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Abstract
Soil toxic metal pollution is one of the most prominent environmental problems in the rapid industrialization of societies because
of the considerable harm caused to human existence and the surrounding environments. Soil samples from 80 sampling sites
around the coal-mining region of northwestern China were collected, and the geo-accumulation index (Igeo), pollution index (PI),
and potential ecological risk index (PRI) were calculated, with the objective of assessing the soil toxic metal pollution level. The
results showed that the average concentrations of Cr, Hg, and As exceeded the regional background values and the national soil
environmental quality standards of China, while those of Zn, Cu, and Pb were below both soil-quality standards. The Igeo of toxic
metals was ranked as Hg > As > Cr > Pb > Cu > Zn. The Igeo of Zn, Cu, and Pb indicated low pollution; the soils were moderately
polluted byHg and slightlymoderately polluted byAs, while other elements presented low pollution levels. The PI values of both
As and Hg were higher than 3, indicating heavy pollution of these two metals. Zn and Cu originated from parent material, while
Cr, As, and Hg originated from human activities such as coal burning, chemical industry, and traffic. Pb was influenced by both
natural factors and human activities. The results of ecological risk assessment in the region showed that Zn, Cu, Cr, and Pb in all
sample sites presented a low ecological risk, while Hg presented a high ecological risk. Therefore, Hg is the most hazardous toxic
metals in the region. The spatial distribution trends revealed that the high-risk regions were found to be the industrial region of the
study area. The research results provide a scientific basis and technical support for monitoring and early warning of soil pollution
in arid regions.
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Introduction

Toxic metal pollution in soil is a serious environmental prob-
lem due to the threat that it poses to natural ecosystems, agri-
cultural land, and human health (Begum et al. 2009; Qiu et al.
2011; Marrugo-Negrete et al. 2017; Sawut et al. 2018a; Yang
et al. 2018; Eziz et al. 2018). Therefore, it has become an issue
of great concern to international researchers (Morton-Bermea
et al. 2009; Sun et al. 2010; Hu et al. 2014; Qing et al. 2015;
Lazo et al. 2017; Spahić et al. 2018; Lü et al. 2018). Toxic
metals include the 11 most environmentally important metal(-
loid)s, i.e., Zn, Cu, Cr, Pb, Hg, and As (Alloway 2013; Peng
et al. 2018). The process of monitoring and evaluating the soil
quality of regional environments involves categorizing the
toxic metals that are present. Toxic metal pollution is mainly
caused by natural geologic background and human activity,
which is believed to be the main source of pollution
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(Facchinelli et al. 2001; Wei and Yang 2010; Desaules 2012;
Li et al. 2014; Islam et al. 2015; Sawut et al. 2018b). There are
numerous examples of soil-polluting human activities (Li
et al. 2011; Zhao et al. 2014). Mining activities are a major
anthropogenic source of toxic metal pollution and are associ-
ated with fatal diseases (Lăcătuşu et al. 2009). Some diseases
such as endemic arsenosis, fluorosis, selenosis, and lung can-
cer are caused by mining combustion (Finkelman et al. 2002;
Dai et al. 2004, 2007, 2012; Belkin et al. 2008). Mineral
excavation, transportation, smelting, refining, disposal of tail-
ings, and wastewater can also inhibit soil microbial activity
(Nabulo et al. 2010; Jiao et al. 2012; Biljana et al. 2018).

Geographic information systems (GISs) are widely used to
map the spatial variation of soil toxic metal pollution in
unsampled areas (Gong et al. 2010; Kharroubi et al. 2012;
Mamat et al. 2014; Li et al. 2015, 2016; Krishnakumar et al.
2017; Zhang et al. 2018). Li et al. (2004) used the GIS method
to analyze the spatial relationships of Ni, Cu, Pb, and Zn in the
soil and to evaluate the severity of pollution; Pekey (2006)
mapped the distribution of the concentrations and enrichment
factors for toxic metals; Carr et al. (2008) created elemental
spatial distribution maps for Galway City; Davis et al. (2009)
determined the potential sources of nine metals in surface
soils; and Zhang et al. (2009) combinedmultivariate statistical
and geostatistical analysis to categorize the source of toxic
metals (Cu, Zn, and Pb; Cd; and Ni). Mamat et al. (2014)
analyzed the spatial distribution of toxic metals and
determine the relationship between land use types and soil
source materials in Yanqi basin in northwest China. Zhang
et al. (2018) mapped the spatial distribution of soil metal con-
centrations in Chinese soils presented.

China is one of the largest consumer and producer of coal
in the world. The high volume of coal use in China has fo-
cused attention on the amounts of toxic trace elements re-
leased from coal mining and combustions (Dai et al. 2012;
Zhang et al. 2012; Li et al. 2014; Dai et al. 2015; Sawut
et al. 2018b). The Eastern Junggar open coal mine is one of
the biggest open coal mines in China; its coalfield has large
coal reserves, thick coal seams, good coal quality, and good
storage conditions. The predicted reserves are 390 billion tons
and account for 7.2% of China’s coal reserves (Xia 2014).
Along with the development of the regional economy and
increasing demands for energy sources, exploitation of coal
resources has increased since 2006 in this region. Although
surface mining has greatly enhanced social and economic de-
velopment, it has caused several environmental problems, es-
pecially open-pit coal mining, which has damaged the soil and
vegetation and has changed the hierarchical structure of natu-
ral soils. The toxic metals that occur naturally in the soil en-
vironment are relatively stable and resistant to biodegradation
(Gergen and Harmanescu 2012). To manage contaminated
areas and to control further pollution of the soil, it is essen-
tial to understand the extent of the toxic metals within this

area (Markus and McBratney 2001; Morton-Bermea et al.
2009). Toxic metal pollution in arid regions has become a
problem, which should be tackled by identifying spatial
distributions of pollution and by carrying out risk assess-
ments. These investigations can play an important role in
restoring damaged ecosystems, protecting soil environmen-
tal quality, and developing a scientific basis for conducting
sustainable coal-mining activities.

The main objectives of the present study are the follow-
ing: (1) the determination of spatial variation of Zn, Cu, Cr,
Pb, Hg, and As in the Junggar coal mine area; (2) the iden-
tification of pollution sources of toxic metals; and (3) the
characterization of their spatial variability for risk assess-
ment in the study area.

Data sources and methods

Study area

The study area was located to the north of TianshanMountain,
east of the Junggar Basin (44° 20′–45° 10′ N, 88° 36′–89° 50′
E) in the Xinjiang Uyghur Autonomous Region of northwest-
ern China (Fig. 1). The region is approximately 90 km from
the east to west and has a width of 60 km from the north to
south, totaling an area of approximately 5400 km2. The region
is east of the Gurbantonggut desert and has an elevation that
increases from 450 to 800 m as one travels from the south to
north. The region is in a continental desert climate temperate
zone with a mean annual temperature of 7.0 °C, mean annual
precipitation of 183.5 mm, mean annual potential evaporation
rate of 2042.5 mm, and an average annual wind speed of
2.0 m/s (Xia et al. 2016).

The main soil type’s attributes in the study area are shown
in Table 1. The soil types in this area mainly consist of saline
soil, eolian sandy soil, gray-brown desert soil, gypsum brown
desert soil, and desert alkali soil. Soil organic matter (SOM) is
the most important adsorbent for metals; thus, it was consid-
ered to be an important factor to determining the species and
bio-availability of soil toxic metals (Shi et al. 2012; Rennert
and Rinklebe 2017). The descriptive statistics of the SOM and
pH are shown in Table 2. In this study, the mean soil organic
matter (SOM) content ranged from 0.26 to 95.9 mg/kg, mean
value of SOM is 6.35 g/kg, and the coefficient of variation
(CV) is 160%, belonging to a large variation; it was explained
that SOM is unstable and there exist large differences of SOM
between the different sample sites in this region. Soil pH was
found to play the most important role in determining metal
speciation, solubility from mineral surfaces, and movement
(Zhao et al. 2010; Zeng et al. 2011; Rennert et al. 2018).
From Table 2, it can be seen that pH value ranged from 7.16
to 8.86; the mean value of pH is 8.31; and the coefficient of
variation (CV) is 55.45, belonging tomiddle variation, and the
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soil presents alkalinity. These results explain that the sampled
soils covered a wide arrange of SOM and pH, being suitable
for studying the toxic metal contamination in this region. In
the past 10 years, coal-mining factories and chemical plants
have been established in this area and have formed an indus-
trial belt. Open-pit coal mines, chemical plants, vehicles, and
other industries have led to soil toxic metal pollution in this
region (Liu et al. 2015).

Soil sampling and chemical analysis

In this study, a total of 80 soil samples were collected in
July 2015. The geographical coordinates of sampling stations
are plotted in Fig. 1. The soil sampling depth was 0–20 cm. A
hard plastic shovel was used to collect 1 kg of soil for each
sample. Each soil sample was mixed in a sampling bag, num-
bered, and sealed. The positions of soil sampling sites and

Fig. 1 Sketch map of the study area

Table 1 Main soil type attributes
in the study area (depth, 0–20 cm)
(Xia 2014)

Soil types Saline soil Eolian
sandy soil

Gray-brown
desert soil

Gypsum
brown desert soil

Desert
alkali soil

Sand grains (%) 48.00 89.00 89.00 34.00 40.00

Powder particle (%) 36.00 6.00 6.00 44.00 30.00

Clay (%) 16.00 5.00 5.00 22.00 30.00

Compactness (kg/dm3) 1.30 1.40 1.40 1.45 1.48

Gravel (%) 7.00 10.00 10.00 2.00 5.00

Calcium carbonate (%) 29.50 0.00 0.00 16.40 3.00

Gypsum (%) 15.10 0.00 0.00 1.50 0.00

Alkali (%) 31.00 2.00 2.00 3.00 13.00

Salt (dS/m) 42.80 0.10 0.10 3.50 0.10
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sampling dates were recorded using a GPS. The soil samples
were taken to the laboratory; air dried; pushed through a 2-mm
nylon sieve, purged of plant roots, stones, and other sub-
stances; and finally passed through a 0.25-mm nylon sieve
for complete dissolution.

Digestion with a mixture of concentrated HCI–HNO3–HF–
HCIO4 acid was performed on 0.5 g of each soil sample (CEPA
1995). After preparing the soil samples, atomic fluorescence
spectrometry (AFS) was used to measure the contents of Hg
and As, and inductively coupled plasma atomic emission spec-
trometry was used to measure the concentrations of Zn, Cu, Cr,
and Pb (Qing et al. 2015; Liang et al. 2017). Quality assurance
and quality control (QA/QC) were followed in accordance with
the National Reference Materials of China. To guarantee the
accuracy of each measurement, blank sample measurements
were carried out. The recovery of each toxic metal in each
sample was between 97.4 and 101.3%.

Data analyses

Descriptive statistical analyses

Descriptive statistics, Pearson’s correlation coefficient analy-
sis, and principal component analysis (PCA) were performed
using the SPSS20.0 software package (IBM, Armonk, NY,
USA). The geo-accumulation index and potential ecological
risk index were processed usingMicrosoft Excel 2007. Spatial
variation of the heavy metals in soil was performed using Arc
GIS 10.2 (ESRI, NY Str., Redlands, USA).

Inverse distance-weighted interpolation

Spatial interpolation was achieved using the inverse distance
weighting (IDW) interpolationmethodwith Arc GIS10.2. The
IDW interpolation method is a common method used in soil-
quality surveys in which GIS is integrated with multivariate
statistical analysis (Lee et al. 2006; Iñigo et al. 2011; Huang
et al. 2015; Bower et al. 2017). The IDW interpolation method
is frequently used to perform spatial interpolation due to its
fast implementation, ease of use, and precise prediction of
unknown data (Lu andWong 2008; Hou et al. 2017); it makes
the fundamental assumption that the interpolating surface
should be influenced more so by nearby points than by distant

points. The interpolating surface is a weighted average of the
scatter points, and the weight assigned to each scatter point
diminishes as the distance from the interpolation point to the
scatter point increases. The values of unknown points are cal-
culated with a weighted average of the values available from
the known points (Shahbeik et al. 2014). The IDW method
employs a deterministic estimationmethod that is based on the
weighted inverse distance of points (Eq. 1). Factors that affect
the model accuracy include the distance power, the minimum
and maximum number of adjacent points, and the search ra-
dius (Ghazanfari et al. 2017). The IDW interpolation method
can be formulized as follows:

Z0 ¼ ∑n
i¼1Zid−mi
∑n

i¼1d
−m
i

; ð1Þ

Where Z0 is the estimated value for an interpolated point, Zi

is a known value, d is the distance from points without sam-
pling to the estimation point, n is the total number of samples,
and m is the distance power.

Geo-accumulation index

The geo-accumulation index (Igeo) is a quantitative standard
for evaluating heavy metal pollution in deposit substances. It
was proposed by Müller (1969); therefore, it is also called the
Müller index. The geo-accumulation index is classified into
seven classes, each of which represents the heterogeneous
pollution degree (Förstner and Müller 1981). The geo-
accumulation index is widely used for evaluating soil toxic
metal pollution (Wei et al. 2009; Li et al. 2014):

Igeo ¼ log2 Cn= 1:5� Bnð Þ½ �; ð2Þ

Where Igeo is the geo-accumulation index, Cn is the mea-
sured value of the toxic metals in soil, and Bn is the back-
ground value of the soil. In this study, we used the soil back-
ground value of Xinjiang (CEPA 1995, CNEMC 1990). The
classification of toxic metal pollution is shown in Table 3.

Pollution index

The pollution index (PI) is defined as the ratio of the element
contents in a soil sample to the background contents of the
corresponding element in Xinjiang soil (CNEMC 1990). The

Table 2 Descriptive statistics of
the SOM and pH value Element Sampling

points, n
Maximum Minimum Mean Standard

deviation
Coefficient
of variation
(%)

SOM
(g/kg)

80 95.9 0.26 6.35 10.15 160

pH value 80 7.16 8.86 8.31 0.46 55.45
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PI of each element was calculated and classified as either low
(PI ≤ 1), medium (1 < PI ≤ 3), or high (PI > 3) (Wu et al. 2015).

Potential ecological risk index

The use of the potential ecological risk index (PRI) to assess
the ecological risk of soil toxic metals was proposed by the
Swedish scientist Hakanson in 1980 (Hakanson 1980). The
PRI method is used to show the pollution degree of a single
toxic metal and to evaluate the environmental risk of several
elements (Cai et al. 2015; Qing et al. 2015). The PRI is cal-
culated using the following equations:

PRI ¼ ∑n
i E

i
r ð3Þ

Ei
r ¼ Ti

n � Ci
r ð4Þ

Ci
r ¼

Ci

Ci
n
; ð5Þ

Where PRI is the sum of the potential ecological risk index
of the toxic metals in soil, Ei

r is the potential ecological risk

coefficient of a certain toxic metal, Ti
n is the toxicity coeffi-

cient, Ci
r is the pollution factor of a toxic metal, Ci is the

measured value of the toxic metals in soil, and Ci
n is the back-

ground value of the toxic metals. In this study, the toxicity
coefficients of Zn, Cu, Cr, Pb, Hg, and As are 5, 10, 2, 5,
40, and 10, respectively (Hakanson 1980; Pejman et al.

2015). Hakanson (1980) defined five categories for Ei
r and

four categories for PRI, as shown in Table 4.

Results and discussion

Toxic metal contents in soil

Table 5 shows that the average contents of Zn, Cu, Cr, Pb,
Hg, and As were 47.84, 19.28, 68.51, 16.69, 0.28, and
33.48 mg/kg, respectively. Among the toxic metals, Cr,
Hg, and As exceeded the background value of Xinjiang
(CEPA 1995, CNEMC 1990) by 1.4, 16.4, and 2.9 times,
respectively, and exceeded the second grade of national soil
quality standards (GB15618-1998) by 1.1, 4.3, and 2.9
times, respectively. The toxic metals Zn and Cu were lower
than the soil background value of Xinjiang and the national
standard, but the maximum toxic metal contents exceeded
both standards. The toxic metal content was ranked as Cr >
Zn > As > Cu > Pb > Hg. The CVof Zn, Cu, Cr, Pb, and As
was 22.44%, 30.51%, 52.08%, 33.28%, and 14.45%, re-
spectively, indicating moderate variation (10% < CV <
100%). The CVof Hg was 228.67%, indicating high varia-
tion (CV > 100%). The content of Hgwas higher than that of
other metals, and this element was distributed randomly,
indicating that Hg is readily affected by external factors
and possibly originates from man-made sources.

Table 6 depicts the correlation results between different
toxic metals and shows a moderate positive correlation be-
tween Zn and Cu (R2 = 0.67, P < 0.01), indicating that Zn
and Cu possibly originate from the same pollutant source (Li
et al. 2015). There were weak correlations between Zn-As,
Cu-Cr, Cu-As, Pb-Hg, and Pb-As, with correlation coeffi-
cients of 0.35, 0.40, 0.41, 0.33, and 0.33, respectively. The
correlations of the other toxic metals were lower than 0.30
(P < 0.01), demonstrating weak correlations.

To further understand the relationship between toxic metals
and their sources, principal component analysis (PCA) was
performed (Wu et al. 2014). The PCA results of six toxic metals
are shown in Table 7; there were two principal components: the
loading capacities of Zn and Cu were 0.88 and 0.84, respec-
tively, on PCA1. The average contents of these two elements

Table 4 Classification of the
ecological risk coefficient (Ei

r )
and potential ecological risk
index (PRI) of toxic metals

Ei
r value Ecological risk levels PRI value Grades of potential

ecological environmental
risk

40 ≤ Er
i < 80 Moderate risk 150 ≤ RI < 300 Moderate risk

80 ≤ Er
i < 160 Considerable risk 300 ≤ RI < 600 Considerable risk

160 ≤ Er
i < 320 High risk RI ≥ 600 Very high risk

Er
i ≥ 320 Very high risk

Table 3 Classification of soil toxic metal pollution

Igeo Grade Pollution level

< 0 1 Not polluted

0–1 2 Slight-moderate pollution

1–2 3 Moderate pollution

2–3 4 Moderate-strong pollution

3–4 5 Strong pollution

4–5 6 Strong-extreme pollution

> 5 7 Extreme pollution
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were close to the soil background value of Xinjiang, and rela-
tively low CV values were observed. In addition, there was a
strong correlation between these elements. Therefore, it was
surmised that the two metals originated from the soil parent
material. On PCA 2, the loading capacities of Cr, Hg, and As
were 0.67, 0.84, and 0.63, respectively. The average contents of
these elements in soil exceeded the background value of
Xinjiang and the national standards value and were sensitive
to external factors. Open-pit coal mining and other human ac-
tivities greatly increase the contents of toxic metals in soil. The
loading capacity of Pb was 0.55 and 0.48 on PCA1 and PCA 2,
respectively, indicating that the element was affected by both
natural and human factors.

Spatial distribution of toxic metals

The spatial distribution of six toxic metals in soil is shown in
Fig. 2. The red color represents higher contents whereas the
blue color represents lower contents. The spatial distributions
of Zn and Cu were similar. The peak values of the two ele-
ments appeared around the coal-mining area and near the in-
dustrial area, indicating that these metals have the same pol-
lution sources. The two metals primarily originated from soil
parent materials, due to the fact that they were both affected by
the natural factors of topography and landforms (Liu et al.
2015). Higher Cr contents were presented along the road
and in the mining area, where human activities are the most
frequent. This explains that Cr accumulation in soil was due to

open mining and other industrial activities (Yao et al. 2013;
Liu et al. 2016).

High contents of Pb were mainly distributed around the
coal-mining area, chemical plant, and along the road, and
uniform distributions were observed in other parts of the study
area. Human activities such as automobile emissions play a
dominant role in the enrichment of Pb in surface soil (Huang
et al. 2007; Soltani et al. 2015). Automobile activity on the
road to transport coal results in waste gas emissions and Pb
accumulation in soil. The uniform distribution of lead in the
study area indicated that huge amounts of Pb exist in soil
parent material. Liu et al. (2011) study showed that Pb is
readily affected by geogenic and anthropogenic factor influ-
ences. Therefore, geogenic and anthropogenic factors are con-
sidered to be the main influential factors of Pb distributions.

Relatively higher contents of As were distributed around
the coal mine, chemical plant, and roadside, likely due to
traffic and coal combustion sources (Lu et al. 2009).
Anthropogenic emissions of As to the atmosphere are approx-
imately three or four times higher than those from natural
sources (Sanchez-Rodas et al. 2007). Therefore, it was as-
sumed that As was primarily affected by anthropogenic activ-
ities such as industrial atmospheric emissions, metal smelting,
and coal burning.

Table 5 Descriptive statistics of toxic metals in soil

Elements Ranges
(mg/kg)

Median
(mg/kg)

Average
(mg/kg)

Standard
deviation
(mg/kg)

Coefficient of
variation (%)

Kurtosis Skewness Background values in
Xinjiang (mg/kg)

National
standard
(mg/kg)

Zn 25.47–81.20 48.33 47.84 10.74 22.44 1.17 0.63 68.80 74.20

Cu 9.05–42.35 19.02 19.28 5.88 30.51 2.32 1.01 26.70 22.60

Cr 18.0–158.69 53.46 68.51 35.68 52.08 0.29 1.22 49.30 61.00

Pb 7.22–33.00 16.03 16.69 5.55 33.28 0.20 0.62 19.40 26.00

Hg 0.05–3.56 0.07 0.28 0.65 228.67 14.44 3.81 0.017 0.065

As 2.87–68.70 35.77 33.48 10.07 14.45 2.14 −0.18 11.20 11.20

Table 7 Factor matrix of soil toxic metals

Elements Principal component

PCA1 PCA2

Zn 0.88 0.065

Cu 0.84 0.072

Cr 0.38 0.67

Pb 0.55 0.48

Hg 0.12 0.84

As 0.06 0.63

Percentage of variance (%) 35.90 27.08

Percentage of cumulative variance (%) 35.90 62.98

Table 6 Correlation matrix of soil toxic metals

Zn Cu Cr Pb Hg As

Zn 1

Cu 0.67** 1

Cr 0.29** 0.40** 1

Pb 0.17 0.16 0.28** 1

Hg − 0.01 0.06 − 0.08 0.33** 1

As 0.35** 0.41** 0.05 0.33** 0.16 1

**Correlation is significant at the 0.01 level (two-tailed)
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In the present study, Hg exhibited significant accumulation
in the soil, which was quite different from other metals. The
contents of Hg along the boundary between the coal mine and
chemical plant were much higher compared to other areas,
which indicated that the increasing contents of Hg could be

attributed to the emissions from steel industry (Qing et al.
2015), coal burning, and subsequent atmospheric deposition
(Nakagawa and Hiromoto 1997; Kuo et al. 2006). The
Wucaiwan coal power and the coal chemical industry belt,
the Huoshaoshan high-load energy industrial parks, and the

Fig. 2 Spatial distribution of soil toxic metals

Fig. 3 Box plots of the geo-accumulation index (Igeo) of soil toxic metals (a); box plots of the pollution index (PI) of soil toxic metals (b). Boxes depict
the 25th, 50th (median), and 75th percentiles, and whiskers depict the minimum and maximum values. Mean values (O); outliers (*)
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Jiangjunmiao coalification industrial parks are the main metal
smelting manufacturing industries and the main sources of the
toxic metal pollution in this region. Previous studies showed
that emissions from the chemical plant were the primary rea-
son for Hg pollution (Gong et al. 2010; Xia 2014).

Based on above analyses, in comparison with the mining
areas of other countries, toxic metal pollution levels were low-
er than in the Barapukuria coal basin in the Dinajpur district of
the northern part of Bangladesh (Bhuiyan et al. 2010) and the
Rodalquilar mining area in SE Spain (Choe et al. 2008). The
pollution levels of the study area were lower than those in the
eastern part of China such as Liaoning Province (Qing et al.
2015), northwestern Xi’an, China (Chen et al. 2016), and
northeastern Shenyang, China (Li et al. 2013). A comparison
of our results with similar studies carried out in different parts
of Xinjiang, northwestern China, indicated that the average
contents of Zn, Cu, Cr, and Pb in the present study were
relatively lower than in the area of Urumqi City, northeastern
Tianshan, the Midong district, Yanqi Basin, and the Boston
Lake Basin of Xinjiang (Liu et al. 2007; Qian et al. 2013;
Mamat et al. 2014; Eziz et al. 2017). The average contents
of Hg and As were higher in the study area than in other areas
of Xinjiang.

Toxic metal pollution in soil

Assessment of the Igeo and PI

The Igeo values of the six toxic metals in soil are shown in
Fig. 3a. The Igeo ranged from − 2.01 to − 0.34 (mean, 1.14) for

Zn, − 2.14 to 0.079 (mean, 1.11) for Cu, − 2.04 to 1.10 (mean,
0.28) for Cr, − 2.01 to 0.18 (mean, 0.88) for Pb, − 2.47 to 6.89
(mean, 1.47) for Hg, and − 2.55 to 2.03 (mean, 0.90) for As.
The mean values of Igeo were in the order of Hg > As > Cr >
Pb > Cu > Zn. The mean Igeo of Hg indicated that there was
moderate Hg pollution, while the mean Igeo of As indicated
slight-to-moderate pollution. The mean values of Zn, Cu, Cr,
and Pb indicated no pollution. The mean Igeo values of Zn, Cu,
Cr, and Pb were lower than those in the other industrial re-
gions such as Beijing, Inner Mongolia, Shandong, Yunnan,
Tibet, and China (Li et al. 2014; Chen et al. 2015). Except
for mean Igeo of Hg being lower than that in Beijing, Hg and
As were higher than in other regions.

The PI was calculated according to the background
value of soil toxic metals in Xinjiang and was found to
be different for each of the six toxic metals (Fig. 3b). The
range of PI for the different metals was 0.37–1.18 (Zn),
0.34–1.59 (Cu), 0.37–3.22 (Cr), 0.37–1.70 (Pb), 0.29–210
(Hg), and 0.25–6.13 (As). According to the results, the
average PI for all metals followed the decreasing order
of Hg (10.5) > As (3.16) > Cr (1.09) > Pb (0.81) > Cu
(0.71) > Zn (0.71). The Zn, Cu, and Pb values indicated
no pollution (PI ≤ 1); Cr presented moderate pollution (1
< PI ≤ 3), and the mean PI values of As and Hg were
higher than 3 (PI > 3), indicating heavy pollution. The
mean PI values of Zn, Cu, Cr, and Pb in this region were
lower than those in Anshan City, China; Yanqi Basin,
Xinjiang, China; and Bangladesh (Bhuiyan et al. 2010;
Qing et al. 2015; Eziz et al. 2017), while the mean PI of
Hg was higher than in these regions. This finding concurs
with a previous study (Liu et al. 2015).

Table 8 Distribution frequency of the potential ecological risk coefficient (Ei
r ) of single toxic metals

Elements Minimum Maximum Mean Standard deviation Distribution frequency of samples

Er
i < 40 40 ≤ Eri < 80 80 ≤ Er

i < 160 160 ≤ Er
i < 320 Er

i ≥ 320
Low risk Moderate risk Considerable risk High risk Very high risk

Zn 1.85 5.90 3.48 0.78 80

Cu 1.70 7.93 3.61 1.10 80

Cr 0.73 6.44 2.78 1.45 80

Pb 1.86 8.51 4.30 1.43 80

Hg 12.72 925.48 282.2 260.83 12 9 17 13 29

As 2.57 61.33 29.9 8.99 75 5

Table 9 Statistical analysis of the
potential ecological risk index
(PRI) of heavy metals in soil

Potential ecological
risk level

PRI < 150 150 ≤ PRI < 300 300 ≤ PRI < 600 PRI ≥ 600

Level Low risk Moderate risk Considerable risk Very high risk

Frequency 28 22 14 16

Percentage 35.00 27.50 17.50 20.00
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Potential ecological risk of soil toxic metals

The mean value of Ei
r for Zn, Cu, Cr, and Pb was below 40 for

all the sample sites, indicating a low risk (Table 8). However, at
several sites, As presentedmoderate risk. The percentages of Hg
in different samples were 15.00%, 11.25%, 21.25%, 16.25%,
and 36.25%, and the mean value of Hg was 282.2, indicating
that Hg presented a major risk to the soil environment. The
contribution of the toxicmetals to the potential ecological hazard
followed the order of Hg > As > Pb > Cu > Zn > Cr.

Based on the analysis of PRI of toxic metals in soil
(Table 9), certain levels of ecological risk occurred in
the soil of the study area. Approximately 35% of the

study area had a low-risk status, 27.5% had a moderate-
risk status, 17.50% had a considerable risk status, and
20.0% had a very high-risk status.

The toxic metal Hg exceeded the soil background value
several times, posing a danger to the surrounding environ-
ment. Therefore, Hg presented the greatest environmental risk
to the area. To further assess the risk that Hg posed in the study
area, we analyzed the spatial distribution of Ei

r for Hg in soil
(Fig. 4). Areas that presented the greatest environmental risk
were concentrated in regions with intensive human activities,
such as the Wucaiwan coal-mining area, the Huoshaoshan
high-load energy industrial park, the Jiangjunmiao coalifica-
tion industrial park, and the Dongfangxiwang chemical plant.

Fig. 4 Spatial distribution of the potential ecological risk coefficient (Ei
r ) for Hg in soil

Fig. 5 Spatial distribution of potential ecological risk index (PRI) for all toxic metals in soil
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As shown in Fig. 5, the spatial distribution of the PRI
exhibited the same trends as those of Ei

r. High PRI values
were observed in the regions surrounding the coal-mining
area, industrial area, living area, and the southern portion of
Kalamaili Mountain. The potential ecological risk in these
areas was comparatively high. The spatial variation pattern
map showed that most of the regions had a moderate risk
status.

Conclusions

In the present work, the spatial distribution, source, and po-
tential ecological risk of toxic metals were determined in the
coal-mining region of northwestern China. The main conclu-
sions are as follows:

1. The contents of toxic metals in the soil were ranked as
follows: Cr > Zn >As > Cu > Pb >Hg; the soil toxic metal
contents of Cr, Hg, and As exceeded the regional back-
ground values by 1.4, 16.4, and 2.9 times and exceeded
the national soil environmental quality standards of China
(GB15618-1995) by 1.1, 4.3, and 2.9 times, respectively.
The toxic metals Zn, Cu, and Pb were lower than the
limits of both soil standards.

2. A relatively strong correlation was observed between Zn
and Cu, both of which primarily originated from the par-
ent material. The toxic metals Cr, As, and Hg originated
from human activities such as coal burning, chemical in-
dustries, and traffic. The toxic metal Pb originated from a
combination of both natural factors and human activities.
The spatial distribution trends reveal that the high con-
tents of toxic metals are associated with the middle parts
of the study area, which are probably more impacted by
atmospheric deposition from coal mining, chemical
plants, and other industrial activities. Our research con-
cluded that coal mining and chemical plants were the
primary causes of soil toxic metal pollution in the study
area.

3. The Igeo and PI of toxic metals were ranked in the follow-
ing order: Hg > As > Cr > Pb > Cu > Zn. The Igeo of Hg
indicated moderate pollution, while the Igeo of As indicat-
ed slight-to-moderate pollution. The Igeo of other toxic
metals indicated low pollution levels. The PI values of
Zn, Cu, and Pb indicated no pollution (PI ≤ 1), while Cr
presented moderate pollution (1 < PI ≤ 3), and the mean
values of As and Hg were higher than 3 (PI > 3), indicat-
ing heavy pollution. The results of the potential ecological
risk in the study area showed that Zn, Cu, Cr, and Pb
across all sample sites presented low risk, while most of
the soil samples had a low to very high ecological risk of
Hg. Hg is the most hazardous toxic metal in this region; to

avoid further pollution in the region, it is necessary to
control Hg emissions from nearby industrial areas.
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