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Abstract
This study explores the water quality status and pollution sources in Ghrib Dam, Algeria. It allows us to obtain more accurate
information on water quality by applying a series of multivariate statistical techniques, including principal component analysis
(PCA)/factor analysis (FA), hierarchical cluster analysis (CA), and multiple regression analysis (MRA). On 19 physicochemical
parameters dataset over 5 years and from 6 different sites located in and around the lake. One-way analysis of variance (ANOVA)
was used to investigate the statistically considerable spatial and seasonal differences. The results of ANOVA suggest that there
exist a statistically significant temporal variation in the water quality of the dam for all parameters. On the other hand, only
organic matter has a statistically significant spatial variation. In the multiple linear models, an association between organic and
inorganic parameters was found; their origin comes from the mechanical erosion process of agricultural lands in the watershed.
The PCA/FA identifies five dominant factors as responsible of the data structure, explaining more than 94.96% of the total
variance in the water quality dataset. This suggests that the variations in water compounds’ concentration are mainly related to the
multiple anthropogenic activities, as well as natural processes. The results of cluster analysis demonstrate that the sampling
stations were divided in two similar groups, which indicates spatial homogeneity. While seasonal grouping has showed that the
source of pollution was related to the level of runoff in the seasons.
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Introduction

Worldwide water quality (lakes and rivers) has deteriorated in
the last years due to uncontrolled industrial discharges, the
intensive use of chemical fertilizers in agriculture, and the
disorganized exploitation of water resources. Surface water
is highly prone to point and non-point source pollutions

(Singh et al. 2005), due to its easy accessibility for disposal
of wastewaters and difficulty with its protection. The natural
processes such as rainfall, erosion, and sediment loading, as
well as anthropogenic processes contribute to the loss of water
resources and define the water quality of the region (Khatri
and Tyagi 2015; Singh et al. 2005; Kazi et al. 2009). This has
generated great pressure on aquatic ecosystems, resulting in a
decrease of biodiversity and loss of critical habitats.
Therefore, it is essential to prevent and control water pollution
and to implement regular survey programs. Also, the devel-
opment of public awareness must be considered in order to get
positive results in the long term for this kind of planning and
nature conservation (Cetin 2016). Usually monitoring and
evaluating the water quality are required for integrated man-
agement of these water resources. However, monitoring pro-
grams that provide representative and reliable information of
the data are not easily implemented due to both spatial and
temporal variations in water quality (Dixon and Chiswell
1996; Badillo-Camacho et al. 2015). In the scientific litera-
ture, different multivariate statistical techniques were applied:
cluster analysis (CA), discriminant analysis (DA), principal
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component analysis (PCA)/factor analysis (FA), for interpre-
tation of the complex databases then to assess temporal and
spatial variations in lake water quality and finally to identify
the potential sources of water contamination.

In Algeria, as in most developing or industrialized coun-
tries, the deterioration of the surface water quality is increasing
concern. Several studies have been carried out to determine
the problems of deterioration in water quality of dams in
Algeria, such as the research works of Bouguerne et al.
(2016) and Mebarkia et al. (2017) on the water quality of the
Ain Zada dam in the upper reaches of Wadi Boussellem,
Bahroun and Chaib (2017) in the reservoir Mexa reservoir,
and Guerraiche et al. (2016) in the Grouz dam (eastern
Algeria). In western Algeria, the monitoring of Touhari et al.
(2015) on four high-Cheliff dams and Djelita et al. (2016) on
the spatiotemporal patterns of Boughrara dam water quality.

Ghrib Dam is subjected to an anthropic action; for this
purpose, it is essential to highlight it as it supplies with water
a large region of the north in Algeria. The water quality of the
Ghrib Dam has deteriorated since 2005 due to the annual
wastewater discharges that come from urban (2366 hm3) and
industrial areas (0.035 hm3) (Harkat et al. 2011). These dis-
charges contaminate the damwater mainly through the Cheliff
River input.

The objective of the present study is to analyze and inter-
pret database set obtained during 5 years (2012–2017) in
Ghrib Dam. To achieve this objective, matrix correlation,
PCA, and CA multivariate techniques were applied to
(Badillo-Camacho et al. 2015) find similarities and dissimilar-
ities among the different sampling sites, (Bahroun and Chaib
2017) evaluate the contribution of water quality parameters to
temporal variations in surface water quality, and (Barakat et al.
2016) ascertain the influence of the pollution sources on the
water quality variables.

Material and methods

Study area

Ghrib Dam is in the northwestern part of Algeria approximate-
ly 30 km from Medea City and 150 km from the Algerian
capital Algiers (Fig. 1). The dam is at an altitude of approxi-
mately 435m and is between 36°12′-36°16′N and 2°55′–2°60′
E. This damwas implanted in the wadi Cheliff, at about 20 km
southwest of the Ain-Defla city, with an initial capacity of 280
hm3. It has been put into service in 1939. Ghrib Dam has
14 km2 of surface area, a drainage basin area of
1378.63 km2, and a maximum depth of 40 m.

With regard to the climate, the region is characterized by
sub-humid climate, relatively temperate winter with hot and
dry summer. The annual average temperature is 18.06 °C,
with an average annual precipitation around 619.27 mm.

The dammed water is used for the irrigation (the Mitidja
Plain in the east and the upper and lower Cheliff Plains in
the west) and drinking water purposes. Agricultural activities
are present around surface waters in the western part of the
dam.

Sampling

The water sampling has been carried out monthly for a period
of 5 years (from 2012 to 2017) at the surface layers; only one
sampling per month has been taken into account for the tem-
poral monitoring of water quality. Six sampling points were
selected for spatial quality monitoring for a short 2-year period
(June 2013 to May 2015) (Fig. 1). The water samples were
preserved in pre-rinse 1 L polypropylene bottle, at 4 °C in
darkness and analyzed within 24 h. Temperature, pH, salinity,
electrical conductivity, and dissolved oxygen were measured
in situ using a multiparameter analyzer (the Multi 340i/SET
WTW). The analysis methods are those advocated by Rodier
(2004) and done in the dynamic and biodiversity laboratory;
nitrate, nitrite, and phosphate were measured by molecular
absorption spectrometry, while the ammonium is done by
the spectrophotometric method, and the levels of calcium,
magnesium, and chlorides were determined by the volumetric
titration. Other parameters were carried out by the technical
staff of the laboratory of the national agency of water re-
sources (NAWR); BOD and COD were analyzed using an
automated analysis SP2000, sodium and potassium were an-
alyzed by flame spectrophotometry (Corning 410), and bicar-
bonates were analyzed by a pH meter Type E632
(METLOOHM). The obtained data are compared to the
Algerian quality standards (Table 1) adopted by the national
agency of water resources (NAWR 2009).

The monthly water inputs and the total monthly volume of
water in the dam in the study period (2012–2017) was provid-
ed by the National Agency for Dams and Transfers (2017).

Statistical methods

Data for physicochemical parameters of water samples were
presented as mean values and plotted using time series, to
follow the temporal variation pattern of water quality variables
in Ghrib Dam. With the objective of evaluating significant
differences between spatial and temporal for all physicochem-
ical variables, data was analyzed using one-way analysis of
variance (ANOVA) at 0.05% level of significance. In all sta-
tistical analysis, the water quality parameters were grouped
into four seasons: summer (from June to August), autumn
(from September to November), winter (from December to
February), and spring (from Marche to May).

The Pearson parametric correlation coefficient was obtain-
ed to describe the degree of association between two variables
under study (Peat et al. 2009) and gives preliminary
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information on relationship models in the regression analysis.
In this study, temporal variation of dam water quality param-
eters were evaluated through a season parameter correlation
matrix, using Pearson parametric correlation coefficient
(Pearson’s R).

Multiple linear regressions is a multivariate statistical tech-
nique for examining the linear correlations between two or
more independent variables and a single dependent variable
(Charulatha et al. 2017). The variation of this dependent vari-
able is accounted for by the variation in those independent
variables of physical, chemical, or biological water characteris-
tics. The general equation is: Y = βo + β1 X1 + β2 X2 +…..+βm

Xm + ε where Y represents the dependent variable, X1…Xm rep-
resent the several independent variables, βo… βm represent the
regression coefficient, and ε represents the random error.

The multivariate analysis of the data using PCA and CA
enabled the identification of the sources of constituents and
the distinguishing of the natural and anthropogenic contribu-
tions of pollutants into the lake system based on the level of
association of the variables (Ndungu et al. 2015). All mathe-
matical and statistical computations were made using the R
program (R Development Core Team 2014).

Cluster analysis was used to explore the similarities be-
tween water samples (Otto 1998) and grouping each similar
site or periods in the cluster with respect to a predetermined
selection criterion. In the present analysis, hierarchical ag-
glomerative CA was performed on the normalized dataset
implementing the Ward’s linkage model, employing Bray–
Curtis distances regarded as a similarity measurement.
Ward’s method says that the distance between two clusters,
A and B, is how much the sum of squares will increase when
we merge them. In particular, CA allows the sorting of vari-
ables with the same descriptions into the same cluster; it is
often illustrated in dendrogram form.

Factor analysis was employed to establish the possible re-
lationships between the physicochemical variables. In this
study, we used principal component analysis (PCA) of factor
analysis. The main purpose of FA is to reduce the contribution
of less significant variables to simplify even more of the data
structure coming from PCA (Shrestha and Kazama 2007). The
new set of the obtained variables, the principal components
(PCs) are arranged in decreasing order of importance. The
PCA is a data reduction technique and suggests how many
varieties are important to explain the observed variance in the
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Fig. 1 Location of the study area and sampling stations within the Ghrib Dam reservoir
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data (Bhat et al. 2014), with a minimum loss of original
information.

Results and discussion

Water quality evaluation

The temporal variation of water inputs and the total monthly
volume of water in the dam and 19 physicochemical parame-
ters in the Ghrib Dam during the period of 5 years (June 2012
to May 2017) are presented as time series in Figs. 2 and 3 to
assess the quality of this aquatic system. The mean values of
physicochemical parameters at different sampling sites in
Ghrib Dam during the period of 24 months (June 2013–
May 2015) are presented in Table 2. To explain the nature
and extent of the relationships between various physicochem-
ical parameters, we used the Pearson correlation coefficient
(r), which gives an idea of the possible relationships between

biophysical variables (Table 3, p < 0.05). All the studied pa-
rameters showed a significant temporal variation (ANOVA
one-way, p value < 0.01), but their spatial distribution in the
six study stations were homogeneous (ANOVA one-way, p
value > 0.05) except organic matter had a spatial and temporal
heterogeneity.

The Ghrib Dam receives an average annual water of
7.40 Hm3/year. Usually, the dam receives a significant amount
of water in winters and springs (Fig. 2), what makes the water
level in the dam increases. Water temperature showed an an-
nual characteristic cycle reflecting the atmospheric tempera-
ture and presents the most significant difference among sea-
sons, with higher values during the summer (20–28 °C) and
lower values in the winter season (9–13.5 °C). The water
temperature causes significant environmental impacts, be-
cause most of the physical, chemical, and biological charac-
teristics of aquatic systems are directly affected by tempera-
ture. The pH values of collected water samples ranged from
6.36 to 8.64, with the highest values in summer-autumn and
the lowest in winter at most of the study sites, and they are
generally within the recommended range 6–9 of Algerian
standards. Dissolved oxygen is an essential factor for aquatic
life. It is commonly used to assess the water resource quality
(Sánchez et al. 2007; Barakat et al. 2014). Mean concentra-
tions of DO in the study are generally level close to 7 mg L−1,
but the distribution of DO showed marked temporal variabil-
ity and its lower value in summer and autumn (3.5–
7.5 mg L−1) and the higher (7–13.5 mg L−1) in winter season
and spring, qualifying the water quality as moderate to pollute
in summer and autumn and good quality in winter and spring.
On all studied stations, the concentrations of dissolved oxygen
are homogeneous (Table 1). In correlation matrix, it was found
that DO was negatively correlated to WT. This inverse rela-
tionship is a natural process because warmer water becomes
more easily saturated with oxygen, and it can hold less dis-
solved oxygen (Shrestha and Kazama 2007). DO in our study
present also negative correlation with BOD and positive

Table 1 Algerian surface water guidelines, (NAWR 2009)

Quality classification Good Medium Poor Very poor

DO (mg/l) < 7 7–5 5–3 > 3

NH4
+ (mg/l) ≤ 0.01 0.01–0.1 0.1–3 > 3

NO3
+ (mg/l) ≤ 10 10–20 20–40 > 40

PO4
−3 (mg/l) ≤ 0.01 0.01–0.1 0.1–3 > 3

BOD < 5 5–10 10–15 > 15

COD < 20 20–40 40–50 > 50

OM (mg/l) < 5 5–10 10–15 > 15

Ca+2 (mg/l) 40–100 100–200 200–300 > 300

Mg+2 (mg/l) < 30 30–100 100–150 > 150

Cl− (mg/l) 10–150 150–300 300–500 > 500

Na+ (mg/l) 10–100 100–200 200–500 > 500

TS (mg/l) 300–1000 1000–1200 1200–1600 > 1600

Fig. 2 Temporal variation of WI;
water inputs (Hm3), VW; water
volume (Hm3) in the Ghrib Dam
from June 2012 to May 2017
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correlation with NH4
+, COD, and water volume in Ghrib Dam

(Table 3).
BOD is a measure of the dissolved oxygen consumed by

microorganisms during the oxidation of reduced substances in
waters and wastes (Bhateria and Jain 2016). BOD in various
samplings in Ghrib dam shows values between 0.89 and
12.7 mg L−1. These values indicated that the water samples
ranked as good to polluted quality. COD is defined as the
amount of oxygen required for chemical oxidation with the
sample under controlled conditions. In this study, COD of the
Ghrib Damwater is ranged between 4.6 and 42mg L−1, which
ranks Ghrib waters as polluted to good quality. Table 2, the

water of Station 1 (S1) presents high BOD and COD levels.
High level of COD is due to increased human activities such
as agriculture around the lake, transport of natural domestic
sewage, and industrial pollutant; those factors have a negative
impact on the water quality. COD showed positive correlation
with NH4

+, i.e., a decrease of one results in the decrease of the
other one. In our result, there is no correlation between the
BOD and the COD indicates that the major part of organic
material is not biodegradable.

Organic matter in aquatic systems is a complex mixture of
molecules (Hawkes et al. 2018) with different sources, waste-
water and industrial particles, soil organic matter, living

Fig. 3 Temporal variation of variables water quality in Ghrib Dam; WT
water temperature (°C), pH, OD dissolved oxygen (mg l−1), BOD (mg
l−1), COD (mg l−1), OM (mg l−1) organic matter (mg l−1), NO3

− (mg l−1),

NH4
+ (mg l−1), PO4

− (mg l−1), SiO2
− (mg l−1), TS total solid (mg l−1), CE

electrical conductivity (휇S cm−1), Ca+2 (mg l−1), Mg2+ (mg l−1), Cl− (mg
l−1), K+ (mg l−1), Na+ (mg l−1), HCO3

− (mg l−1)

Arab J Geosci (2018) 11: 754 Page 5 of 14 754



phytoplankton, and other plant matter. In Ghrib dam, mean
concentrations of organic matter are generally level close to
8.01 mg L−1, but they remain significant with values of 0.5–
16.7 mg L−1 in temporal data. The water collected in the level
of the stations (S1) and (S6) is the richest in organic matter
(8.75, 728 mg/l respectively). The temporal variation of or-
ganic matter is positively correlated with water inputs
(Table 3), so that the origin of the organic matter in the dam
is mainly related to inputs entering into the lake. Assessing the
level of nutrients is a main feature in determining lake produc-
tivity. It is a food source for aquatic organisms. Phosphorus is
usually the most limiting nutrient for algae growth in lakes,
since it is the nutrient in short supply in most fresh waters;
even a modest increase in phosphorus can, under the right
conditions, set off a whole chain of undesirable events in
aquatic system (Bhateria and Jain 2016). The PO4

− shows
concentrations of from 0.001 to 0.68 mg L−1, with a high
concentration noted in spring season, including some peaks
of concentration at the end of the summer. This concentration
ranks Ghrib waters as excellent to polluted quality. Both ni-
trate (NO3

−) and ammonia (NH4
+) concentrations are highly

variable during lake seasonal cycles. The measured NH4
+

values vary between 0.006 and 0.51mg L−1, while the average
concentrations of NO3

− in this study ranged from 0.163 to
10.01 mg L−1. According to Algerian standards, the water
quality of Ghrib is good to polluted for both parameters. In
the Ghrib Dam, nutrient concentrations show considerable
values in S1 (Table 2). All three nutrients were positively
correlated with organic matter (Table 3), and both NH4

+ and
PO4

− were positively correlated with the volume of water in
Ghrib Dam, but only the NH4

+ is related to water inputs.
Generally, it comes from the biodegradation of waste and
inputs from domestic, agricultural, and industrial origin
(Barakat et al. 2014). Its further degradation to nitrites and
nitrates consumes dissolved oxygen. Nitrate and phosphorus
in aquatic systems have a natural source, mainly coming from
the decomposition of organic matter, land drainage, plant and
animal debris, and the weathering of rocks from the catchment
area (phosphorus-bearing rocks and igneous rocks). Domestic

wastewaters, industrial effluents, and use of manufactured fer-
tilizers containing ammonium nitrate and potassium nitrate
contribute to elevate its levels in surface waters. Increasing
concentration of PO4

− and NO3
− in lakes has resulted in en-

hanced productivity elevating oxygen demand (Pandit and
Yousuf 2002). Comparing our results with that of Touhari
et al. (2015) in the period 1999 to 2008, the Ghrib dam pre-
sented a poor quality, which is associated with high nutrient
levels. This latter is directly related to the inflow of water
during the rainy season, which may be due to leaching of
fertilizers used in agriculture soils situated in watersheds.

During the study period. SiO2
− ranged between 0.1 and

7.92 mg L−1with a mean value of 2.55 mg L−1. The maximum
concentrations were observed in spring and winter, also, in the
transition period between autumn-winter. This concentration
was significantly related to the volume of water and water in-
puts (Table 3); chemically, the rock erosion in catchment area
solubilizes silicon, which is then transported by river runoff into
the lake dam. Total solids is a measure of all the suspended,
colloidal, and dissolved solids in a sample of water. TS can also
come from various types of runoff, including dissolution and
suspension minerals and organic matter from soils and geolog-
ical formations, living aquatic microorganisms, and their
decaying remains (Boyd 2015). In this study, TS ranged from
minimumof 1356 (polluted) and to amaximum of 2608 (highly
polluted) in Ghrib Dam. Agricultural runoff entering into the
lake contains fertilizers, and suspended soil particles may be the
main cause of increasing in TS.

Electrical conductivity in water is due to ionization of dis-
solved inorganic solids. It is used as a basic index to select the
suitability of water for agricultural purposes. In this study, EC
varied between 2020 and 3900 μS cm−1; according to Rodier
(2004), the waters of the Ghrib dam are strongly mineralized.
Spatially, the electrical conductivity is homogeneous in the
water of Ghrib (Table 2).

Seasonally, EC was lower in spring and summer than in
autumn and winter seasons. The higher EC is attributed to the
high degree of anthropogenic activities such as waste disposal
and agricultural runoff (Bhat et al. 2014). EC showed positive

Table 2 Spatial means and standard error of physicochemical parameters in Ghrib Dam (June 2013 to May 2015; n = 24) (mean ± standard error)

Stations S1 S2 S3 S4 S5 S6

OD (mg/l) 7.73 ± 1.57 7.45 ± 1.55 8.51 ± 2.27 7.50 ± 1.87 7.36 ± 1.73 7.29 ± 1.71

NO3
+ (mg/l) 3.54 ± 1.22 2.74 ± 0.76 2.35 ± 0.66 2.75 ± 0.45 2.47 ± 0.95 2.53 ± 0.58

PO4
−3 (mg/l) 0.097 ± 0.07 0.055 ± 0.02 0.050 ± 0.02 0.055 ± 0.07 0.042 ± 0.02 0.036 ± 0.02

NH4
+ (mg/l) 0.67 ± 0.42 0.52 ± 0.4 0.35 ± 0.19 0.33 ± 0.26 0.21 ± 0.14 0.64 ± 0.56

OM (mg/l) 8.57 ± 3.34 4.12 ± 2.05 4.93 ± 1.11 5.04 ± 2.09 4.37 ± 0.14 7.28 ± 0.56

BOD 5.03 ± 3.25 3.45 ± 2.48 2.99 ± 1.7 3.42 ± 2.2 2.92 ± 2.04 3.38 ± 2.42

COD 27.73 ± 8.3 21.55 ± 7.7 24.17 ± 8.2 22.83 ± 7.1 24.82 ± 7.9 24.59 ± 7.8

EC (휇S cm−1) 3001.5 ± 308.8 3022.3 ± 268.8 3035.2 ± 288.4 3058 ± 289.9 3028.9 ± 279.2 3033.4 ± 283.6

TS (mg/l) 2057.1 ± 268.2 1959.5 ± 167.1 2005.6 ± 189.9 1978.5 ± 195.1 1965.8 ± 198.5 1993.1 ± 187.2
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and significant correlated with ions (Ca2+, Mg2+, Cl−, K+,
HCO3

−) and TS.
The main ions analyzed were Ca2+, Mg2+, Cl−, K+, Na+,

HCO3
−, and their temporal variations are presented in Fig. 3.

Naturally, these elements are very variable in surface waters
due to local geology and geographical conditions. Generally,
these ions maintained higher concentration in raining periods
(winter and spring). Ion concentration varied between Ca2+

(90–259 mg/L), Mg2+ (49–159 mg/L), Cl− (237–652 mg/L),
K+ (2.5–26 mg/L), Na+ (172–370 mg/L), and HCO3

− (97–
335.5 mg/L). According to the Algerian guidelines (NAWR
2009), these measurement results also indicated that the ma-
jority of water samples ranked as moderate to highly polluted
class in terms of water quality.

Regression analyses

To find out the best predictor of water quality variation in the
Ghrib Dam, a stepwise multiple linear regression model was
used. We checked the classical assumptions of the linear

regressions, and then we plotted the concentrations of all the
dependent variables in relation to the independent variables.
The results of the statistical analysis with the multiple linear
regression models are shown in Figs. 4, 5, 6, and 7. The
figured dependent variables have a significant linear model;
the residual variances are equal or constant. The equation of
each model was presented with the scatter plot (Figs. 4, 5, 6,
and 7). The water quality variation in Ghrib Dam was ex-
plained by four predictor variables namely PO4

−, NO3
−,

NH4
+, and EC.

The PO4
+ concentration showed strong significant and pos-

itive relationship (푃 < 0.0001) with dissolved oxygen, BOD,
Mg2+, and water volume in the dam, The R-square of 0.483
revealed that 48.3% of the variation of water quality is ex-
plained by this predictor. The estimated regression equation
is PO4

+ = 0.448 + 1.745 DO + 2.269 BOD + 2.119 Mg2+ +
1.882 WV.

The NO3
− concentration showed strong significant positive

relationship with water temperature, organic matter, and Na+.
The R-square of 0.533 revealed 53.3% of the variation of

Fig. 4 Plots of water quality parameters as a multiple linear regression model (a–d); PO4
+ = 0.448 + 1.745 DO + 2.269 BOD + 2.119 Mg2+ + 1.882 VW
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water quality. The estimated regression equation is NO3
− = −

0.542 + 2.173 WT + 3.685 OM+ 1.707 Na+.
The NH4

+ concentration showed strong significant and
positive relationship with K+, volume of water, and negative

Fig. 5 Plots of water quality parameters as a multiple linear regression model (a–c); NO3
− = − 0.542 + 2.173 WT + 3.685 OM+ 1.707 Na+

Fig. 6 Plots of water quality parameters as a multiple linear regression model (a, b); NH4
+ = 0.308–3.633 WT+ 1.702 K+ + 1.934 VW
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with water temperature. The R-square was found equal to
0.65; the estimated regression equation is NH4

+ = 0.308–
3.633 WT + 1.702 K+ + 1.934 VW.

EC concentration showed strong significant and posi-
tive relationship with Cl−, HCO3

−, Mg2+, and TS (R-
square = 0.804); the estimated regression equation is
EC = − 0.582 + 3.097 Cl− + 1.824 HCO3

− + 2.419 Mg2+ +
5.215 TS. Significant variation of PO4

+ and NH4
+ with

water volume could be due to the agricultural activity,
which is associated with the use of organic and inorganic
fertilizers. Generally, the volume of water in the dam
increases with the runoff; the latter brings a large load
of ions from the catchment area (Bhat et al. 2014). The
associations between nutrients and minerals in the multi-
ple linear model revealed that their origin comes from
the process of mechanical erosion of agricultural lands
in the watershed. Therefore, the presence of agricultural
land near bodies of water might include effects on water
chemistry, leaching of biocides (Moss 2008), and

increasing suspended loads from soil erosion (Brodie
and Mitchell 2005). An excess of nutrients in a water
source or eutrophication is often caused by runoff from
the land and causes excessive plant growth, or pollution
from inorganic or organic matter affecting water stress.
This can cause neighboring areas to become severely
damaged over time as water use is restricted (Sevik and
Cetin 2015).

Multivariate analysis

Cluster analysis (CA)

Cluster analysis was used to detect the similarity groups be-
tween the sampling sites and seasons. It yielded a dendrogram,
grouping the sampling sites and the seasons on the basis of a
percentage of similarity and dissimilarity of water quality pa-
rameters. Figure 8 shows the results of the CA and indicates
that the sampling sites were similar and clustered into two

Fig. 7 Plots of water quality parameters as a multiple linear regression model (a–d); EC = − 0.582 + 3.097 Cl− + 1.824 HCO3
− + 2.419Mg2+ + 5.215 TS
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distinct regions (Fig.8a) as follows; the first cluster includes
the wadi station (s1), and the second cluster includes all the
stations of the body of water (s2:s6). The first station is char-
acterized by a low level of water (at max. 3 m), which leads to
the accumulation of some water pollutants and increase their
concentration, e.g., the organic matter whose quantity is high
in this station. This station receives pollution from non-point
sources, i.e., mostly from agricultural activities and cereal
plantations in the watershed. The grouping of the other sta-
tions in a single cluster proves their similarity and confirms the
spatial homogeneity of the surface waters in the dam. There is
a great similarity between the stations of the west (s2, s3, and
s4); these are located near agricultural field. While station 5 is
located far from human activities. In spite of that, these sta-
tions present a homogeneous distribution of the variables;

maybe this homogeneity is due to a relation with the daily
and seasonal movements of water. Seasonal grouping
(Fig. 8b) showed that there is a maximum similarity between
summers and autumns and between winters and springs. This
indicates that the source of pollution in winter and spring is
non-point, coming from the catchment area. While the source
of pollution in summer and autumn is a point from anthropo-
genic activities (i.e., agricultural, urban sewage) in the region.
The results indicate that the CA technique is useful in offering
reliable classification of surface waters in the region and will
make it possible to design a future spatial sampling strategy in
an optimal manner, which can reduce the number of sampling
stations and associated costs.

Principal component analysis/factor analysis

Principal component analysis/factor analysis were carried out
on the dataset (21 variables) to extract the parameters that are
most important in assessing variation in water quality.
Eigenvalue selection criteria were selected to explain the
sources of variance as one and greater than one. Five principal
factors with Eigenvalues > 1 were extracted (Fig. 9)
explaining more than 94.96% of the total variance in the water
quality dataset (Table 4), where a correlation greater than 0.75
is considered “strong”; 0.75–0.50, “moderate”; and 0.50–
0.30, as “weak” significant factor loading (Liu et al. 2003).
The parameter loadings for the two identified factors from the
factor analysis of the data are given in Table 4.

Fig. 8 Dendrogram showing clustering of sampling a stations and b seasons according to surface water quality characteristics of the Ghrib Dam
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In the case of the Ghrib Dam, the F1, which explained
43.16% of the whole dataset, has strong negative loadings
on DO, NH4

+, PO4
−, OM, water inputs, and volume waters

of the Ghrib Dam (Table 4) and moderate loadings on HCO3
−,

NO3
−; it has strong positive loadings onWT, pH andmoderate

loadings on BOD. This factor includes the organic variables
that are related to the level of water supply in the dam, which
may be associated to influences frommunicipal and industrial
point-source discharges, agricultural non-point sources, live-
stock operations, and/or domestic sources (Simeonov et al.
2003; Barakat et al. 2016). The presence of PO4

− and NO3
−

in Ghrib’s water originate from fertilizer application in the
farms; agricultural land use strongly influences stream phos-
phorus and nitrate nitrogen. This is evident as farmers practice
cereal plantation around the area. These elements reflected the
degree of eutrophication and organic pollution of the lake
(Penn and Bowen 2018). A significant amount of nutrients
from fertilizers and farm drainage enter the reservoir and cause
excessive algal growth (Liu et al. 2009).

The F2 explained 19.03% of the total variance with strong
negative loading on Cl−, EC, TS and moderate loadings on
Na+ and Ca2+. This factor accounts for the hardness and sa-
linity of the dam’s water. The presence of ions (cations and
anions) may account for the electrical conductivity and total

solids (Gumbo et al. 2016). These research findings suggest
origins upstream may be associated mostly with the geologi-
cal nature of the lands traversed by the Wadi Cheliff waters in
the watershed.

The F3 and F4, which have moderate loadings on other
mineral salts, and COD, explained respectively the 13.58
and 10.25% variance of the whole dataset (Table 4).
These components can be a response to some changes
introduced in the system by natural factors or a contami-
nation sources.

All the results of the multivariate statistical studies clearly
indicate that the waters of the Ghrib Dam are vulnerable to
pollution from agricultural sources in the first degree, which is
associated with the use of organic and inorganic fertilizers.
The water quality of the Ghrib Dam is directly related to the
wadi Cheliff that feeds it, which is primarily influenced by
agricultural runoff and sewage discharge. This latter is located
next to large lands of cereal cultivation. Principal components
analysis associated the water inputs with nutrients (NH4-,
NO3-, and PO4) and organic matter, which were the key pa-
rameters characterizing the mouth of Ghrib dam, which is
under the influence of agricultural activities in the catchment.
Cluster analysis resulted in two major regions: (i) southern
region (mouth of Ghrib dam, station 1) and(ii) main lake of

Table 4 Factor loadings with variable rotation for the PCs found

PC1 PC2 PC3 PC4 PC5

WT 0.752 0.444 − 0.220 0.377 0.057

DO − 0.868 − 0.024 0.348 − 0.250 0.037

pH 0.781 0.285 0.440 0.064 0.161

NO3
− − 0.544 0.367 − 0.048 0.566 0.381

NH4
+ − 0.990 − 0.000 − 0.070 − 0.088 − 0.031

PO4
− − 0.752 0.254 0.136 0.207 0.452

OM − 0.801 0.025 −0.168 0.351 0.442

BOD 0.711 0.310 −0.520 0.074 − 0.319
COD − 0.529 − 0.310 − 0.678 0.159 − 0.323
Ca2+ − 0.269 − 0.698 − 0.310 0.336 − 0.373
Cl− 0.303 − 0.775 − 0.348 0.317 0.169

CE 0.508 − 0.790 0.140 0.064 0.102

HCO3
− − 0.638 − 0.233 0.464 0.420 −0.310

K+ 0.338 0.130 − 0.756 0.258 0.473

Mg2+ 0.332 − 0.022 − 0.316 − 0.728 0.449

Na+ 0.601 − 0.636 0.0807 − 0.045 0.368

SiO2
− − 0.726 − 0.205 − 0.433 − 0.467 0.114

TS − 0.107 − 0.776 0.418 0.109 0.380

VW − 0.829 − 0.309 − 0.248 − 0.297 − 0.044
WI − 0.884 0.447 − 0.103 0.028 0.063

Eigenvalue 8632 3806 2717 2051 1,78

Variability % 43,162 19,03 13,584 10,257 8924

Cumulative % 43,162 62,19 75,78 86,03 94,96

754 Page 12 of 14 Arab J Geosci (2018) 11: 754



Ghrib Dam (stations 2, 3, 4, 5, and 6). The southern region is
the most influenced by external discharge, which consists in
runoff from the agricultural activities in the catchment and
urban waste water. The results of the multi-linear regression
model also indicate a linear correlation model between water
volume in the dam and nutrients with some ions, indicating
that the dam water quality is fully dependent on those of the
wadi Cheliff, which feeds it.

Conclusion

In this study, different multivariate statistical techniques
were used to evaluate spatial and temporal variations in
surface water quality of the Ghrib Dam. All sampled pa-
rameters indicated significant temporal variability. From
the chemical point of view, water in Ghrib Dam presents
high mineralization in the water body. Nutrient concentra-
tions, the organic matter, and total solid are high enough
during the rainy season in the station S1 located upstream
of Ghrib dam. All other stations undergo an almost constant
distribution of all physicochemical parameters. From mul-
tivariate analysis, it could be construed that the dam water
quality is primarily influenced by agricultural runoff and
wastewater discharge. The PCA indicates that parameters
responsible for water quality variation in the Ghrib Dam are
mainly related to domestic and agricultural non-point
sources or influenced by agricultural field runoff and waste
transfer movements. Results of regression analysis clearly
showed that runoff raises the concentration of most of the
inorganic and organic parameters. Although the results the
cluster analysis indicates that dam waters are vulnerable to
pollution at the same time, after obtaining the two similar
sets of water quality characteristics. Through these results,
future strategies can be designed, including other stations at
several points of the wadi Cheliff-Ghrib, to accurately iden-
tify sources of pollution that threaten the water quality of
the Ghrib Dam.
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