 0–15 cm and 15–30 cm. Then the
best theoretical model is fitted to the experimental values con-
sidering the goodness of fit in terms of the regression coeffi-
cient (r2) and the RSS through a trial-and-error procedure. In
general, for both depth intervals, the studied soil properties
showed a moderate (M) to strong (S) spatial auto-correlation
with either a spherical or an exponential semivariogram mod-
el. However, the radius of spatial continuity was quiet small
for some soil properties such as AP; it was almost equal to
sampling distance (70 m). This dictates a low spatial continu-
ity of AP, which is mainly due to the intrinsic variability of soil
(Cambardella et al. 1994). One of the most important issues
that matter in soil heterogeneity is the role of natural (internal)
and external factors on spatial auto-correlation of soil proper-
ties in different depths. For example, spatial variability of soil
physical properties such as soil structure and BD in topsoil is
highly controlled by soil management practices, e.g., soil till-
age and plowing (Gomez et al. 2005). However, soil opera-
tions, such as agriculture and other management activities in
the surface soil, have little impact on physical properties of
subsurface soil.

To investigate the anisotropy of the studied properties, their
experimental semivariograms were calculated for four direc-
tions 0, 45, 90, and 135° with an angle tolerance of 22.5°. No
significant anisotropy was observed within the spatial corre-
lation radius. This means that the spatial correlation of soil
properties is mainly a function of the distance between pairs
of samples; so omni-directional semivariogram was used for
further analyses. According to Table 4, soil texture fractions
(Sand, Clay, and Silt) exhibited a moderate to strong continu-
ity in space with a spherical model of spatial structure. The
greatest spatial correlation distance was seen for soil texture
(up to 800 m). However, Sand and Clay showed higher spatial
autocorrelation than Silt in terms of effective range and theC0/
Sill ratio (Table 4). Delbari et al. (2011) reported a high spatial
correlation for Sand and Silt and a moderate spatial correlation
for Clay with a spherical structure for all fractions in an agri-
culture field in Lower Austria. Stronger spatial dependencies
are controlled by the intrinsic variability of soil (Cambardella
et al. 1994). Rosemary et al. (2017) reported a moderate and
strong spatial correlation for Clay and Sand, respectively.
They reported a spherical spatial structure with spatial
correlation distances of 200 m and 290 m for Clay and
Sand, respectively. Iqbal et al. (2005) found a moderate spatial
correlation of Sand and Clay with an exponential structure in
an alluvial floodplain soil. The BD experimental
semivariogram showed a moderate spatial correlation and a
spherical structure. Iqbal et al. (2005) also reported a moderate

spatial correlation of BD. However, the spatial structure of BD
followed an exponential model with a smaller radius of influ-
ence in different soil horizons.

As seen in Table 4, EC showed a moderate spatial correla-
tion with a spherical model of the spatial structure for both
depths. The effective range for EC was 190 m and 175 m for
0–15 and 15–30 cm, respectively. Rosemary et al. (2017) re-
ported a spherical structure with a range of influence 830 m
for EC in depth 0–30 cm. However, Walter et al. (2001) used
an exponential model to describe the spatial structure of sur-
face soil salinity. In this study, a strong and moderate spatial
continuity was found for topsoil and subsoil pH, respectively.
The range of influence was nearly 150 m for both depth
intervals. Cemek et al. (2007) reported an exponential model
of the spatial structure with an effective range of 1340 m for
pH and a spherical spatial structure with an effective range of
3420 and 3700 m for EC and ESP, respectively. In a study by
Huang et al. (2001), pH experimental semivariogram followed
a spherical model with a range of about 260 m for both 0–5-
cm and 5–10-cm soil depths. Shukla et al. (2004) reported a
moderate spatial correlation for Silt, Clay, BD, and EC and a
weak spatial continuity for pH at topsoil (0–15 cm). Rosemary
et al. (2017) used a spherical model with a range of influence
590 m for describing the spatial structure of pH in 0–30-cm
depth.

The range of influence for most soil properties was greater
than sampling distance (oftenmore than two times), indicating
that the sampling interval used in this study is sufficient. Kerry
and Oliver (2004) pointed out that the sampling distance for
future researches should be less than half the effective range.
However, AP and subsoil ESP showed a small range of influ-
ence (about 70 m). The strong spatial dependence of soil
properties may be controlled by soil intrinsic variability while
the weak spatial correlation could be attributed to the external
factors (Cambardella et al. 1994; Geypens et al. 1999). The
difference in spatial variability of soil properties could be re-
lated to the forming processes of soil as well as land and water
management practices (Abegaz and Adugna 2015).

For the application of the COK method for those variables
with a weaker spatial continuity, the experimental
semivariogram of the auxiliary variables and cross-
semivariogram between the main and auxiliary variable were
calculated and modeled. The main characteristics of the fitted
models are given in Table 4. As shown, either a spherical or an
exponential model found to have the best fit to the experimen-
tal cross-semivariograms.

Spatial interpolation and mapping of soil properties

The cross-validation results of estimating soil properties using
(log) OK, IDW, and COK are presented in Table 5. In terms of
MAE, RMSE, and R, IDWoften resulted in a slightly smaller
estimation error for estimating Sand, Silt, Clay, Mg, and AP.
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However, the bias (MBE) was smaller for OK. Also, for BD
and pH for two layers, subsoil EC and OC as well as topsoil
AK, both OK and IDWperformed very similar. For estimating
topsoil WC, IDW (RMSE = 6.40%, MBE = 0.131%) was the
best interpolator; however, there was not a significant

difference between selected interpolators for estimating sub-
soil WC (Table 5). The results indicated that OK performed
slightly better for estimating ESP, SAR, Na, Ca, and topsoil
EC. COK with the auxiliary variable Clay slightly improved
the accuracy of estimating topsoil OC. However, COK was

Table 4 Characteristics of the best model fitted to experimental (cross) semivariogram for soil properties in depths 0–15 cm and 15–3 cm

Variable Soil
depth (cm)

Semivariogram
model

Nugget
effect

Sill Effective
range (m)

C0/(C0 +C)
[class]

r2 RSS

Sand (%) 15–0 Spherical 55.1 150.2 650 0.37 [M] 0.962 563

30–15 Spherical 59.5 193.5 760 0.31 [M] 0.943 713

Clay (%) 15–0 Spherical 9.96 35.51 760 0.28 [M] 0.929 34.7

30–15 Spherical 0.05 0.125 835 0.40 [M] 0.929 0.0002

Silt (%) 15–0 Spherical 37.1 93.0 620 0.40 [M] 0.952 147

30–15 Spherical 48.3 107 620 0.45 [M] 0.860 443

BD (gr/cm3) 15–0 Spherical 0.0068 0.01 540 0.68 [M] 0.749 0.0001

30–15 Spherical 0.0043 0.008 610 0.54 [M] 0.840 0.0001

WC (%) 15–0 Exponential 0.024 0.316 300 0.08 [S] 0.958 0.001

30–15 Exponential 6.3 61.66 230 0.10 [S] 0.835 142

EC (dS/m) 15–0 Spherical 0.35 0.77 190 0.45 [M] 0.896 0.007

30–15 Spherical 0.25 0.50 175 0.50 [M] 0.831 0.003

ESP (%) 15–0 Exponential 0.22 0.44 250 0.49 [M] 0.87 0.002

30–15 Exponential 0.3 0.565 72 0.53 [M] 0.616 0.032

SAR 15–0 Exponential 0.002 0.274 180 0.01 [S] 0.872 0.002

30–15 Exponential 0.012 0.280 120 0.04 [S] 0.577 0.003

pH 15–0 Spherical 0.009 0.054 150 0.16 [S] 0.713 0.001

30–15 Spherical 0.019 0.044 152 0.43 [M] 0.501 0.0002

Na (mg/kg) 15–0 Spherical 0.307 0.693 182 0.44 [M] 0.934 0.002

30–15 Spherical 0.25 0.485 130 0.29 [M] 0.460 0.007

Ca (mg/kg) 15–0 Spherical 0.208 0.416 235 0.5 [M] 0.655 0.008

30–15 Spherical 0.116 0.248 160 0.47 [M] 0.350 0.0004

Mg (mg/kg) 15–0 Spherical 0.266 0.650 165 0.41 [M] 0.825 0.009

30–15 Spherical 0.244 0.491 150 0.49 [M] 0.586 0.004

OC (%) 15–0 Spherical 0.25 0.42 400 0.60 [M] 0.590 0.010

30–15 Spherical 0.26 0.37 400 0.70 [M] 0.680 0.004

Gypsum
(%)

15–0 Exponential 0.027 0.074 185 0.36 [M] 0.843 0.0002

30–15 Spherical 0.022 0.05 140 0.44 [M] 0.617 0.0001

AP (ppm) 0–15 Spherical 0.027 1.226 70 0.02 [S] 0.045 0.019

AK (ppm) 0–15 Spherical 0.065 0.122 700 0.53 [M] 0.928 0.0002

WC-Sand 15–0 Spherical − 0.013 − 0.068 650 0.19 [S] 0.902 0.0004

WC-Clay 30–15 Gaussian 3.05 21.12 690 0.14 [S] 0.740 160

EC-Na 15–0 Exponential 0.001 0.584 204 0.00 [S] 0.858 0.014

ESP-Na 15–0 Exponential 0.001 0.485 204 0.00 [S] 0.889 0.007

ESP-Na 30–15 Exponential 0.1 0.42 135 0.00 [S] 0.375 0.0001

pH-Na 15–0 Exponential − 0.07 − 0.12 180 0.58 [M] 0.280 0.0025

OC-Sand 0–15 Spherical − 0.30 − 3.10 600 0.10 [S] 0.852 1.40

OC-Clay 30–15 Spherical 0.03 0.115 700 0.26 [M] 0.610 0.002

Gypsum-Na 0–15 Spherical 0.04 0.089 280 0.45 [M] 0.679 0.0004

Gypsum-Na 15–30 Spherical 0.02 0.043 130 0.47 [M] 0.579 0.003

AK-Sand 15–0 Spherical 0.4 − 1.70 650 0.24 [S] 0.816 1.26
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not able to improve the estimation accuracy for WC, ESP,
gypsum, topsoil EC, pH, and AK as well as subsoil OC.
This could be due to low sampling density and low spatial
continuity of co-variables, and lack of strong cross-relation
between the primary and secondary variables. However, data
transformation of skewed distributions slightly improved the
spatial dependence and accuracy of interpolation.

Figure 2 shows the spatial distribution map of soil proper-
ties generated using the best interpolation method. The map of
difference between two layers in terms of each attribute (sub-
soil minus topsoil) is also shown. According to the map of soil
texture fractions, the spatial distribution patterns of Sand, Silt,
and Clay are almost the same at both depths. The lowest
amount of Sand is located on the southwest of the study field,
and coarser soil texture is seen near the riverbank in north and
northeastern areas. The least clay content is seen in the

northern part of the field and the least amount of silt is in the
eastern part of field. As seen in Fig. 2, the percentage of soil
fractions is changing slightly from topsoil to subsoil. For ex-
ample, Sand content is decreasing (up to 26%) in, e.g., north
and northeast of the study area, while it is increasing (up to
37%) in, e.g., southeast of the study field. In terms of BD,
most of the field area contain a bulk density of less than
1.44 g/cm3 at topsoil and greater than 1.44 g/cm3 at subsoil,
resulting in an increase of up to 0.2 g/cm3 BD in subsoil, e.g.,
along the northeast to southeast of the study field. The in-
crease of BD with soil depth is related to the less pore spaces
in subsoil mostly due to more compaction, less organic matter,
less aggregation, and less root penetration of subsurface com-
pared to surface layers (Sakin 2012a, 2012b). Based on the
maps ofWC, the amount of topsoil water content is lower than
subsoil water content. However, the spatial distributions of

Table 5 Cross-validation results of estimating soil properties by OK, IDW, and COK

Variable Depth (cm) (Log) OK IDW COK

R MBE MAE RMSE R MBE MAE RMSE R MBE MAE RMSE

Sand (%) 15–0 0.64 − 0.085 7.268 9.278 0.64 − 0.26 7.133 9.239

30–15 0.64 − 0.144 7.833 10.30 0.66 − 0.53 7.668 10.06

Clay (%) 15–0 0.61 0.042 3.345 4.368 0.63 0.09 3.314 4.304

30–15 0.50 0.177 4.18 6.45 0.48 0.268 4.3 6.48

Silt (%) 15–0 0.57 0.09 5.94 7.611 0.58 0.262 5.827 7.565

30–15 0.59 0.261 6.3 8.457 0.59 0.434 6.258 8.396

BD (gr/cm3) 15–0 0.36 0.0 0.076 0.092 0.38 0.0 0.077 0.091

30–15 0.50 0.0 0.06 0.081 0.51 0.0 0.061 0.081

WC (%) 15–0 0.51 0.208 4.815 6.41 0.52 0.131 4.709 6.40 0.492 0.527 4.918 6.505

30–15 0.50 0.189 5.586 6.80 0.47 0.199 5.595 6.90 0.472 0.033 5.538 6.87

EC (dS/m) 15–0 0.240 − 0.25 2.26 5.42 0.203 − 1.34 2.47 5.63 0.220 0.61 3.62 6.32

30–15 0.103 − 0.11 1.48 2.71 0.102 − 0.58 1.35 2.76

ESP (%) 15–0 0.29 − 0.08 1.330 3.374 0.22 0.07 1.941 3.473 0.26 0.05 1.908 3.485

30–15 0.22 0.253 2.028 3.23 0.17 0.012 1.898 3.247 0.16 0.377 2.054 3.252

pH 15–0 0.29 − 0.00 0.172 0.217 0.264 − 0.00 0.173 0.219 0.31 − 0.00 0.171 0.216

30–15 0.348 0.003 0.143 0.193 0.324 0.006 0.143 0.192

SAR 15–0 0.384 0.02 0.83 1.57 0.326 − 0.19 0.82 1.62

30–15 0.068 0.02 0.91 1.50 0.02 − 0.2 0.89 1.50

Na (mg/kg) 15–0 0.350 − 0.89 7.81 16.24 0.277 0.357 9.07 16.70

30–15 0.44 − 0.36 4.17 8.06 0.286 − 1.77 3.92 8.74

Ca (mg/kg) 15–0 0.312 0.146 2.719 4.182 0.311 0.058 2.726 4.193

30–15 0.310 0.15 1.31 2.06 0.329 − 0.32 1.18 2.05

Mg (mg/kg) 15–0 0.281 0.058 4.807 7.229 0.334 0.069 4.768 7.159

30–15 0.223 0.066 2.99 5.15 0.226 − 1.64 2.57 5.25

OC (%) 15–0 0.45 0.008 0.454 0.562 0.44 − 0.01 0.45 0.564 0.54 0.004 0.39 0.485

30–15 0.411 0.012 0.435 0.545 0.414 0.022 0.427 0.546 0.40 − 0.001 0.438 0.564

Gypsum (%) 15–0 0.36 0.53 3.59 4.64 0.36 − 0.46 3.37 4.62 0.363 0.92 3.75 4.61

30–15 0.12 0.675 5.825 7.19 0.12 − 0.506 5.978 7.215 0.15 0.78 5.834 7.21

AP (ppm) 0–15 0.041 4.59 41.52 57.84 0.04 − 19 39.91 57.80

AK (ppm) 0–15 0.42 2.02 37.80 56.95 0.43 − 1.94 36.87 56.84 0.35 − 0.03 41.96 62
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WC in both depths are similar; the amount of WC is higher in
cultivated areas where surface irrigation was applied (few
weeks ahead of sampling), and less in drip irrigated orchards
and non-irrigated areas (see Fig. 1). EC decreased from the

surface layer to the subsurface layer which could be due to
extreme evaporation rate, no precipitation, and poor surface
drainage. The lowest amount of topsoil EC is seen in north,
northeast, and southeast of study field with coarser soil

Fig. 2 Mapping soil properties using the best interpolation method for depth intervals 0–15 cm and 15–30 cm. Also shown in the right is the amount of
variation between two layers
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texture. Due to the use of saline irrigation water of local wells
in the time of water shortage and a high evaporation rate, salt
has been accumulation mostly in cultivated areas while less
EC is seen in non-cultivated areas, e.g., in the northwest of the
field. The maps of pH in Fig. 2 show that acidity has a similar
spatial pattern over the study region for both depths. Majority

of the region has a pH value of greater than 8, indicating an
alkaline condition over the study field. Moreover, the map of
difference between two depths shows that pH increased with
depth in some regions and decreased in other parts. Prolong
drought and frequent use of saline water for irrigation resulted
in a high amount of SAR for two layers over the study area

Fig. 2 continued.
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(Fig. 2). The amount of SAR increased toward the center and
southern regions; herein, soil contains more clay content,
causing more limitation (e.g., lowers soil infiltration rate) for

agricultural production. The spatial distribution maps of gyp-
sum show that the higher amount of gypsum is seen in subsoil
than topsoil since low soluble gypsum is deposited in deeper

Fig. 2 continued.
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layers following basin irrigation traditionally used for irriga-
tion purposes over the study region. The map of topsoil OC
shows that almost two third of study area has an OC content of
2 to 3%. However, for 15–30-cm depth, OC in most parts is
below 2%, which is the critical limit for organic carbon in
most agricultural calcareous soils. The major driving factors
for low concentration of OC over study area could be long-
term cultivation practices (Safadoust et al. 2016a), wind ero-
sion (Yan et al. 2005), and low water content and high soil
temperature (Callesen et al. 2003). As mentioned by Lal
(1990) and Afrasiab and Delbari (2013), low amount of soil
water content due to low rainfall and irrigation along with
strong wind may cause soil degradation and desertification
through wind erosion. Soil erosion removes the fertile surface
soil, affects OC content and soil biological activities, and
limits plant growth (Yan et al. 2005; Tanner et al. 2016). Li
et al. (2008) stated that wind erosion might affect the spatial
heterogeneity of soil nutrients such as OC. Low amount of OC
is typical in soils of Aridisols and Entisols orders (Eswaran
and Reich 2005; Guo et al. 2006). However, to reduce wind
erosion and in turn soil organic carbon losses, proper soil
conservation practices and soil fixation should be adapted
(Salem 1989). Implementation of best management practices
(BMPs) such as conservation tillage, organic cropping, and
irrigation water management can enhance soil OC concentra-
tion (Sharma et al. 2011) and therefore improve soil quality
over the study region.

To better realize the vertical variation of selected soil prop-
erties over the whole field, the percent of study area where the
amount of each variable is increased in subsoil when com-
pared to topsoil is also calculated and the results are presented
in Table 6. As seen, soil physical properties including Silt,

BD, and WC increased in subsoil in more than 60% of the
study area, while most soil chemical properties, i.e., EC, ESP,
SAR, pH, Na, Ca, Mg, and OC, decreased in subsoil in more
than 70% of the study area. Clay and Sand increased in subsoil
in about 22% and 38% of the study area, respectively. The
high amounts of soil chemical properties in topsoil are corre-
sponding to a high ratio of evaporation to precipitation which
causes the upward movement of dissolved nutrients in the soil
profile (Yu et al. 2014). On the other hand, a relatively lighter
soil texture in deeper layer and infrequent basin irrigation
cause nutrients leaching through deep percolating water
(Lehmann and Schroth 2003).

Figure 2 also shows the spatial distribution of AP and AK.
As expected from auto-correlation analysis (Table 3), spatial
distribution map of AP shows little spatial continuity (small
and high values of AP occur near to each other). In contrast,
the estimation map of AK shows a good spatial continuity of
AK with an increase along the northeast toward the southwest
of the study area as soil texture gets heavier. Almost half the
study region (north, northwest, and east) has an AK less than
170 ppm, which is a critical limit for agricultural production
(Karlen et al. 1994). The high and low amounts of AP and AK
revealed that their spatial pattern might be also influenced by
anthropogenic causes such as fertilization.

Conclusion

The main goal of this this study is to predict the spatial distri-
bution of topsoil (0–15 cm) and subsoil (15–30 cm) physical
and quality parameters in an agriculture field in an arid and
semi-arid region. The study is also aimed to explore the inter-
relationship between soil properties and their vertical variation
in two successive layers of a salt-affected soil. Statistical anal-
ysis showed that soil chemical properties have a moderate to
high coefficient of variation while physical properties and pH
have a low to moderate coefficient of variation over the study
area. Pearson correlation matrix indicated a significant corre-
lation among soil attributes especially for the topsoil. All soil
properties showed a degree of spatial correlation from moder-
ate to strong with a small to large spatial correlation distance.
Physical soil properties, i.e., the percentage of sand, silt, and
clay, are correlated fairly well in space with a large correlation
distance. However, most of soil chemical properties such as
pH, ESP, SAR, EC, and AP showed small correlation dis-
tance, which reflects the influence of agriculture activities
and land use pattern on the spatial autocorrelation of soil
chemical properties. According to cross-validation results,
for most soil properties, either the LOK or IDW method pro-
vided the least interpolation error. The maps of soil texture
fractions spatial distribution showed that soil texture is coarser
near the riverbank in north and northeast of study area.
However, in most areas, the amount of clay decreased in

Table 6 The percent of study area where each soil property is increased
in subsoil relative to topsoil

Variable Percent
area (%)

Clay (%) 21.6

Silt (%) 64.6

Sand (%) 38.4

BD (gr/cm3) 97.9

WC (%) 92.6

EC (dSm) 2.2

ESP 28.9

SAR 22.7

pH 31.5

Na (mg/kg) 11.5

Ca (mg/kg) 4.1

Mg (mg/kg) 8.8

Gypsum (%) 99.5

OC (%) 11
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15–30 cm compared to 0–15 cm. The comparison of soil
property spatial distributions for two layers showed an accu-
mulation of soil chemical properties, e.g., Ca, Mg, and Na, at
topsoil mostly due to low precipitation and high evaporation
rates over the study region. The maps of EC and pH clearly
show that soils in the study region are mostly saline and alka-
line. Moreover, OC concentration was shown to be almost at
the minimum level for agricultural production. BMPs such as
conservation tillage, agricultural water management, organic
farming, land restoration, and land use change are needed to
increase OC concentration, balance water, and temperature
regime in soil and improve soil quality for a better plant
growth. The generated maps of soil physical attributes and
soil nutrients can help farmers and decision makers for an
optimum water and nutrient management. For example, large
contents of AP and AK were observed in some parts of study
area mainly due to human activities. Future nutrient and fer-
tilizer applications should include a site-specific condition to
not only reduce the cost of input management but also to
prevent any environmental hazard.
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