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Abstract
Iraq is facing a critical water crisis that has ever experienced. This necessitates a wise management for present and future water
resources. Future water availability is mainly influenced by the impacts of climate changes and to dams in Turkey, Syria, Iran, and
northern Iraq. The meteorological parameters obtained from global circulation models (GCM) cannot be used to assess the
impacts of future climate changes on the water resources availability at catchment scale. The dynamical or statistical downscaling
is employed to transfer the coarse resolution of GCM into a finer. In this study, the future maximum/minimum temperature and
precipitation for 12 stations of Iraq were projected for three future periods 2020s (2011–2040), 2050s (2041–2070), and 2080s
(2071–2100) from the Canadian GCM model (CanESM2) under different scenarios (RCP2.5, RCP4.5, and RCP8.5) using
statistical downscaling model (SDSM). The model was set up utilizing partial correlation and significance level of 0.05 between
National Center for Environmental Prediction/Atmospheric Research (NCEP/NCAR) parameters as predictors and the local
station data as predictand. Subsequently, the model was calibrated and validated against daily data by using 70% of the data for
calibration and the remaining 30% for the validation. Thereafter, the calibrated model was applied to downscale future scenarios
of CanESM2 predictors. The study proved a satisfactory performance of SDSM for simulation of maximum-minimum temper-
atures and precipitation for future periods. All considered stations and the scenarios were consistent in predicting increasing trend
of maximum-minimum temperature and decreasing trend of precipitations. RCP8.5 scenario shows the worst trend of precipi-
tation and temperature.
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Introduction

Due to human interventions and the use of fossil fuels, the green-
house gas concentration in the atmosphere has increased and
resulted in a global energy disparity (Wentz et al. 2007; Chu
et al. 2010; Huang et al. 2011). This in turn has led to what is
called climate changes. Change in the climate means a state
within a certain period where the statistical distribution of weath-
er patterns is changeable due to the radiative forcing (RF) varia-
tions (Al-Mukhtar 2018; Moussa et al. 2018). The sources of
these variations arise from the natural, anthropogenic, and

environmental process, which influence on the earth’s energy
budget (Khadka and Pathak 2016). The RFs are embedding to
the climate models as boundary conditions to simulate future
scenarios. The total anthropogenic RF was estimated according
to IPCCFifthAssessment Report (AR5) in 2011 as B43%higher
than that reported in the fourth Assessment Report (AR4) pub-
lished in 2007^ (IPCC 2013).

Iraq was characterized as an abundant water resources
country among the other regional countries with an annual
allocation per capita of 6029 m3 in 1995; however, a signifi-
cant drop was recorded in the annual allocation to become
2100 m3 in 2015 (Nimah 2008). Restoration project for the
marshes in the south of Iraq and the increasing demand on
water in the neighboring countries will result in desiccation
the Tigris and Euphrates Rivers in 2040 (Al-Ansari et al.
2012). This would in turn lead to some ecological and envi-
ronmental consequences not only in Iraq but also on the
Arabian/Persian Gulf and Kuwait (Al-Ghadban et al. 1999,
2008). Some suggested solutions to overcome the water
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shortage crises, but not only, are to use non-conventional wa-
ter resources management techniques (e.g., water harvesting)
(Al-Ansari et al. 2012; Zakaria et al. 2013) and by attending a
mitigation and adaptation of climate change.

In order to adopt such strategies and to avoid ill-informed
decisions about the prospective water resources availability,
planners need knowledge about the impacts of climate chang-
es on meteorological parameters at local scale. The global
climate models (GCMs) are the main informative tools used
for present and future climate change scenarios. However, the
resolution of the GCMs is very coarse (usually more than
40,000 km2), and thus, they are unable to accurately model
the sub-grid scale climate features of the local-scale areas
(Wilby and Dawson 2007). Thus, there is a need for spatial
and temporal downscaling from the GCM into a finer scale.

Downscaling technique is defined as the tool to create a
link between a regional/local and GCM scales (Wetterhall
et al. 2009). The range of local and regional scales is 0–
50 km and 50 × 50 km, respect ively (Xu 1999).
Downscaling can be grouped into two categories: dynamic
and statistical downscaling (Christensen et al. 1997; Fowler
et al. 2007). Dynamical downscaling (DD) is a process-based
technique focused on driving nested high-resolution circula-
tion model called regional climate model (RCM). This model
takes the boundary conditions from the coarse resolution data
of GCMs and provides information on fine temporal and spa-
tial resolution that able to simulate the physical processes
(Giorgi 1990; Jones et al. 1995). On the contrary, statistical
downscaling (SD) methods associate local-scale with large-
scale variables through empirical/ statistical relationship by
using multiple linear regression and the stochastic weather
generator (Gebremeskel et al. 2005; Diaz-Nieto and Wilby
2005; Gagnon et al. 2005; Wilby et al. 2006). Although these
methods are characterized as faster, and computationally in-
expensive (Wilby et al. 2000), they have shortcomings repre-
sented by assuming a constancy of the statistical association in
the future.

Weather generators are stochastic models employed in
SD methods to synthetically generate a long series data,
reproduce missing data, and synthesize different realiza-
tions of the same data through a random number gen-
erator (Wilks and Wilby 1999). Statistical downscaling
model (SDSM) is being widely used throughout the
world as a statistical downscaling tool (Huang et al.
2011) to downscale most of climate variables (such as
temperature, precipitation, and evaporation) which could
be used in further assessing of hydrologic responses.

The objectives of this study were to investigate the ability
of statistical downscaling model in reproducing the meteoro-
logical parameters (i.e., precipitation and temperature) and,
hence, to analyze the impact of future climate changes
(2011–2100) on precipitation and temperatures in several sta-
tion of Iraq. To this end, the SDSM was calibrated and

validated against daily observations from 12 stations scattered
from the north to the south using NCEP/NCAR parameters.
Then, the calibrated model was applied to project future pre-
cipitation and temperature over three time slices using the
Canadian GCM. The outcomes from this study would help
decision makers and researchers in better planning for the
water resources in Iraq and help in finding ways and means
to reduce the effects of climate changes on the inhabitants and
the environment.

Study area and data description

Iraq occupies a total area of 437,072 km2. Landforms
constitute 432,162 km2, while water forms 4910 km2 of
the total area. Turkey borders Iraq from the north, Iran
from the east, Syria and Jordan from the west, and
Saudi Arabia and Kuwait from the south. The total pop-
ulation in Iraq in 2017 is about 37,139,519. Iraq is
composed of 18 governorates. Twelve sites were select-
ed across Iraq to represent as much as possible major
climatic regions in the country (Fig. 1). As such, the
selected stations extend from the north to the south of
the country where most of the agricultural and urban
areas are present. The investigated stations are
Baghdad, Kirkuk, Mosul, Sulaymaniyah, Najaf,
Nasiriyah, Al-Hay, Basra, Zakho, Erbil, Salah ad Din,
and Khanaqin. Table 1 presents a detail description
about the locations of the investigated stations.

The observed data of those stations were obtained from the
Iraqi National Meteorological Organization and Seismology.
The data availability is listed in Table 2 with their correspond-
ing mean annual precipitation and temperature. The observed
daily rainfall and temperature data of the stations Kirkuk,
Mosul, Baghdad, Nasiriyah, Najaf, Al-Hay, Basra, and
Khanaqin were available for the period 1961–1990. While
for the remainder stations (Sulaymaniyah, Zakho, Erbil, and
Salah ad Din), the data were from 1971 to 2000. For better
understanding of the climate behavior in those stations, the
mean monthly precipitation and temperature were depicted
as shown in Fig. 2. As it can be seen from the figure, the mean
monthly precipitation of the 12 stations over the respective
period ranged from 700 to 50 mm in January to zero in the
summer months (Jun, July, August) and September. On the
other side, the mean monthly temperature fluctuated from 45
to 30 °C in summer to 20–5 °C in winter. The climate is
classified as arid in south to semi-arid in the north.

The 26 predictors of NCEP/NCAR reanalyzed predictors
with grid resolution 2.5° × 2.5° were freely downloaded from
(https://www.esrl.noaa.gov/psd/data/reanalysis/reanalysis.
shtml). These predictors represent the observed coarse
resolution parameters of past to present time.
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The CMIP5-ESMs climate model of the Canadian model
for a very high emission (RCP8.5), an intermediate emission
(RCP4.5), and very low emission (RCP2.6) scenarios with
grid resolution 2.8125° × 2.8125° were obtained from the
Canadian Centre for Climate Modeling and Analysis (http://
climate-scenarios.canada.ca/?page=pred-canesm2) for the
periods of 1961–2001 and 1961–2099. These predictors are
available in zip file format and encompass five files inside:
CanESM2_historical_1961–2005, CanESM2_rcp2.6_2006–
2100, CanESM2_rcp4.5_2006–2100, CanESM2_rcp8.5_
2006–2100, and NCEP-NCAR_1961–2005. Due to the pres-
ence of inconsistency between the GCM and NCEP resolu-
tions, the NCEP data were interpolated to be consistent with
the data grid resolution of CanESM2. The above variables
with those from observations were used for calibration, vali-
dation, and projection in SDSM.

Methodology

The SDSM

The statistical downscaling was carried out by SDSM. The
model was downloaded from http://www.sdsm.org.uk.
Wilby et al. (2002) developed the model as a hybrid tool of
both the multiple linear regression (MLR) and the stochastic
weather generator (SWG). The rule of MLR is to establish a
statistical/empirical relationship between large-scale and
local-scale variables, and make some regression parameters
from the present data. In order to establish a better association
with the observed time series, the calibrated parameters from
MLR along with NCEP and GCM predictors are fed into
SWG to simulate up to 100 daily time series (Wilby et al.
2002; Liu et al. 2009).

Fig. 1 Location of the
meteorological stations
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The selection of the most suitable predictors among the
atmospheric predictors is done through a combination of sta-
tistical tools, i.e., correlation matrix, partial correlation, P val-
ue, histograms, and scatter plots. The calibrated parameters
are optimized through either ordinary least squares (OLS) or
dual simplex (DS) (Huang et al. 2011). The model determines
the relationship between the predictands and predictors
through three kinds of sub-models—monthly, seasonal, and
annual. Annual sub-model derives one-regression parameters
for 12 months. While, the monthly sub-model represents 12
regression equations of the 12 months. Moreover, conditional
and unconditional processes are applied within the model for
precipitation and temperature, respectively (Wilby et al. 2002;
Chu et al. 2010), where the conditional process depends on an
intermediate variable to link the predictors with predictands,
while the unconditional process considers the direct link be-
tween them (Khan et al. 2006). The methodology followed in

this study for downscaling and scenario generation is shown
in Fig. 3.

Screening of probable predictors

One of the most important steps in statistical downscaling is to
identify properly the most effective predictors on predictands
in what is called screening of predictors (Hewitson and Crane
1996). This process is employed to select appropriate sets of
observed predictors from the suite of NCEP/NCAR reanalysis
datasets based on several statistical metrics. The choice of
predictors differs based on geographical regions considering
the properties of the predictor and the predictand (Anandhi
et al. 2009). Therefore, in this study, the scatter plots, value
of explained variance, correlation, partial correlation (r), and P
value approaches were used for obtaining the most suitable
sets of predictors from the suite of NCEP/NCAR data at an

Table 1 Location details of the
12 stations in Iraq Station Latitude Longitude Altitude (m) Area (km2) Population

Bagdad 33° 18′ N 44° 24′ E 34 204.2 7,665,000

Basra 30° 31′ N 47° 47′ E 5 181 2,150,000

Erbil 36° 11′ 28″N 44° 0′ 33″ E 390 197 852,500

Al-Hay 32° 10′ N 46° 03′ E 20 – 84,800

Najaf 32° N 44° 20′ 00″ E 60 28,824 1,389,500

Nasiriyah 31° 03′ N 46° 16′E 9 12,900 860,200

Zakho 37° 08′ 37 N 42° 40′ 54.88″ E 440 – 350,000

Sulaymaniyah 35° 33′ N 45° 25′E 882 20,144 1,256,000

Salah ad Din 34° 27′ N 43° 35′E – 24,751 1,408,000

Khanaqin 34° 20′ N 45° 23′E 183 – 150,000

Mosul 36.34° N 43.13° E 223 180 664,221

Kirkuk 35° 28′ N 44° 19′ 0″ E 350 9679 850, 787

Table 2 Description of data availability for the 12 stations used in the study

Station Period Data available Mean annual
precipitation (mm)

Mean annual
Tmax (°C)

Mean annual
Tmin (°C)

Baghdad 1961–1990 Temp. and prec. 31.1 28.5 15.8

Basra 1961–1990 Temp. and prec. 31.3 27.7 12.7

Erbil 1961–1990 Temp. and prec. 11.8 30.3 14.6

Al-Hay 1971–2000 Temp. and prec. 60.8 24.6 12.2

Najaf 1961–1990 Temp. and prec. 8.12 30.9 17

Nasiriyah 1961–1990 Temp. and prec. 9.5 31.7 17.32

Zakho 1961–1990 Temp. and prec. 60 31.6 16.9

Sulaymaniyah 1961–1990 Temp. and prec. 10.7 31.8 18.1

Salah ad Din 1971–2000 Temp. and prec. 52.9 25.3 12

Khanaqin 1971–2000 Temp. and prec. 34.6 25.7 14.6

Mosul 1971–2000 Temp. and prec. 50.2 21.44 12.5

Kirkuk 1961–1990 Temp. and prec. 25.5 30 14.9

Temp. temperature, prec. precipitation
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individual station. As pointed by Wilby et al. (2002), Bthe
explained variance explains the level to which daily variations
in the predictand are determined by predictors.^ While, the
correlation statistics and P values are a measure of the strength
of relationship between the predictor and predictand. The
smaller P value (P < 0.05) implies a better association be-
tween variables.

Calibration and validation

Quality control check function was used to identify whether
the data have missing or outlier values. The observed data in
each station (predictands) with their NCEP/NCAR were used
to calibrate and validate the model. Data was partitioned into
two parts: 70% for calibration and 30% for validation. So, data
from 1961 to 1981 and 1971 to 1991 was used for the cali-
bration, where the model was calibrated with the screened
NCEP predictors using the annual sub-models, for the respec-
tive predictands. The unconditional sub-model without trans-
formation was used for temperature and conditional one with

fourth root transformation for precipitation. The OLS was
adopted as an optimization method. Subsequently, daily
dataset for the period of 1982–1990 and 1992–2000 was se-
lected for the validation of each predictand. Validation was
carried out using calibration output, and observed NCEP
reanalyzed atmospheric variables. Then, SWG was employed
to generate 20 ensembles of synthetic weather series. The
average of these ensembles was compared with independent
observations from the validation period.

Downscaling of future predictands

In this study, the calibrated model was used in further analysis,
i.e., assessing future climate changes on temperature and pre-
cipitation over three periods by downscaling the RCP scenario
predictors obtained from the CanESM2 model. To achieve
that, the built-in SWG was employed to generate 20 ensem-
bles of future predictands. Ultimately, the downscaled future
climate change predictands in the 2020s (2011–2040), 2050s
(2041–2070), and 2080s (2071–2099) were compared with
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those in the baseline period (1961–1990). The anomaly of
monthly precipitation/temperature was obtained from the per-
centage change/absolute difference of average 20-ensemble
future predictand with respect to monthly average of the base-
line period. The positive or negative anomaly indicates that
there would be increase or decrease of the variable in future
periods, respectively.

Evaluation criteria

In order to evaluate the SDSM performance with respect to the
observed Tmax, Tmin, and precipitation data, the following
three statistical model performance evaluations were applied.
These statistical performance measures are mostly used to
check the goodness of fit between the observed and modeled
(Al-Mukhtar 2016).

Coefficient of determination (R2)

The determination coefficient or coefficient of determination (Eq.
1) is a measure used to determine the variability in observed data
that the model could capture it (Krause et al. 2005).

R2 ¼ ∑ X i−X av½ � Y i−Yav½ �ð Þ2
∑ X i−X avð Þ2∑ Y i−Yavð Þ2 ð1Þ

where Xi is measured value, Xav is average measured value, Yi is
simulated value, and Yav is average simulated value.

Nash–Sutcliffe coefficient

The Nash–Sutcliffe coefficient (NSE) is a dimensionless mod-
el evaluation statistic where the relative magnitude of the
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Fig. 3 Flow chart showing steps involved in downscaling and scenario generation (after Wilby and Dawson 2007)
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Table 3 Significant predictors from CanESM2 model for precipitation

Station Predictor P.r P Station Predictor P.r P

Baghdad ncepmslpgl − 0.013 0.0007 Erbil ncepmslpgl 0.068 0.000

ncepp1-fgl 0.002 0.0373 ncepp5-zgl − 0.001 0.000

ncepp500-gl 0.028 0.0003 ncepp500-gl − 0.024 0.000

nceps500-gl − 0.033 0.0017 ncepp850-gl 0.003 0.0001

nceptempgl − 0.11 0.0343 ncepprcpgl 0.001 0.0442

nceps850-gl − 0.018 0.000

nceptempgl 0.0208 0.000

Basra ncepmslpgl − 0.003 0.0005 Kirkuk ncepp1-vgl 0.125 0.0025

ncepp1-fgl 0.040 0.0419 ncepp500-gl 0.0354 0.00

ncepp1-ugl − 0.051 0.033 ncepp8-vgl 0.007 0.0309

ncepp1-zhgl 0.020 0.0342 ncepp850-gl − 0.044 0.0253

ncepp500-gl − 0.018 0.0009 ncepp8-zhgl − 0.887 0.0014

ncepp850-gl 0.019 0.0074 ncepprcpgl − 0.005 0.00

nceps500-gl − 0.045 0.0005 nceps850-gl 0.125 0.0042

nceptempgl 0.0154 0.0097

Zakho ncepmslpgl 0.182 0.0022 Salah ad Din ncepp1-vgl 0.005 0.0466

ncepp5-zgl 0.365 0.0300 ncepp1-zgl 0.004 0.0297

ncepp500-gl 0.006 0.000 ncepp500-gl − 0.007 0.00

ncepp850-gl 0.005 0.0001 ncepp8-vgl − 0.124 0.0222

precipitation 0.187 0.0442 ncepp8-zgl − 0.109 0.0198

nceps850-gl − 0.009 0.0032 ncepp850-gl 0.006 0.00

nceptempgl − 0.540 0.00

Al-Hay ncepmslpgl − 0.034 0.0003 Mosul ncepp1-vgl 0.002 0.0466

ncepp8-ugl − 0.098 0.0043 ncepp1-zgl 0.0233 0.0297

ncepp850-gl 0.0523 0.0207 ncepp5-zgl − 0.124 0.00

ncepp8-thgl 0.007 0.0371 ncepp500-gl − 0.0243 0.000

nceps500-gl 0.002 0.0157 ncepp8-vgl 0.008 0.0222

nceptempgl 0.0123 0.0140 ncepp8-zgl − 0.265 0.0198

ncepp850-gl 0.007 0.000

nceps850-gl 0.0998 0.000

Khanaqin ncepmslpgl 0.148 0.00 Sulaymaniyah ncepp1-vgl − 0.002 0.0052

ncepp1-ugl 0.134 0.0346 ncepp500-gl 0.128 0.0032

ncepp5-zgl − 0.2 0.0004 ncepp8-vgl 0.134 0.0208

ncepp500-gl − 0.009 0.000 ncepp850-gl 0.003 0.0234

ncepp8-vgl 0.129 0.0341 ncepp8-zhgl − 0.009 0.0123

nceps850-gl 0.003 0.000 Precipitation 0.0176 0.00

nceptempgl 0.0345 0.000 nceps850-gl 0.0034 0.0042

Najaf ncepmslpgl − 0.006 0.0044 Nasiriyah ncepmslpgl − 0.0004 0.0007

ncepp500-gl − 0.028 0.0008 ncepp500-gl 0.006 0.0104

ncepp8-zgl 0.006 0.004 nceps850-gl 0.145 0.0062

nceps850-gl 0.125 0.0477 nceptempgl 0.134 0.0014

ncepmslpgl: mean sea-level pressure, ncepp8-fgl: 850-hpa airflow strength, ncepp1-fgl: 1-hpa airflow strength, ncepp8-ugl: 850-hpa zonal velocity,
ncepp1-ugl: 1-hpa zonal velocity, ncepp8-vgl: 850-hpa meridional velocity, ncepp1-vgl: 1-hpa meridional velocity, ncepp8-zgl: 850-hpa vorticity,
ncepp1-zgl: 1-hpa vorticity, ncepp8-thgl: 850-hpa wind direction, ncepp1-thgl: 1-hpa wind direction,ncepp8-zhgl: 850-hpa divergence, ncepp1-zhgl:
1-hpa divergence, ncepp500-gl: 500-hpa geopotential height, ncepp5-fgl: 500-hpa airflow strength, ncepp850-gl: 850-hpa geopotential height, ncepp5-
ugl: 500-hpa zonal velocity, ncepprcpgl: precipitation, ncepp5-vgl: 500-hpa meridional velocity,nceps500-gl: specific humidity at 500 hpa, ncepp5-zgl:
500-hpa vorticity, nceps850-gl: specific humidity at 850 hpa, ncepp5-thgl: 500-hpa wind direction, ncepshumgl: surface-specific humidity, ncepp5-zhgl:
500-hpa divergence, nceptempgl: mean temperature at 2 m
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residual variance is determined in comparison to the observed
variance (Moriasi et al. 2007) and is defined as the following
(Nash and Sutcliff 1970):

E ¼ 1−
∑n

i¼1 X i−Y ið Þ2
∑n

i¼1 X i−Yavð Þ2 : ð2Þ

Root mean square error

The root mean square error (RMSE) is an error index type of
model evaluation statistics (dimensional). The closer value to
zero, the better model performance (Singh et al. 2004).

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑n
i¼1 X i−Y ið Þ2

n

s

ð3Þ

where n is the number of values.

Results

Screening of predictors

The best-correlated predictor variables were selected based on
P value and partial r for each station’s predictands. Results
revealed that different atmospheric variables affect different
local variables. The driving parameters on Tmax and Tmin
with significance level < 0.05 were common. In other words,
ncepp500-gl (500-hpa geopotential height), nceps850-gl (spe-
cific humidity at 850 hpa), ncepshumgl (surface-specific hu-
midity), and nceptempgl (mean temperature at 2 m) were the
most effective parameters on temperature at all stations. These
parameters seem physically rational because they are highly
related to the changes of temperature characteristics through
the thermal advection term (Romanowicz et al. 2016). While,
the driving parameters on precipitation were varied across the
stations (Table 3). For example, in Baghdad station, the most
significant parameters were ncepmslpgl (mean sea-level pres-
sure), ncepp1-fgl (1-hPa air flow strength), ncepp500-gl (500-

Table 4 Statistical
performance of Tmax
modeling during
calibration

Station name RMSE R2 NSE

Baghdad 5.57 0.89 0.74

Basra 5.40 0.89 0.73

Erbil 5.53 0.88 0.76

Al-Hay 5.22 0.89 0.73

Khanaqin 5.13 0.89 0.77

Kirkuk 4.68 0.89 0.81

Mosul 5.23 0.88 0.78

Najaf 5.22 0.83 0.75

Nasiriya 5.26 0.90 0.72

Salah ad Din 5.57 0.83 0.74

Zakho 5.09 0.88 0.78

Sulaymaniyah 5.32 0.81 0.73

Table 5 Statistical
performance of Tmax
modeling during
validation

Station name RMSE R2 NSE

Baghdad 5.34 0.90 0.75

Basra 5.45 0.90 0.74

Erbil 5.69 0.87 0.75

Al-Hay 5.40 0.90 0.74

Khanaqin 5.39 0.89 0.77

Kirkuk 4.65 0.89 0.83

Mosul 5.56 0.84 0.77

Najaf 5.31 0.78 0.74

Nasiriya 5.51 0.89 0.72

Salah ad Din 6.67 0.78 0.67

Zakho 5.43 0.87 0.72

Sulaymaniyah 5.86 0.90 0.74

Table 6 Statistical
performance of Tmin
modeling during
calibration

Station name RMSE R2 NSE

Baghdad 4.56 0.83 0.89

Basra 4.53 0.83 0.69

Erbil 4.29 0.84 0.73

Al-Hay 4.31 0.85 0.71

Khanaqin 4.21 0.83 0.73

Kirkuk 3.87 0.83 0.79

Mosul 4.37 0.87 0.72

Najaf 4.47 0.85 0.73

Nasiriya 4.25 0.80 0.71

Salah ad Din 4.26 0.83 0.89

Zakho 4.33 0.85 0.88

Sulaymaniyah 4.50 0.87 0.72

Table 7 Statistical
performance of Tmin
modeling during
validation

Station name RMSE R2 NSE

Baghdada 4.50 0.84 0.69

Basrah 4.45 0.84 0.70

Erbil 4.53 0.82 0.73

Al-Hay 4.55 0.87 0.71

Khaniqin 4.70 0.84 0.72

Kirkuk 3.86 0.84 0.82

Mosul 4.36 0.87 0.74

Najaf 4.50 0.84 0.74

Nasiriya 4.62 0.76 0.71

Salah ad Din 5.25 0.84 0.99

Zakho 4.22 0.82 0.73

Sulaymaniyah 4.20 0.82 0.87
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hPa geopotential height), nceps500-gl (specific humidity at
500 hPa), and nceptempgl (mean temperature at 2 m).
Whereby, in Basra south of Iraq, in addition to the above
parameters, the most significant parameters were ncepp1-ugl
(1-hPa zonal velocity), ncepp1-zhgl (1-hPa divergence), and
ncepp850-gl (850-hPa geopotential height). The reason be-
hind such as variation might be attributed due to the precipi-
tation heterogeneity (Wilby et al. 2002). The most effective
parameters on precipitation in most of stations were the spe-
cific and relative humidity. These parameters are associated
and highly correlated to precipitation occurrence because their
synchronous variation is dependent on the saturated phase of
water vapor in the air (Hessami et al. 2008). The significant
deriving parameters were subsequently used in the SDSM
calibration.

Calibration and validation

Based on station data availability, the observed data was
either from 1961 to 1990 or 1971–2000. This data was

portioned into two parts: for calibration and validation.
Data from 1961 to 1981 and 1971 to 1991 was used for
the calibration, whereas data from 1982 to 1990 and
1992–2000 was used for the validation of the model.
The statistical performance of calibration and validation
results for the 12 spatial stations between the observed
Tmax and those counterparts from the downscaling
model are listed in Tables 4 and 5, respectively.

It can be noticed from Table 4 that the RMSE, R2,
and NSE were ≤ 5.57 °C, ≥ 0.80, and ≥ 0.70, respec-
tively, across all the stations. According to the RMSE
values, Kirkuk station has the lowest value (4.65 °C)
among the other stations. In overall, results proved a
well performance of SDSM in modeling maximum tem-
perature during the calibration period. Thus, those re-
sults can be used in further analysis, i.e., validation
phase. During the validation period, the statistical per-
formance was almost akin to that in the calibration. The
values of RMSE, R2, and NSE were ≤ 6.67 °C, ≥ 0.78,
and ≥ 0.67 across all the stations (Table 5) with the
lowest RMSE in Kirkuk station as well. Therefore, it
can be concluded that the performance of the calibrated
model was representative for the entire data set and,
thus, can be used in future projection.

Tables 6 and 7 list the statistical evaluation perfor-
mances of Tmin predictand during the calibration and
validation, respectively. It can be noticed from Table 6
that the RMSE, R2, and NSE were ≤ 4.56 °C, ≥ 0.83,
and ≥ 0.69, respectively, across all the stations during
the calibration. According to this evaluation, it can be
judged that the observed and the modeled data were
consistent. In other words, the SDSM were sufficiently
capable to reproduce the observed Tmin data. During
the validation period, the values of RMSE, R2, and
NSE were ≤ 5.25 °C, ≥ 0.76, and ≥ 0.69 across all the
stations, respectively (Table 7). Thus, the calibrated
model could be used for future projections with respect
to minimum temperature.

With respect to precipitation modeling, the perfor-
mance evaluation shows that the observed and the
modeled data were close to each other. The values of
the RMSE, R2, and NSE were ≤ 0.95 mm, ≥ 0.51, and
≥ 0.60, respectively, across all the stations during the
calibration period (Table 8). Therefore, it can be con-
cluded that the model’s performance was satisfactory in
presenting a rather well correlation between both data
sets and subsequently was used in the validation phase.
The values of statistical performance evaluation during
the validation are listed in Table 9. RMSE, R2, and NSE
were ≤ 1.01 mm, ≥ 0.55, and ≥ 0.60, respectively, across
all the stations. Thus, the SDSM was efficiently capable
to reproduce the observed precipitation data in such as
arid and semi-arid areas.

Table 8 Statistical
performance of
precipitation modeling
during calibration

Station name RMSE R2 NSE

Baghdada 0.77 0.71 0.64

Basrah 0.84 0.86 0.72

Erbil 0.95 0.60 0.64

Al-Hay 0.39 0.67 0.76

Khaniqin 0.34 0.80 0.82

Kirkuk 0.44 0.61 0.87

Mosul 0.36 0.62 0.86

Najaf 0.49 0.59 0.61

Nasiriya 0.73 0.70 0.67

Salah ad Din 0.37 0.51 0.60

Zakho 0.47 0.61 0.85

Sulaymaniyah 0.34 0.62 0.87

Table 9 Statistical
performance of
precipitation modeling
during validation

Station name RMSE R2 NSE

Baghdada 0.79 0.61 0.74

Basrah 0.57 0.55 0.65

Erbil 0.83 0.62 0.82

Al-Hay 0.77 0.86 0.80

Khaniqin 1.01 0.80 0.78

Kirkuk 0.37 0.63 0.63

Mosul 0.39 0.83 0.60

Najaf 0.74 0.61 0.86

Nasiriya 0.86 0.63 0.70

Salah ad Din 0.88 0.84 0.66

Zakho 0.54 0.64 0.76

Sulaymaniyah 0.45 0.67 0.70
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Fig. 4 Change in average annual maximum temperature in the future under CanESM2-RCP2.6, CanESM2-RCP4.5, and CanESM2-RCP8.5 scenarios
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Fig. 5 Change in average annual minimum temperature in the future under CanESM2-RCP2.6, CanESM2-RCP4.5, and CanESM2-RCP8.5 scenarios

Arab J Geosci (2019) 12: 25 Page 11 of 16 25



-50%

0%

50%

2020s 2050s 2080s

%
 p

ro
je

ct
ed

 c
ha

ng
e

Zakho
CanESM2-RCP2.6 CanESM2-RCP4.5 CanESM2-RCP8.5

-50%

0%

50%

2020s 2050s 2080s

%
 p

ro
je

ct
ed

 c
ha

ng
e

Najaf

CanESM2-RCP2.6 CanESM2-RCP4.5 CanESM2-RCP8.5

-50%

0%

50%

2020s 2050s 2080s

%
 p

ro
je

ct
ed

 c
ha

ng
e

Nasiriyah
CanESM2-RCP2.6 CanESM2-RCP4.5 CanESM2-RCP8.5

-50%

-25%

0%

2020s 2050s 2080s
%

 p
ro

je
ct

ed
 c

ha
ng

e

Baghdad
CanESM2-RCP2.6 CanESM2-RCP4.5 CanESM2-RCP8.5

-50%

0%

50%

2020s 2050s 2080s

%
 p

ro
je

ct
ed

 c
ha

ng
e

Basrah
CanESM2-RCP2.6 CanESM2-RCP4.5 CanESM2-RCP8.5

-50%

0%

50%

2020s 2050s 2080s

%
 p

ro
je

ct
ed

 c
ha

ng
e

Erbil
CanESM2-RCP2.6 CanESM2-RCP4.5 CanESM2-RCP8.5

-30%

-5%

20%

2020s 2050s 2080s

%
 p

ro
je

ct
ed

 c
ha

ng
e

Al-Hay
CanESM2-RCP2.6 CanESM2-RCP4.5 CanESM2-RCP8.5

-70%

10%

90%

2020s 2050s 2080s

%
 p

ro
je

ct
ed

 c
ha

ng
e

Sulaymaniyah
CanESM2-RCP2.6 CanESM2-RCP4.5 CanESM2-RCP8.5

-20%

-5%

10%

25%

2020s 2050s 2080s

%
 p

ro
je

ct
ed

 c
ha

ng
e 

Kirkuk
CanESM2-RCP2.6 CanESM2-RCP4.5 CanESM2-RCP8.5

-50%

0%

50%

2020s 2050s 2080s

%
 p

ro
je

ct
ed

 c
ha

ng
e

Salah addin
CanESM2-RCP2.6 CanESM2-RCP4.5 CanESM2-RCP8.5

-50%

0%

50%

2020s 2050s 2080s

%
 p

ro
je

ct
ed

 c
h

an
g

e

Khaniqin
CanESM2-RCP2.6 CanESM2-RCP4.5 CanESM2-RCP8.5

-50%

0%

50%

2020s 2050s 2080s

%
 p

ro
je

ct
ed

 c
ha

ng
e

Mosul
CanESM2-RCP2.6 CanESM2-RCP4.5 CanESM2-RCP8.5

Fig. 6 Change in average annual rainfall in the future under CanESM2-RCP2.6, CanESM2-RCP4.5, and CanESM2-RCP8.5 scenarios
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In general, the downscaled temperature and precipitation
values were closely consistent with the observed. Many pre-
vious studies (Hassan et al. 2014; Yang et al. 2012, and many
others) have demonstrated that the downscaling can better
reproduce temperature series than precipitation. However,
we conclude that the SDSM is powerful in reproducing
predictand values and, therefore, the model efficiently down-
scaled the maximum-minimum temperature and precipitation
during the calibration and validation periods.

Downscaling future climate scenarios

The SDSMmodel developed for each site was used to predict
future daily precipitation and temperature in the sites for the
periods of 2011–2040, 2041–2070, and 2071–2100

(hereinafter first, second, and third periods, respectively)
based on the RCP2.6, RCP4.5, and RCP8.5 scenarios gener-
ated from CanESM2. Side-by-side anomaly results for all the
meteorological stations of the three different scenarios are
plotted as shown in Figs. 4, 5, and 6 for Tmax, Tmin, and
precipitation, respectively, projected by the SDSM model un-
der the three future periods. Tables 10, 11, and 12 tabulate the
anomaly values of Tmax, Tmin, and precipitation, respective-
ly, projected by the SDSM model under the three future pe-
riods. As it can be noticed, the maximum temperature was
projected to increase across all the 12 stations with a minimum
increase of 0.04 °C under RCP2.6 in Basra during the first
period and maximum increase of 11.3 °C under RCP8.5 in
Sulaymaniyah during the third period (Table 10 and Fig. 4).
The minimum temperature was also projected to increase in

Table 10 Anomaly of maximum temperature (°C) from RCP scenarios over first, second, and third periods relative to baseline

2011–2040 2041–2070 2071–2100

Station RCP2.6 RCP4.5 RCP8.5 RCP2.6 RCP4.5 RCP8.5 RCP2.6 RCP4.5 RCP8.5

Baghdad 1.6 1.7 1.62 2.02 2.47 3.2 1.9 2.8 4.9

Basrah 0.004 0.005 0.105 0.89 0.89 1.6 1.24 1.24 3.57

Erbil 1.6 1.67 1.5 2.08 2.7 3.5 2.07 3.1 5.8

Al-Hay 1.3 1.4 1.3 1.7 2 2.7 1.6 2.3 4.4

Najaf 1.6 1.7 1.5 1.97 2.4 3 1.91 2.7 4.8

Nasiriyah 1.2 1.4 1.3 1.6 1.9 2.7 1.53 2.3 4.3

Zakho 1.94 1.96 1.89 2.39 3.02 3.88 2.38 3.49 6.16

Sulaymaniyah 5.8 5.7 5.9 6.8 7.2 8.3 7.2 7.9 11.3

Salah ad Din 3.7 2.7 3.8 1.7 4.1 5.4 4.1 4.6 8.2

Al-Mosul 2.7 2.7 2.8 3.7 4.1 5.2 4.1 4.8 8.2

Khanaqin 1.8 1.8 1.7 2.1 2.8 3.6 2.2 3.2 5.8

Kirkuk 1.7 1.5 1.9 2.4 3 4 2.5 3.8 7

Table 11 Anomaly of minimum temperature (°C) from RCP scenarios over first, second, and third periods relative to baseline

2011–2040 2041–2070 2071–2100

Station RCP2.6 RCP4.5 RCP8.5 RCP2.6 RCP4.5 RCP8.5 RCP2.6 RCP4.5 RCP8.5

Baghdad 1.26 1.3 1.27 1.54 1.87 2.3 1.5 2.1 3.6

Basrah − 2.2 − 2.25 − 2.25 − 1.9 − 1.66 − 1.08 − 2.02 − 1.3 0.3

Erbil 1.1 1.1 1 1.4 1.9 2.5 1.4 2.2 4.8

Al-Hay 3.5 3.5 3.5 3.8 4.1 4.7 3.7 4.3 6

Najaf 1.3 1.4 1.3 1.6 2 2.6 1.5 2.3 4

Nasiriyah 1 1 1 1.3 1.6 2 1.2 1.8 3.5

Zakho 3.6 3.66 3.5 3.93 4.4 5.02 3.91 4.7 6.6

Sulaymaniyah 2.7 2.6 2.7 3.3 3.6 4.4 3.5 4.2 6.7

Salah ad Din 2.2 2.5 2.2 2.8 3 3.9 3 3.6 6.2

Al-Mosul 2.2 2 2.2 2.8 3 3.9 3 3.6 6.2

Khanaqin 1.4 1.4 1.3 1.4 2.1 2.8 1.7 2.5 4.4

Kirkuk 1.2 1.1 1.4 1.8 2.2 3.2 1.9 2.9 5.5
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all stations except Basra where the Tmin was projected to
decrease. The minimum change in Tmin was 1 °C in
Nasiriyah during the first period and maximum increase of
6.7 °C under RCP8.5 in Sulaymaniyah (Table 11 and
Fig. 5). On the other side, precipitation was projected to de-
crease across all the evaluated stations. The maximum de-
crease was − 68% under RCP8.5 in Sulaymaniyah during
the third period and the minimum decrease was − 1%
(Table 12 and Fig. 6).

Discussion

The statistical downscaling model shows a superior perfor-
mance in modeling daily precipitation and temperature
across the 12 studied stations in Iraq with a slight difference
in performance among stations. Hessami et al. (2008) argued
that Bthe agreement of simulations with observations depends
on the GCMs atmospheric variables used as Bpredictors^ in
the regression-based approach, and the performance of the
statistical downscaling model varies for different stations
and season.^ The downscaling procedure of precipitation
and temperature of this study was in agreement with other
studies (e.g., Wilby et al. 1998; Huth 2002; Gachon et al.
2005), where they proved that using circulation variables (ex-
emplified by geopotential, vorticity, or the wind component)
and temperature (exemplified by geopotential heights at vari-
ous levels and specific/relative humidity near the mid-
troposphere and specific/relative humidity) are superior in es-
tablishing a satisfactory relationship to that of any single pre-
dictor when downscaling temperature and/or precipitation.
Presumably, the SDSMwould receive more attention in future
studies inside Iraq among the other downscaling methods

because of Bless preprocessing requirements and computa-
tional costs^ (Tavakol-Davani et al. 2013) in addition to the
simplicity in implementation.

The outcomes from this study pointed an increase in tem-
peratures and decrease in precipitation across the country. The
greatest increase in annual maximum temperature was detect-
ed in Sulaymaniyah station in the north of Iraq at the end of the
century 2080s under RCP8.5. While the lowest increase in
maximum temperature was in Basrah station at 2020s. On
the other hand, the greatest increase in minimum temperature
was observed in Salah ad Din station (186 km to the north of
Baghdad) at 2080s under RCP8.5. The lowest increase in
minimum temperature was found in Nasiriyah (station in the
south of Baghdad) at 2020s under RCP2.5. Surprisingly,
Basrah station recorded a decrease in the minimum tempera-
ture during the three future periods except a slight increase at
2080s under RCP8.5. This could be attributed to the fact that
warm and cold gulf currents can affect the climate of coastal
regions when the winds pass across. Warm/cold currents heat/
cool off the air temperatures over the gulf and bring higher/
lower temperatures over land.

With respect to precipitation, the results show that the de-
crease in annual precipitation is more remarkable in the north-
ern stations (Sulaymaniyah, Salah ad Din, and Zakho) than
those in the southern part of the country. The greatest decrease
in annual precipitation was observed in Sulaymaniyah at the
end of 2080s under RCP8.5. While, the lowest decrease was
detected in Najaf station. Although the general trend tends
towards a decrease in precipitation across the country, some
stations like Kirkuk and Al-Hay show a slight increase in the
annual precipitation during the 2020s and 2040s, respectively.
Such unforeseen trend is physically uninterpretable especially
that most of the surrounded stations show decreasing of the

Table 12 Anomaly of precipitation (%) from RCP scenarios over first, second, and third periods relative to baseline

2011–2040 2041–2070 2071–2100

Station RCP2.6 RCP4.5 RCP8.5 RCP2.6 RCP4.5 RCP8.5 RCP2.6 RCP4.5 RCP8.5

Baghdad − 13 − 12 − 14 − 29 − 32 − 33 − 17 − 21 − 26
Basrah − 8 − 6 − 9 − 8.4 − 14 − 21 − 17 − 22 − 35
Erbil − 11 − 11 − 10 − 24 − 31 − 21 − 25 − 39 − 18
Al-Hay − 1 0.7 − 1 − 1.2 − 1 − 3 − 1.1 − 1.5 − 2.75
Najaf − 7 − 5 − 8 − 4 − 1 − 3 − 20 − 21 − 21
Nasiriyah − 7 − 6 − 8 − 2 − 1 − 3 − 18 − 20 − 31
Zakho − 39 − 39 − 38 − 47 − 52 − 45 − 48 − 58 − 44
Sulaymaniyah − 58 − 58 − 58 − 58 − 59 − 63 − 59 − 62 − 68
Salah ad Din − 35.9 − 36 − 35.1 − 38.5 − 43.3 − 44.4 − 38.2 − 42.1 − 46.5
Al-Mosul − 17 − 18 − 18 − 19 − 21 − 23 − 20 − 26 − 37
Khanaqin − 10 − 1 1 − 10 − 20 − 24 − 27 − 15 − 21 − 33
Kirkuk − 5 − 3 − 5 − 1 − 9 − 1 0 − 1 − 7 − 14
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same periods. However, the uncertainty in measurements and
modeling results could be the essential reasons behind.

In arid areas, positive changes in temperature will undoubt-
edly accelerate the process of desertification (Abbasnia et al.
2016) which in turn will ultimately affect on the agricultural
activities in the Mesopotamia area. Therefore, this fact high-
lights the importance of swift adaptation and mitigation mea-
sures in the study area. The findings from this study are con-
sistent with many other regional climate changes studies, e.g.,
in Iran (Najafi and Kermani 2016; Abbasnia et al. 2016), in
UAE (Elhakeem et al. 2015), and in Kuwait (Al-Dousari
2005; Al-Awadhi 2014) where they reported an increase in
temperature and dust storms and a decrease in precipitation.
This was noted in the micro-features printed on surface of
drifted sand particles from Iraq towards Kuwait (Al-Dousari
and Al-Hazza 2013).

Conclusions

This study investigated the future projection climate change
impacts on precipitation and temperature in several stations of
Iraq. The NCEP/NCAR predictors were employed to calibrate
and validate the SDSM along with the observed local station
data. The CMIP5-CanESM2 outputs for the RCP8.5, RCP4.5,
and RCP2.6 emission scenarios were used to projects the fu-
ture changes. Based on the statistical metrics used in this
study, results proved the superior performance of the SDSM
in modeling present meteorological data. The downscaled re-
sults of the GCMs based on the calibrated SDSM showed that
temperature would continue to increase in the future time
slices. However, future precipitation will increase with more
variability and uncertainty across the selected stations, but
with consistent trend among RCPs. Overall, annual precipita-
tion in CanESM2 will apparently decrease in the future. There
is a clear trend of an increase in temperature and a decrease in
precipitation in the study regions. Hence, the findings obtain-
ed from this study can be of use to help policy makers in
making decisions and planning for adaptation of impacts of
climate changes. Moreover, the results can provide a support
for better water resources management in Iraq. It is planned to
use the outcomes of this study to investigate the impacts of
climate changes on water resources availability in Iraq in a
further study.
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