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Abstract
The rate of penetration (ROP) is one of the key factors that affect the drilling costs. Optimizing the ROP is a big challenge as it
depends onmany factors such as revolutions per minute (RPM), weight on bit (WOB), torque (T), horsepower (HP), and uniaxial
compressive strength (UCS) of the drilled rocks. In addition, drilling fluid properties have a major effect on ROP. The main goal
of this study is to develop a new ROP model using an artificial neural network (ANN) combined with the self-adaptive
differential evaluation (SaDE) technique. The model was built using different drilling mechanical parameters and drilling fluid
properties. A new ROP empirical correlation was developed by extracting the weights and biases of the optimized SaDE-ANN
model. The optimized ANN architecture based on SaDE is 5-30-1, where five input parameters were used in the input layers to
predict the ROP which are drilling fluid density to plastic viscosity ratio, RPM,WOB/D, T/UCS, and HP. The optimized number
of neurons was 30 and the output layer consists of one output parameter which is ROP. The data was divided into 60% training
and 40% testing. The developed ROP model based on SaDE-ANN showed high accuracy where the correlation coefficient (R)
was 0.98 and the average absolute percentage error (AAPE) was 5%. The new ROP empirical correlation outperformed the
previous ROP models.
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Introduction

The rate of penetration (ROP) is the speed of the bit when it
drills the formation. Increasing the ROP values may result in
many problems such as poor hole instability and poor
cleaning. Therefore, an effective drilling process can be ob-
tained by optimizing the rate of penetration with the lowest
cost. The ROP is influenced by numerous factors which can
be classified into controllable and uncontrollable factors
(Hossain and Al-Majed 2015).

Pump pressure is one of the significant parameters that
affect the drilling performance and the ROP. Su et al. (2018)
illustrated that optimizing the pump pressure is the key param-
eter in drilling a well with high efficiency.

Galle and Woods (1963) achieved a suitable ROP for roller
cone bit simultaneously with maximizing the bearing life and
minimizing the bit teeth wearing assuming optimum bit,
hydraulics, and mud properties selection. Teale (1965) defined
the specific energy termwhich represents the amount of energy
required to remove definite rock volume. He concluded that
the minimum specific energy is in the same order of rock
compressive strength. This formulation was modified by
Pessier and Fear (1992). Armenta (2008) made a new correla-
tion depending on field and experimental data to determine the
inefficient drilling conditions. He mainly modified Teale’s for-
mula by integrating a hydraulic term to the original equation.

Walker et al. (1986) demonstrated that the reduction in the
ROP as the well becomes deeper is related to the downhole
pressures which cause an increase in rock strength and ductil-
ity and decrease inefficient hole cleaning. They concluded that
the ROP is a function in the rock properties as well as the
drilling parameters.

Warren (1987) claimed that the reduction in the ROP at
high-pressure functions in local cratering effects and global
cleaning effects. Winters et al. (1987) continued to improve
the model developed by Warren (1987). They proceeded into
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laboratory drilling tests using roller cone bits. They considered
numerous factors including bit design, operating conditions,
and rock mechanics. They also considered the ductility of the
rock previously introduced by Warren (1987) and considered
it a highly influencing factor. They did not consider the chip
hold down effect.

Bilgesu et al. (1997) generated data from drilling simulator
including WOB, RPM, pumping rate, formation hardness and
bit type to eliminate any errors contribution. They concluded
that this ANN technique can be used to predict the ROPwith a
very good accuracy even in the absence of some parameters.
Fear (1999) used homogeneous data sets acquired from mud
logs, bit characteristics, geological properties, and drilling op-
erating parameters. He designed procedures to be done and
recommended them to reach an optimized ROP during field
operation.

Rumzan and Schmitt (2001) studied the effect of wellbore
pressure and rock strength on ROP. They concluded that as the
wellbore pressure increases, the ROP will decrease. Hareland
et al. (2010) developed a new simple ROP model using labo-
ratory data observed using roller cone bits. Then, they used it
to estimate the unconfined rock strength. Wu et al. (2010)
continued to study extensively the effect of some parameters
including rock type, inserts type, and bit wearing on the
resulting ROP.

Jahanbakhshi et al. (2012) developed the ANN model to
predict the ROP using field data. They considered a wider
range of parameters including formation type, its correspond-
ing mechanical properties, hydraulics, bit type, WOB, and
RPM to predict more precise ROP. Kowakwi et al. (2012)
modifiedWarren’s model for the roller cone bits by integrating
terms that represent bit hydraulic, chip hold down effect, and
bit wearing. They eliminated Warren’s assumption of perfect
cleaning. This allowed better estimation of the ROP operating
under real conditions.

Elkatatny (2017) constructed an ANN to estimate the ROP.
They mainly included the mud properties to construct the
network in a more proper manner. The resulted ROP by this
network was obviously improved which explicitly proved the
dependency of the ROP onmud properties. Bezminabadi et al.
(2017) developed a new model to estimate the ROP using
multiple non-linear regression as well as constructing ANN.
They concluded that the ANN technique gives more precise
results than multiple non-linear regression model.

The objective of this paper is collecting the mud properties
and the drilling variables (WOB, RPM, T, Q, P, and UCS) to
build a new ROPmodel based on ANN using field data. ANN
was combined with the self-adaptive differential evolution
optimizing method to determine the best combination of
ANN architecture. A new empirical correlation for ROP will
be developed based on the weights and biases of the optimized
ANN model.

Artificial intelligence

Arabjamaloei and Shadizadeh (2011) stated that ANN is a
computational technique, which is obtained from the con-
struction features of biological neural networks. Schalkoff
(1997) illustrated that ANN consists of neurons, where each
neuron has a given input or output and they are connected
together to form the network. A normal ANN consists of an
input layer, some hidden layers, and an output layer. Every
neuron of one layer is linked to every neuron in the following
layer. Every connection has a related weight (Haykin 1998).

Ali (1994) explained that the relationship between the neu-
ron and the source is controlled by the weights and the biases
which are utilized also to monitor the input parameters. To
overcome the common issue of over-fitting and under-fitting,
the optimization process is very important to select the

Fig. 1 Relative importance of the
mechanical and fluid parameters
with ROP for well 1
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number of neurons and the number of hidden layers (Haykin
1998, Aalst et al. 2010).

Lippmann (1987) and Jain et al. (1996) illustrated that the
ANN should be trained first to build the model and then the
developed model can be assessed using the weights and biases
of the developed model using a new data set which was not
seen during the training process.

Recently, artificial intelligence techniques are extensively
applied in the petroleum industry especially in predicting the
well or field performance. Akcayol and Sagiroglu (2007) de-
veloped a neuro-fuzzy controller for tuning the output voltage
of transformer rectifier units. Aguilar et al. (2009) developed an
automated system for artificial gas lift wells for management
abnormal situation. He (2009) developed an accurate neural-
based predictive control algorithm for online control of a force
acting on industrial hydraulic actuators. Isa and Rajkumar
(2009) developed a support vector machines (SVM) system
to predict the loss of the wall thickness of the pipeline.

AlAjmi et al. (2015) predicted the choke performance using
an artificial neural network (ANN). Alarifi et al. (2015) estimat-
ed the productivity index for oil horizontal wells using ANN,
functional network, and fuzzy logic. Chen et al. (2015) applied
neural network and fuzzy logic to evaluate the performance of
inflow control device (ICD) in a horizontal well. Elkatatny et al.

(2016, 2017) applied the artificial neural network (ANN) com-
prehensively to determine the permeability of heterogeneous
reservoir and to estimate the rheological properties of drilling
fluids based on real-time measurements. Van and Chon (2017a,
2017b) evaluated the performance of CO2 flooding using arti-
ficial neural network techniques. They developed ANNmodels
for determining oil production rate, CO2 production, and gas oil
ratio (GOR). Choubineh et al. (2019) developed a new ANN
model for minimum miscibility pressure of varied gas compo-
sitions over a wide range of conditions. Zhang et al. (2018)
concluded that experimental and simulation results confirmed
the accuracy and the ability of the developed ANN approach in
predicting the real-time tidal level.

Wang et al. (2018) proposed a model that can be used to
predict the rock properties from the mechanical drilling param-
eters on a real time. Karakul (2018) concluded that the
polymer-based drilling fluid yields a wellbore stability better
than bentonite- or KCL water-based drilling fluid. Khandelwal
and Singh (2011) developed an ANN model to estimate the
elastic rock properties of schistose rocks such as static Young’s
modulus and static Poisson’s ratio using compressive and
tensile strength. Elkatatny et al. (2018a, 2018b) stated that
the static Young’s modulus can be predicted based on log data
using the ANN or regression technique with high accuracy.

Fig. 2 Relative importance of
combined parameters with ROP
for well 1

Table 1 Statistical parameters of the training data (1334 data points)

Statistical parameter Q, gpm RPM WOB, klbf Torque, klbf-ft SPP, psi Density, pcf PV, cP UCS, psi ROP, ft/h

Minimum 617 68 4.50 11 956 76.6 20 21,000 3.85

Maximum 1172 129 54.39 40 3577 78.4 27 40,000 122.20

Mean 1066.30 117.32 29.35 29.17 2909.09 77.15 23.45 28,214.45 76.10

Standard deviation 97.29 10.77 10.50 3.55 417.90 0.20 2.52 6530.12 25.23

Kurtosis 2.50 2.35 − 0.90 − 0.20 0.61 11.92 − 1.54 − 1.03 − 0.68
Skewness − 1.36 − 1.33 0.51 − 0.25 − 0.84 3.16 0.19 0.65 − 0.08
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The self-adaptive differential evolution was introduced by
Qin et al. (2009) to overcome the common issues of the dif-
ferential evaluation (DE), Storn and Price (1997). The advan-
tage of the SaDE is its ability to self-adapt to the control
parameters and mutation strategies based on the learning
experience in the previous algorithm generations to obtain
better results. Moussa and Awotunde (2018) developed a
modified SaDE that can be used for the optimization in differ-
ent engineering problems.

The objective of this study is to apply the SaDE optimiza-
tion technique to determine the best combination of ANN
variables to be able to predict the ROP with a high accuracy
using drilling mechanical parameters and fluid properties.

Methodology

The optimization of the ANN variable parameters is very dif-
ficult and requires a long time. The main parameters of ANN
that need optimization are the number of hidden layers, the
number of neurons in each layer, the training function and
transferring function, and the training over testing ratio. To
overcome this issue, an automated system should be developed
to determine the best combination of these parameters in order
to get a high accuracy in terms of R and AAPE. The main goal
of this study is to determine the ROP as a function of flow rate
(Q), standpipe pressure (P), RPM, WOB, T, UCS, D, and PV.

The optimization process will continue until the perfor-
mance of the proposed SaDE-ANN model is acceptable (the
values of estimated data from the model are very close to the
corresponding experimental data).

After training the SaDE-ANN model on the randomly se-
lected training data, the model is validated on unseen testing
data, then a new empirical correlation is extracted to estimate
ROP based on Q, P, RPM, WOB, T, UCS, D, and PV.

Data description

Data was collected from a vertical section (12.025″ hole sec-
tion). The selected section consists of four carbonate layers
with different uniaxial compressive strength values. The dril-
ling fluid properties were collected from the daily drilling

Fig. 3 ROP prediction using SaDE-ANN model for training data (1334
data points)

Fig. 4 Coefficient of
determination between actual and
predicted ROP using the SaDE-
ANN model
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report and the drilling mechanical properties were collected
from the well summary report. Data from two wells was col-
lected. Well 1 was used to build the Sa-ANN model (training
and testing) and the data from well 2 was used to evaluate the
accuracy and the generalization of the developed model.

To build the artificial intelligence model, well 1 data was
used. Figure 1 indicates that the rate of penetration is a strong
function of Q, RPM, T, WOB, and P. The R is 0.92, 0.91, 0.86,
0.85, 0.85 forQ, RPM, T, WOB, and P, respectively. ROP has a
moderate function of uniaxial compressive strength (UCS); R is
− 0.52. The ROP had a strong function of mud density (R = −
0.85) and the same result was obtained for plastic viscosity (R =
− 0.74), Fig. 1. The negative sign of R indicated that increasing
the mud density and plastic viscosity will reduce the ROP.

In order to reduce the number of input parameters, the ratio
of T/UCS was taken as one parameter, horsepower (HP = the
product of pressure and flow rate) was used to express the

input of pressure and flow rate, and the ratio of D/PV was
used as one input. Figure 2 shows that ROP has an R of
0.65 and 0.56 for HP and T/UCS ratio, respectively. ROP
has an R of 0.70 for D/PV.

Building the SaDE-ANN model

Data from well 1 was used to build the SaDE-ANN model
(2223 data points). The main idea of compiling SaDE with
the artificial neural network is to optimize the variable param-
eters of the ANN model automatically. The optimization pro-
cedure will result in the best combination of the ANN param-
eters, which results in the highest correlation coefficient (R) and
lowest AAPE. The ANN parameters that should be optimized
and compiled are the number of hidden layers, the number of
neurons in each layer, and the training function and transferring
function. The advantage of the proposed model is its ability to
automatically determine the training over testing ratio, which
requires a huge amount of time to be determined if ANN is used
without SaDE. The main input parameters are RPM, WOB/d,
HP, T/UCS, and D/PV, while the output parameter is ROP.

To train the model, a normalization should be done for both
the input and output parameters. The following equations
were used to normalize the parameters and they were extract-
ed from the ANN model:

RPMn ¼ 0:016 RPM−68ð Þ−1 ð1Þ

WOB
d

� �
n
¼ 0:638

WOB
d

−0:263
� �

−1 ð2Þ

T
UCS

� �
n
¼ 1343:98

T
UCS

−0:0002
� �

−1 ð3Þ

HPn ¼ 0:00095 HP−344:134ð Þ−1 ð4Þ
D
PV

� �
n
¼ 1:212

D
PV

−2:421
� �

−1 ð5Þ

The optimization process confirmed that the best ANN
structure is 5-30-1; where the five input parameters were used

Table 2 Statistical parameters of the unseen testing data (889 data points)

Statistical parameter Q, gpm RPM WOB, klbf Torque, klbf-ft SPP, psi Density, pcf PV, cP UCS, psi ROP, ft/h

Minimum 683 75 5.03 12.86 1493 76.6 20 21,000 3.9

Maximum 1172 129 53.89 39.19 3577 78.4 27 40,000 121.1

Mean 1065.27 117.23 29.90 29.22 2913.71 77.14 23.60 28,559.09 75.29

Standard deviation 91.74 10.15 10.68 3.55 395.79 0.21 2.54 6544.23 24.99

Kurtosis 2.42 2.30 − 1.03 − 0.07 0.04 12.10 − 1.60 − 1.15 − 0.63
Skewness − 1.30 − 1.27 0.41 − 0.38 − 0.70 3.08 0.06 0.52 − 0.07

Fig. 5 ROP prediction using SaDE-ANN model for testing data (889
unseen data points)
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in the input layers such as RPM, WOB/d, T/UCS, D/PV, and
HP. Thirty neurons were selected for the first hidden layer and
one output parameter (ROP) representing the output layer. The
data was divided into 60% training and 40% testing. Bayesian
regularization backpropagation (trainbr) was the optimum
training function and the perfect transforming function was
Logarithmic sigmoid (logsig). Table 1 lists the statistical pa-
rameters of the training data (1334 data points).Q ranged from
617 to 1172 gpm. Revolutions per minute ranged from 68 to
129 rpm.WOB ranged from 4.50 to 54.39 klbf. T ranged from
11 to 40 klbf-ft. P ranged from 956 to 3577 psi.D ranged from
76.6 to 78.4 pcf. PV ranged from 20 to 27 cP. UCS ranged
from 21,000 to 40,000 psi, and ROP ranged from 3.85 to
122.20 ft/h.

Figure 3 shows that by using the optimized combination of
the SaDE-ANN model parameters, the ROP was predicted by

a high precision. The R was 0.98 and the AAPE was 5% for
the training data. Figure 4 shows that the coefficient of deter-
mination (R2) was 0.97 when the measured and predicted
ROP values are plotted.

For testing the developed ROPmodel, 889 unseen data was
used. Table 2 shows the statistical analysis of the testing data.
Q ranged from 683 to 1172 gpm. Revolutions per minute
ranged from 75 to 129 rpm. WOB ranged from 5.03 to
53.89 klbf. T ranged from 12.86 to 39.19 klbf-ft. P ranged
from 1493 to 3577 psi. D ranged from 76.6 to 78.4 pcf. PV
ranged from 20 to 27 cP, UCS ranged from 21,000 to
40,000 psi, and ROP ranged from 3.85 to 122.20 ft/h.
Figure 5 shows that the developed SaDE-ANN model was
able to predict the ROP with an R of 0.98 of and an AAPE
of 5.6%. This result confirmed the accuracy of the developed
SaDE-ANN ROP model.

Table 3 Weight and biases for the hidden layer of SaDE-ANN-based ROP model

i w1i;1 w1i;2 w1i;3 w1i;4 w1i;5 b1i w2i

1 − 4.44 − 0.51 1.07 − 2.38 1.35 1.28 5.20

2 4.97 − 5.41 − 0.36 − 0.45 − 1.14 3.57 3.91

3 − 3.82 3.09 − 3.91 − 1.79 − 0.98 1.14 2.44

4 − 3.54 − 2.95 − 0.50 3.57 − 5.76 1.56 − 5.10
5 − 3.47 − 4.52 − 0.23 − 6.64 − 3.85 1.31 − 1.51
6 2.22 3.59 1.00 − 3.70 5.39 − 0.29 − 3.45
7 14.76 6.68 1.43 − 4.18 1.32 − 0.55 − 4.86
8 − 0.41 1.25 − 3.61 − 4.61 1.66 1.00 − 1.32
9 − 3.22 2.75 3.91 − 3.22 − 8.91 5.63 − 0.48
10 − 3.43 − 1.28 2.26 − 2.72 1.90 1.45 − 3.91
11 − 4.62 0.71 4.11 2.36 0.03 − 1.87 − 1.99
12 − 3.76 6.73 − 5.86 9.16 − 3.99 1.01 − 0.32
13 13.60 5.74 0.49 − 3.73 0.77 − 0.87 5.23

14 − 0.85 − 2.94 − 1.12 2.65 0.78 0.02 − 5.10
15 − 7.18 0.21 7.08 − 3.01 6.71 − 1.11 0.65

16 − 7.01 − 1.25 − 2.47 − 7.88 2.51 0.23 3.16

17 − 0.63 − 4.62 − 1.70 − 6.02 − 6.33 − 0.69 1.21

18 − 0.01 − 4.29 − 3.16 3.65 2.81 − 0.53 2.44

19 − 5.64 5.32 1.75 − 0.07 2.15 − 2.81 3.80

20 1.59 − 2.57 − 4.74 − 1.00 1.39 0.35 − 3.65
21 − 4.64 − 3.00 − 0.44 4.30 − 5.77 2.75 3.17

22 − 5.68 − 7.89 − 3.34 2.40 − 5.30 − 5.27 − 0.83
23 3.29 − 3.69 2.57 1.22 2.18 − 1.01 2.41

24 − 8.93 − 2.80 − 3.91 − 10.58 6.88 − 0.40 − 1.79
25 − 5.53 − 3.01 1.21 − 4.14 1.90 3.28 1.27

26 − 8.79 − 8.62 − 1.69 0.29 − 4.16 − 4.01 1.11

27 6.02 − 9.32 − 5.67 − 8.03 − 2.34 5.07 1.19

28 0.80 − 2.24 − 4.34 0.39 1.99 − 2.48 − 3.94
29 0.20 − 1.77 − 3.27 0.05 1.52 − 1.14 5.86

30 − 4.04 − 0.97 − 1.50 − 3.26 0.24 − 0.07 − 3.88
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Development of a new ROP empirical
correlation

Using the weights and biases of the optimized SaDE-ANN
model, a new empirical correlation for ROP prediction was
developed. Equation 6 can be used to find the ROP in normal-
ized form and Eq. 8 can be used to determine ROP in the de-
normalized.

ROPn ¼ ∑N
i¼tW2i

1

1þ e−X i
þ b2 ð6Þ

X i ¼ 1

1þ e− w1i;1RPMnþw1i;2
WOB
dð Þnþw1i;3

T
UCSð Þnþw1i;4

D
PVð Þnþw11;5 HPð Þnþb1ið Þ

ð7Þ

ROP ¼ ROPn þ 1

0:01689
þ 3:6 ð8Þ

Table 3 lists the weights (W1, W2) and biases (b1, b2) that
are used in Eqs. 6 and 7.

To assess the accuracy of the proposed equation, the unseen
data was used. Figure 6 shows that the R2 was 0.96 when
plotting the actual and predicted ROP for unseen data. The

AAPE was around 5.6% confirming the high accuracy of the
developed ROP equation (Eq. 8).

For further validation of the developed ROP correlation,
well 2 data were used (2651 data points). Table 4 lists the
statistical parameters for well 2 data. Q ranged from 793 to
1170 gpm. RPM ranged from 98 to 127 rpm. WOB ranged
from 4.6 to 47 klbf. T ranged from 11.5 to 26 klbf-ft. P ranged
from 1187 to 2568 psi. D ranged from 76.6 to 78.3 pcf. PV
ranged from 20 to 27 cP, UCS ranged from 21,000 to
40,000 psi, and ROP ranged from 8.53 to 49.12 ft/h.

Figure 7 shows the high accuracy of the ROP prediction
using that of Eq. 8. The AAPE was 4.3% and the R was 0.92.

Comparison with previous models

The developed ROP correlation was compared with three pre-
vious ROP models (Maurer (1962), Bingham (1965), and
Bourgoyne and Young’s (1974)).

Maurer (1962) derived a ROP formula (Eq. 9) for roller
cone bits assuming perfect hole cleaning conditions. He as-
sumed that the applied WOB was far larger than the threshold

Fig. 6 Prediction of ROP using
Eq. 8 for the unseen data

Table 4 Statistical parameters of the validation data (2651 data points of well 2)

Statistical parameter Q, gpm RPM WOB, klbf Torque, klbf-ft SPP, psi Density, pcf PV, cP UCS, psi ROP, ft/h

Minimum 793 98 4.6 11.5 1187 76.7 20 21,000 8.53

Maximum 1170 127 47 26 2568 78.3 27 40,000 49.12

Mean 990.63 151.58 25.82 19.16 2078.95 76.19 24.10 29,831.38 26.76

Standard Deviation 102.65 13.84 12.08 2.47 281.69 0.95 3.57 6897.41 4.55

Kurtosis − 0.74 1.27 − 1.40 1.06 0.20 451.36 − 1.79 − 1.43 2.71

Skewness − 0.79 − 0.89 0.16 − 0.54 − 1.03 − 16.89 − 0.18 0.23 − 0.67
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WOB required by the bit teeth to penetrate through the rock
which is only valid in the soft formations. Figure 7 shows that
the Maurer model underestimated the ROP values from the top
of the formation to 2000 ft of the formation section. While the
Maurer model overestimated the ROP of the lower part of the
intermediate section which has a higher compressive strength,
the accuracy of ROP prediction was very low; R was 0.04.

ROP ¼ k
RPM* WOB2

d2* UCS2
ð9Þ

Bingham (1965) considered the ROP as a function inWOB
and RPM and he integrated the bit diameter into his formula

(Eq. 10). He neglected the threshold WOB required for pene-
tration. He also agreed on the non-linear relation between
ROP and WOB but continues that the WOB exponent is de-
termined experimentally. UCS is not included in the Bingham
model, which resulted in a very low accuracy for predicting
ROP (Fig. 7). The R was 0.06 and the AAPE was 11%.

ROP ¼ k*
W
d

� �a*

RPMb ð10Þ

Bourgoyne and Young’s (1974) model (Eq. 11) was used to
estimate the rate of penetration. Figure 7 shows the inaccuracy
of this model for predicting the ROP; the correlation

SaDE-ANN ROP Equation Maurer Model Bingham Model Bourgoyne and Young Model 
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Fig. 7 ROP prediction using developed ROP (Eq. 8) correlation and different models for well 2

Fig. 8 Comparison between the
developed SaDE-ANN equation
with previous models
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coefficient was 0.41 and the APPE was 12%. This model
ignored the rock strength and the mud properties, which
yielded a low accuracy.

d
dt

ROPð Þ ¼ e a1þ∑8
i¼2aixið Þ ð11Þ

In terms of AAPE, Fig. 8 confirms that the developed
SaDE-ANN correlation outperformed the three models for
predicting the ROP. The Maurer model yielded 43%, the
Bingham model yielded 11%, and Bourgoyne and Young’s
model yielded 12%, while the SaDE-ANN correlation yielded
4.3%.

Conclusions

The SaDE technique was applied to optimize the ANN vari-
able parameters and determine the best combination of these
variables. The obtained results showed that ROP has a strong
relationship with the drilling variables RPM,WOB, T, and HP,
while ROP is a moderate function of UCS. The optimized
ANN structure is 5-30-1; where five input parameters were
used in the input layer, the optimized number of neurons was
30, and ROP as the output parameter exists in the output layer.
The new ROP-ANN model can predict ROP with a 0.98 cor-
relation coefficient and an AAPE of 5%. The developed ROP
empirical correlation outperformed the previous ROPmodels.
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Nomenclature ROP, rate of penetration, ft/h; UCS, uniaxial compres-
sive strength, psi; D, mud density, pcf; PV, plastic viscosity, cP; d, bit
diameter, in.; WOB, weight on bit, klbf; T, torque, klbf-ft; P, standpipe
pressure, psi;Q, flow rate, gpm; RPM, revolutions per minute;HP, horse-
power, HP; R, correlation coefficient; R2, coefficient of determination;
AAPE, average absolute percentage error; TVD, true vertical depth, ft;
SaDE, self-adaptive differential evolution
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