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Abstract
Orange peel biochar (OPb) was used as an adsorbent to investigate its potential in the removal of copper (Cu2+) and cadmium
(Cd2+). The adsorption data were modeled using different isotherm models and reaction kinetics after optimizing reaction
parameters such as solution pH, equilibrium contact time, OPb dose, and initial metal concentrations. Scanning electron micros-
copy images showed porous and irregular surfaces inOPb prior to the sorption process. Energy dispersive X-ray results depicted
successful adsorption of the metal ions. An equilibrium time of 30min was estimated for low initial metal ion concentrations (25–
50 mg L−1). Metal adsorption and removal efficiency increased with an increase in the initial solution pH from 2.5 to 5.5. The
adsorption capacity increased as the initial metal concentration varied from 25 to 200 mg L−1; the removal efficiency decreased
from 99% to about 41% and 52% for Cu2+ and Cd2+, respectively. A decrease in adsorption capacity with an increase in metal
removal efficiencywas observed by increasing theOPb dose from 0.2 to 1.4 g. Langmuir and Temkin isothermmodels best fit the
adsorption data for Cu2+ and Cd2+, with a coefficient of determination (R2) value of 0.85. Other isotherm models fit the
adsorption data in the following order: Temkin > D-R > Halsey and Freundlich > H-J and Halsey > D-R > Langmuir >
Freundlich > H-J, respectively. The chemisorptive nature of OPb for the adsorption of both ions was suggested based on R2

values close to unity (1.0) in a pseudo-second-order kinetic model.
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Introduction

The presence of heavy metals in drinking water is a serious
threat to human health and the ecosystem. Rapid industriali-
zation and urbanization have resulted in elevated levels of
various heavy metals in water bodies. These metals and their

compounds are highly carcinogenic due to their non-
degradability and long-term persistence in nature.
Continuous exposure to them leads to severe disorders in an-
imals and humans such as cardiovascular diseases, cancer, and
neurological, respiratory, liver, and kidney failure (Bilal et al.
2013; Purkayastha et al. 2014; Shafiq et al. 2018). Copper
(Cu2+) and cadmium (Cd2+), which are among the most com-
monly occurring heavy metals, are of critical importance be-
cause of their use in a range of industries such as paints,
batteries, coatings, solar cells, different alloys, building con-
struction, and electrical and electronic items for the prepara-
tion of different useful end products. Untreated effluent re-
leased into the environment from these industries possesses
higher amounts of Cu2+ and Cd2+ that pollute the natural eco-
system. These metals can affect the ecosystem even after sev-
eral years of their introduction into the environment (Ahmad
et al. 2018). Therefore, the high levels of these metals in water
reservoirs are a threat to living organisms in the oceans, and to
animals, plants, and human health. Therefore, it is crucial to
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develop cost-effective, eco-friendly, and sustainable remedia-
tion technologies to remove these metals from wastewater as
well as to treat metal-contaminated wastewater before
discharging it into natural water bodies (Barakat 2011).

So, far numerous technologies, like ion exchange,
electrocoagulation membrane filtration, and desalination,
have been used to remove heavy metals from inorganic efflu-
ents (Mohsen et al. 2003; Kumar et al. 2004, 2010;
Alkhashman 2005; Mavrov et al. 2006; Lin et al. 2009; Kim
and Choi 2010; Danilchenko et al. 2011; Dermentzis et al.
2011). However, these techniques are considered inefficient
to counter heavy metal contamination mainly because of their
high cost, high energy requirements and reagent consumption,
and generation of toxic sludge in addition to the incomplete
removal of heavy metal ions (Krishnani et al. 2008). Among
various remediation technologies, adsorption is the most com-
monly used and a widely accepted technique. The adsorption
technology, using different adsorbents, has been proved as a
very promising technique for removing heavy metals and of-
fers significant advantages over the conventional treatment
processes due to lower costs, profitability, availability of raw
materials, ease of operation, high efficiency, and suitability to
a wide variety of industrial metal-containing effluents
(Volesky and Holan 1995). Adsorbents such as plant materials
and activated carbon are being used for the adsorption of
heavy metals (Han et al. 2006; Srivastava et al. 2008; Tan
and Xiao 2009; Ebrahimi et al. 2013; Akar et al. 2013;
Amin et al. 2017a).

Biochar-based materials have recently been introduced as
low-cost, eco-friendly, and efficient green-sorbents for heavy
metal removal (Ahmad et al. 2017). Biochar is a black, solid,
and stable porous carbonaceous material possessing a large
surface area and functional groups and is produced by pyrol-
ysis of different types of waste biomass (Ahmad et al. 2017).
Biochar has been successfully used for heavy metal removal
because of its distributed pore size, high surface area, higher
adsorption capacities, ease of preparation, and presence of
several functional groups (Ahmad et al. 2014). Researchers
have suggested an optimum temperature higher than 500 °C
for biochar production from agricultural wastes due to a high
surface area and porosity in addition to the stable carbon con-
tents (Karim et al. 2015; Tag et al. 2016).

Reusing and recycling the agricultural and food wastes and
converting into biochar can provide low-cost and efficient sor-
bents for the remediation of a range of environmental contam-
inants. For instance, biochar produced from agriculture and
food wastes such as banana peels, rice straw, corn straw, rice
husk, and dairy manure are considered as low-cost sorbents and
have exhibited excellent results in heavy metal removal from
wastewaters (Cao et al. 2009; Tong et al. 2011; Xu et al. 2013;
Chi et al. 2017; Amin et al. 2017b). Likewise, orange peel is
also an agricultural as well as a food waste which is abundant in
various parts of the world, as 75% of total citrus production

consists of oranges (Rafiq et al. 2016). Orange peel mainly
contains cellulose, hemicellulose, and pectin in higher propor-
tions (Chen and Chen 2009) Therefore, it was hypothesized that
pyrolyzing the orange peel waste biomass may produce effi-
cient and low-cost biochar with a higher sorption capacity
which can subsequently be applied for Cu2+ and Cd2+ removal
from aqueous solutions. Thus, the purpose of this study was to
explore the potential applicability of preparing biochar of an
agro-industrial waste obtained from orange peels and using it
as a bio-sorbent material for Cu2+ and Cd2+ removal from aque-
ous solutions in batch experiments.

Materials and methods

The peel of orange fruit (Citrus reticulata) was used as the
original material for the preparation of biochar. The fruit peels
of oranges were collected from a local plant in Riyadh, Saudi
Arabia, and the pyrolyzed product of the orange peels, i.e., its
biochar (OPb), was prepared at 800 °C by the method used for
preparing banana biochar, as described in a previous study
(Amin et al. 2017b).

All chemicals used were of analytical reagent grade and
appropriate amounts of copper sulfate pentahydrate (CuSO4·
5H2O; AR grade Merck, Germany) and cadmiumnitrat-4-
hydrate (Cd (NO3)2·4H2O; AR grade Merck, Germany) were
added in distilled-deionized water for preparing stock solu-
tions of Cu2+ and Cd2+, respectively. Preservation of the stock
solution and its dilutions to prepare metal solutions with dif-
ferent initial concentrations and pH adjustment was in accor-
dance with a previously published report (Amin et al. 2017a).

The metal sorption performance of OPb for Cu
2+ and Cd2+

in batch mode was performed by suspending the appropriate
amount ofOPb in 100 mL of metal solutions with the required
initial concentrations. Suspensions were kept under constant
agitation (220 rpm) and temperature (30 °C) for a specified
contact time. The supernatant solutions after centrifuge and
filtration were analyzed using flame atomic absorption spec-
trometry (FAAS, Thermo Scientific, ICE 3000 Series,
Cambridge, UK) and the quantity of Cu2+ and Cd2+ adsorbed
onto OPb at equilibrium and the removal efficiency (R, %)
was evaluated using the equations given below:

qe ¼ C0−Ceð Þ V
M

ð1Þ

R ¼ C0−Ceð Þ
Co

� �
100 ð2Þ

where qe is the adsorbed equilibrium concentrations of Cu2+

or Cd2+ on to OPb (mg g−1), V and M are the volume of the
solution (L) and mass of OPb (g), respectively, while Ce and
Co represent the equilibrium and initial metal concentrations
(mg L−1), respectively.
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Results and discussion

Characteristics of adsorbent material

Scanning electron microscopy (SEM, TESCAN VEGA 3
SBU USA) images of the OPb before and after Cu2+ and
Cd2+ sorption are shown in Fig. 1.

The OPb prior to the sorption process showed porous and
irregular surfaces (Fig. 1a) which helped the biochar to sorb
metal ions onto the surfaces, as shown in Fig. 1b and c (Mary
et al. 2016). The white particles on the biochar surfaces might
be due to the sorption of Cu2+ and Cd2+ ions on the surfaces
and pores (Fig. 1b and c, respectively). Hence, the presence of
Cu2+ and Cd2+ on the surface of biochar materials suggested
the occurrence of some physiochemical interactions between
the functional groups present on the surface of the adsorbent
and the metals ions (Suliman et al. 2016). These results were
further supported by performing an energy dispersive X-ray
(EDX) analysis (Fig. 2).

On a percent weight basis, the main components of OPb
before the sorption process, as indicated in Fig. 2a, included
carbon (C, 36.37%), oxygen (O, 46.99%), magnesium (Mg,
1.29%), silicon (Si, 0.61%), potassium (K, 9.54%), and calcium
(Ca, 5.20%) (Budai et al. 2014). The changes in the proportions
of these components in post-sorption samples are shown in
Fig. 2b and c. The O/C molar ratios were calculated by using
the C and O percent weight, which is used to determine the
degree of aromaticity and carbonization degree of biochar (Ma

et al. 2016). Hence, these EDX results confirmed that Cu2+ and
Cd2+ ions were adsorbed successfully on the surface of OPb
due to strong physiochemical interactions (Kim et al. 2012).

The Fourier–transform infrared spectroscopy (FTIR) using
a ZnSe-attenuated total reflection (ATR) crystal with a Bruker
Alpha-E spectrometer was used to find the active functional
groups on the surface of the biochar responsible for metal ion
adsorption. The analyses of these spectra were based on pre-
viously published data (Kloss et al. 2012; Claoston et al.
2014).

Abrupt changes in the FTIR spectra were observed as the
OPb was charred at 800 °C (Fig. 3). It has been reported
previously that the number of bands representing the function-
al groups disappeared as the charring temperature increased to
700 °C or above (Yuan et al. 2011; Jindo et al. 2014; Usman
et al. 2016). The most prominent peak in orange peel biomass
was seen at 1017.72 cm−1, which represented SiO2 and was
lost inOPb (Jindo et al. 2014). Likewise, a band describing C–
O also disappeared during the pyrolysis process (Jindo et al.
2014; Jouiad et al. 2015). New stretching bands appeared at
1417.46 and 858.64 cm−1 in OPb after sorption of Cu2+ and
Cd2+ ions, respectively. The new bands in the OPb sample
after Cd2+ adsorptionwere ascribed as C=C and C–H aromatic
groups. These were more intense as compared to theOPb after
the Cu2+ adsorption, suggesting that the interactions between
Cd2+ ions and the OPb surface were stronger than the interac-
tions between Cu2+ ions and the OPb surface (Lammers et al.
2009; Inyang et al. 2012, 2016).

(a) (b) (c)

Fig. 1 SEM and EDX spectra of OPb before (a) and after Cu2+ (b) and Cd2+ (c) adsorption
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Effects of solution pH, contact time, initial metal
concentrations, and adsorbent dose

The adsorption experiments were performed in triplicate for
statistical analysis and to eliminate any experimental error.
The required amount of OPb was suspended in 50 or
100 mL conical flasks containing metal solutions of Cu2+ or
Cd2+ for obtaining the required dose of the adsorbent.

Influence of contact time

Time-series experiments were performed to find the effects of
contact time on the removal of the heavy metal ions by OPb,
as shown in Fig. 4a and b. Solution pH was kept constant at 5

± 0.5 with the OPb dose at 1.0 g. Initial metal ion concentra-
tions were maintained in the range 25–100 mg L−1 while
samples were subject to 6 h of contact time.

A rapid adsorption was observed for both the heavy metal
ions during the first 15–30 min. Thereafter, a slower rate of
adsorption was observed mainly due to a decreased or lesser
number of active sites. The maximum removal efficiency
(about 99%) of both Cu2+ and Cd2+ was attained after a con-
tact time of about half an hour at low initial metal concentra-
tions (25–50 mg L−1), as shown in Fig. 4a and b, respectively.
For high initial metal concentrations (75–100 mg L−1), an
extended equilibrium time of about 3 h was observed, follow-
ing a very slow metal uptake. An identical behavior of metal
removal was seen for both the heavy metal ions with a slightly
higher removal of Cu2+ than Cd2+.

Influence of solution pH

Adsorption process is greatly influenced by controlling the pH
of the aqueous solution (Areco and Afonso 2010). Batch tests
were performed in the pH range of 2.5–5.5 in order to recog-
nize the influence of pH, as shown in Fig. 5. A 1.0 g of OPb

was stirred for a contact time of 30 min using 50 and
75 mg L−1 of Cd2+ and Cu2+, respectively.

The initial solution pH is critical for metal biosorption
(O’Connell et al. 2008; Al-Ghouti et al. 2010), which is also
evident from results of the current study where the maximum
metal uptake was seen at a pH value of 5.0. The metal removal
efficiency increased from 62 to 84% and from 61 to 96% for
Cu2+ and Cd2+, respectively, as the initial solution pH increased
from 3.5 to 5.5 (Fig. 5). A very low adsorption capacity in a
strong acidic environment (pH 2.5) could be ascribed to the

OP
b

OP
b

OP
b

Fig. 3 FTIR spectra of orange peels waste biomass and OPb with and
without adsorption of Cu2+ and Cd2+

(a) (c)(b)
Element Weight % Atomic %

C 36.37 47.22
O 46.99 45.79
Mg 1.29 0.83
Si 0.61 0.34
K 9.54 3.81
Ca 5.2 2.02
Totals 100

Element Weight % Atomic %

C 67.52 78.69
O 21.26 18.6
S 1.09 0.48
Cu 10.13 2.23
Totals 100

Element Weight % Atomic %

C 65.11 79.93
O 18.8 17.33
Ca 2.67 0.98
Cd 13.42 1.76
Totals 100

Fig. 2 EDX spectra and elemental weight % tables of OPb before (a) and after Cu2+ (b) and Cd2+ (c) adsorption
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competition between the divalent metal ions on the sorption
sites of OPb and excess hydrogen (Al-Ghouti et al. 2003). At
high pH (5.0 and above) values, the decreased positive surface
charge density along with the availability of more negative
charges results in a higher removal efficiency (Chen and Lin
2001). The precipitation of hydroxides of the metals at high pH
(6.0 and above) (Snoeyink and Jenkins 1980) makes true

biosorption impossible, thus suggesting that the pH value of
5.5 was suitable for the adsorption experiments in this study.

Influence of initial metal concentrations

The adsorption experiments with varying initial metal concentra-
tions (25–200mg L−1) were performed using fixed values ofOPb

(a)

(b)

Fig. 4 Changes in removal
efficiency and adsorption
capacity of Cu2+ (a) and Cd2+ (b)
with contact time

Fig. 5 Changes in adsorption
capacity and removal efficiency
of Cu2+ and Cd2+ with solution
pH
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(1.0 g), equilibrium contact time (30min), and solution pH (5.5 ±
0.5). Changes in adsorption capacity ofOPb and removal efficien-
cy of Cu2+ and Cd2+ are presented in Fig. 6a and b, respectively.

As expected, higher initial concentrations increased the
sorption rate and the adsorption capacity increased sharply
in the beginning (up to about 75–100 mg L−1). However, a
slower uptake was seen further up to 200 mg L−1. The opti-
mum adsorption capacity for Cu2+ and Cd2+ was estimated as
82 and 105mg g−1, respectively, when using the highest initial
metal concentration (200 mg L−1), probably due to the higher
interaction between metal ions and OPb (Das and Guha 2007;
Rathinam et al. 2010). Percent removal, however, was highest
(99%) at the lowest used initial metal concentrations
(25 mg L−1) but decreased almost linearly by increasing the
initial metal concentrations and reached about 41 and 52% for
Cu2+ and Cd2+, respectively, at the highest used initial metal
concentration (200 mg L−1). This could be attributed to rapid
saturation of active sorption sites on the surface ofOPb at high
initial metal concentrations (Malkoc et al. 2006; Bhaumik
et al. 2013; Al-Homaidan et al. 2014; Putra et al. 2014).

Influence of adsorbent dose

The effect of differentOPb doses (0.2 to 1.4 g) was studied at a
fixed contact time (30 min), pH (5 ± 0.5), and Cu2+ and Cd2+

concentrations of 75 and 50 mg L−1, respectively (Fig. 7).

Results presented in Fig. 7 suggest a decrease in the adsorp-
tion capacity while the removal efficiency of both heavy metal
ions increased almost linearly by increasing theOPb concentra-
tion. For Cd2+, however, 1.0 g of OPb can be considered opti-
mum for maximum adsorption capacity or removal efficiency
(Fig. 7) due to the unsaturation of adsorption sites (Huang et al.
2011) by increasing the adsorbent dose at fixed concentrations,
i.e., 50 mg L−1. The results could be attributed to the increased
number of adsorbent particles, active sites or functional groups
surrounding themetal cations, and greater availability of surface
resulting in stronger metal cation-biochar interactions (Ofomaja
and Ho 2007; Uzunoğlu et al. 2014).

Adsorption kinetics and isotherm models

Adsorption kinetics

Adsorption kinetics of both heavy metal ions on to OPb at
various initial concentrations of Cu2 and Cd2+ (25–
100 mg L−1) were modeled using pseudo-first-order (Eq.
(3)) and pseudo-second-order (Eq. (4)) kinetic models,
which comprise of the entire adsorption process including
the external film and internal particle diffusion (Özacar and
Şengil 2003; Liu and Ren 2006; Crini et al. 2007; Greluk
and Hubicki 2010). A time range between 1 min and 6 h
was selected at fixed pH (5 ± 0.5) and 1.0 g of OPb dose.

(a) (b)
Fig. 6 Changes in metal
adsorption capacity of both heavy
metal ions with initial metal
concentration

Fig. 7 Changes in removal
efficiency and adsorption
capacity of Cu2+ and Cd2+ with
adsorbent dose
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log qe−qtð Þ ¼ logqe−
k1

2:303
t ð3Þ

t
qt

¼ 1

k2q2e
þ 1

qe
t ð4Þ

h ¼ k2qe
2 ð5Þ

where qt is the amount of metal adsorbed at time t (mg g−1),
and k1 (hr

−1) and k2 (g mg−1 min−1) are rate constants of the
pseudo-first-order and second-order kinetic models, respec-
tively. These were calculated using the slope and intercept
values of the plot of log (qe-qt) vs. t and t/qt vs. t, respectively.
As shown in Fig. 8, a relatively poor correlation (based on R2

values) to the experimental data of both heavy metal ions was
observed, corresponding to maximum used initial Cu2+ and
Cd2+ concentrations (100 mg L−1), with the pseudo-first-order
kinetic model as compared to the pseudo-second-order kinetic
model.

On the other hand, high R2 values were seen for both heavy
metal ions at all the initial concentrations using the pseudo-
second-order model, as shown in Table 1. Table 1 also pre-
sents the values of k2, estimated adsorption capacity, and the
corresponding initial adsorption rate, h (mg g−1 min−1, Eq.
(5)), calculated in the pseudo-second-order kinetic model at
the respective initial concentrations of Cu2+ and Cd2+.

The estimated qe values showed dissimilarities in the
pseudo-first-order model (results not shown). However, qe cal

was similar to the experimental adsorption capacities (qe exp)
at the respective initial concentrations of Cu2+ and Cd2+, as
shown in Table 1. Thus, the pseudo-second-order model is
more likely to describe the kinetic behavior, indicating that
chemisorption can be considered as the rate-controlling factor
for the adsorption of the heavy metal ions on to OPb.

Equilibrium isotherm models

Equilibrium studies were further explained using adsorption
isotherms which are used to correlate the residual adsorbate
concentration at fixed temperature with that of the equilibrium
adsorption capacity (Kiran et al. 2006; Yavuz et al. 2008;

Guendy 2010). In this study, two-parameter equilibrium iso-
therms have been described using Langmuir, Freundlich,
Temkin, Halsey, Dubinin–Radushkevich (D-R), and Harkin–
Jura (H-J) isotherms. The analysis was performed using a
solution temperature of 30 °C at fixed pH (5.5 ± 0.5), equilib-
rium contact time (30 min), metal ion concentration
(200 mg L−1), and OPb dose (1.0 g).

The Langmuir isothermmodel predicts the monolayer cov-
erage of the adsorbate at a specific homogenous site within the
adsorbent (Langmuir 1918) and can be expressed using Eq.
(6) in its linearized form. The Freundlich isotherm model, on
the other hand, assumes a multilayer adsorption (Eq. (7)).

1

qe
¼ 1

qmaxKL

� �
1

Ce
þ 1

qmax
ð6Þ

logqe ¼ logKF þ 1

n
logCe ð7Þ

where qe and Ce are already defined above, qmax is the mono-
layer capacity of OPb in the Langmuir model (mg g−1), KL is
the Langmuir adsorption constant (L mg−1), 1/n is the hetero-
geneity factor that determines the intensity and feasibility of
the adsorption process in the Freundlich model, and KF is the
Freundlich constant (L g−1). The linearized plots of 1/qe vs.
1/Ce (Fig. 9a) and log qe vs. log Ce (Fig. 9b) were used to
describe the fit of the equilibrium data in the Langmuir and
Freundlich isotherms, respectively. The values of qmax and KL

in the Langmuir isotherm and 1/n and KF in the Langmuir
model, as calculated from the linearized plots, are presented
in Table 2.

The coefficient of determination (R2) for the fit of Cu2+ and
Cd2+ adsorption data was calculated as 0.95 and 0.98, respec-
tively (Table 2), reflecting the suitability of the Langmuir iso-
therm model to describe the adsorption of the heavy metal
ions on to OPb. Additionally, higher values of R

2 for both
Cu2+ and Cd2+ in the Langmuir isotherm as compared to the
Freundlich isotherm (0.79 and 0.95 for Cu2+ and Cd2+, respec-
tively, Fig. 9b) indicate suitability of the Langmuir model to
the adsorption data.

q
q

q
q

q q

(a) (b)
Fig. 8 Kinetic plots of both
kinetic models with 250 mg L−1

of Cu2+ (a) and Cd2+ (b)
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Furthermore, it was hypothesized that OPb reached its
saturation capacity at low initial metal concentration in
the Langmuir isotherm. This was evident from lower
values of the predicted maximum adsorption capacity (q-
max as 73 and 81 mg g−1, Table 2) for Cu2+ and Cd2+,
respectively, as compared to the experimentally attained
values (qe exp in Table 2) of 82 and 105 mg g−1 for Cu2+

and Cd2+, respectively. Favorable adsorption was also
expected in the Freundlich isotherm as the values of n
were situated between 2.0 and 10 (Table 2) for both
heavy metal ions, which indicated favorable physical ad-
sorption (n > 1) (Tunali et al. 2006).

To take into account the interaction of adsorbent-adsor-
bate, the Temkin isotherm model (Temkin and Pyzhev
1940), as expressed linearly in Eq. (8), was applied to the
adsorption data. In order to confirm the heterogeneous

nature of the adsorbent and its suitability for multilayer
adsorption, the Halsey isotherm model (Eq. (9)) was used.

qe ¼
RT
bT

ln Ce þ RT
bT

ln AT ð8Þ

lnqe¼
1

nH
ln KH−

1

nH
ln Ce ð9Þ

where AT and bT are Temkin constants related to the max-
imum binding energy and the heat of adsorption
(kJ mol−1), respectively, calculated from the linearized plot
of qe vs. ln Ce (Table 2). T and R are the absolute temper-
ature (K) and universal gas constant (8.314 J mol−1·K−1),
respectively. Halsey s isotherm constants, kH and nH in Eq.
(9) were evaluated using the linearized plot of ln qe vs. ln
Ce (Table 2).

Table 1 Parameters of kinetic models for adsorption of Cu2+ and Cd 2+ on to OPb at 30 °C and pH 5.5 ± 0.5

qe exp (mg g−1) qe cal (mg g−1) k2 (g mg−1 min−1) h (mg g−1 min−1) R2

Initial Cu2+ conc. (mg L−1)

25 24.938 24.938 0.9459 588.23563 1

50 49.847 50 0.0381 95.2386 1

75 63.864 74.627 0.0029 16.266 0.9995

100 65.462 97.087 0.0011 10.246

0.-
99-
65

Initial Cd2+ conc. (mg L−1)

25 24.452 25 0.063 39.526 1

50 47.875 49.505 0.0185 45.45 0.9999

75 62.414 74.0745 0.003 16.287 0.9995

100 74.237 88.496 0.0024 19.048

0.-
99-
95

q

C

q

C

(a) (b)Fig. 9 Linearized Langmuir and
Freundlich plots for the
adsorption of Cu2+ and Cd2+ onto
OPb
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In the Temkin model, R2 was estimated as 0.87 for the ad-
sorption of Cu2+ on to OPb, indicating a poor-fit of the exper-
imental data and confirming the unsuitability of this model for
liquid-phase adsorption systems (Tahir et al. 2010). A relatively
good-fit to the Cd2+ adsorption data was seen (R2 = 0.95,
Table 2) and the heterogeneous nature of the adsorption was
further supported with a relatively high R2 (0.94, Table 2) for
Cd2+ adsorption using Halsey isotherm. However, a poor-fit to
Cu2+ adsorption (R2 = 0.8) was observed, as was the case in the
Temkin isotherm model. The calculated equilibrium adsorption
capacity was similar to the experimentally attained values (qe
exp in Table 2) of 80 against 82 mg g−1 for Cu2+ and 101 against
105 for Cd2+, suggesting a good presentation of equilibrium
data using the Halsey isotherm model.

The D-R isotherm (Eq. (10)) differentiates between the
chemical and physical adsorptions of metal ions (Dąbrowski
2001; Günay et al. 2007). The H-J isotherm model Eq. (12),
on the other hand, undertakes the multilayer adsorption on
adsorbents having heterogeneous pore distribution (Almeida
et al. 2009; Foo and Hameed 2010).

lnqe ¼ lnqm−βε
2 ð10Þ

ε ¼ RTln 1þ 1=Ceð Þ ð11Þ
1

q2e
¼ B�

A−
1

A

� �
logCe ð12Þ

where qm is the maximum adsorption capacity (mg g−1), β is a
coefficient related to mean free energy of adsorption
(mol2 kJ−2), and ε is the Polanyi potential (J mol−1). A linear-
ized plot (ln qe vs. ε) generated the values of qm and β
(Table 2). In Eq. (12), A and B are H-J constants that can be
obtained from the slope and intercept values of the plot of
1/qe

2 vs. log Ce, given in Table 2. A relatively high value of
R2 for Cd2+ (0.92, Table 2), as compared to Cd2+ (R2 = 0.85,
Table 2), suggested a better fit of the D-R isotherm to its
adsorption on to OPb. The value of R2 (0.61 and 0.74 for
Cu2+ and Cd2+, respectively) was much lower in the H-J iso-
therm than all other isotherm models, representing the least fit
to experimental data using the H-J isotherm model.

Conclusions

Biochar derived from orange peels was used for removing
Cu2+ and Cd2+ in aqueous media by performing batch exper-
iments in triplicate. A range of batch process parameters was
optimized and different isotherm models were used to model
the adsorption data. Additionally, the behavior of adsorption
process was analyzed by employing reaction kinetics. The
OPb showed porous and irregular surfaces, prior to sorption
process, which were used to sorb metals ions onto the sur-
faces, as reflected by SEM images. EDX results also con-
firmed the successful adsorption of Cu2+ and Cd2+ on to
OPb due to strong physiochemical interactions. The abrupt
changes in the FTIR spectra were observed when the OPb

was charred at 800 °C, and the number of bands representing
the functional groups disappeared while new stretching bands
appeared.

A rapid adsorption during the first 15–30 min followed by
a slower rate of adsorption was observed for both heavy metal
ions, and an equilibrium time of about half an hour was sug-
gested for low initial metal ion concentrations (25–
50 mg L−1). By increasing the initial solution pH from 2.5 to
5.5, a difference in metal removal efficiency of about 22 and
35% for Cu2+ and Cd2+, respectively, was seenwithmaximum
metal uptake observed at the pH value of 5.0. The sorption
rate and the adsorption capacity increased as the initial metal
concentration increased from 25 to 200 mg L−1 while the
optimum value for Cu2+ and Cd2+ were estimated as 82 and
105 mg g−1, respectively. The removal efficiency, however,
decreased from 99% against 25 mg L−1 to about 41 and 52%
for Cu2+ and Cd2+, respectively, against 200 mg L−1 of initial
concentrations. The adsorption capacity decreased by increas-
ing the OPb dose from 0.2 to 1.4 g, while metal removal
efficiency increased almost linearly with optimum OPb dose
suggested as 1.0 g for Cd2+.

Among the two-parameter isotherm models used in this
study, the experimental adsorption data described the best-fit
for the adsorption of Cu2+ as follows: Langmuir > Temkin >

Table 2 Values of parameters in two-parameter equilibrium isotherm
models

Isotherm Parameter Cu2+ Cd2+

qe exp, mg g−1 82.00 104.76

Langmuir qmax, mg g−1 72.99 80.65

KL, L mg−1 9.13 0.78

R2 0.95 0.91

Freundlich KF, L g−1 47.06 33.98

qm, mg g−1 87.19 125.84

n 8.59 4.05

R2 0.80 0.77

Temkin AT, L mg−1 6366.95 11.55

bT, kJ mol−1 445.22 186.81

R2 0.87 0.95

Halsey qe cal, mg g−1 79.34 101.08

nH −8.59 −4.05
KH 32.80 14.12

R2 0.80 0.94

Dubinin–Radushkevich qm mol g−1 72.25 82.30

β, (mol kJ−1)2 0.00005 0.00025

R2 0.85 0.92

Harkins–Jura A, mg g−1 3333.00 1666.67

B 2.33 1.83

R2 0.61 0.74
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D-R > Halsey and Freundlich > H-J. However, for Cd2+, ex-
perimental data showed the best-fit as follows: Temkin >
Halsey > D-R > Langmuir > Freundlich > H-J. The adsorption
data of Cu2+ and Cd2+ showed best-fit to the pseudo-second-
order kinetic model with R2 values close to unity (1.0), sug-
gesting chemisorption nature of OPb for adsorption. On the
other hand, a relatively weak correlation to the pseudo-first-
order model, with R2 as low as 0.83 and 0.92 Cu2+ and Cd2+,
respectively, was observed. The results of the isotherm and
kinetic models demonstrated the effectiveness of OPb adsor-
bent for removal of Cu2+ and Cd2+ through homogeneous and
heterogeneous biosorption patches on the surface of OPb.
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