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Abstract
The Haji Abad intrusion is a well-exposed Middle Eocene I-type granodioritc pluton in the Urumieh–Dokhtar magmatic
assemblage (UDMA). The major constituents of the investigated rocks are K-feldspar, quartz, plagioclase, pyroxene, and minor
Fe–Ti oxide and hornblende. The plagioclase compositions fall in the labradorite, andesine, and oligoclase fields. The amphiboles
range in composition from magnesio-hornblende to tremolite–hornblende of the calcic-amphibole group. Most pyroxenes
principally plot in the field of diopside. The calculated average pressure of emplacement is 1.9 kbar for the granodioritic rocks,
crystallizing at depths of about 6.7 km. The highest pressure estimated from clinopyroxene geobarometry (5 kbar) reflects initial
pyroxene crystallization pressure, indicating initial crystallization depth (17.5 km) in the Haji Abad granodiorite. The estimated
temperatures using two-feldspar thermometry give an average 724 °C. The calculated average temperature for clinopyroxene
crystallization is 1090 °C. The pyroxene temperatures are higher than the estimated temperature by feldspar thermometry,
indicating that the pyroxene and feldspar temperatures represent the first and late stages of magmatic crystallization of Haji
Abad granodiorite, respectively. Most pyroxenes plot above the line of Fe3+ = 0, indicating they crystallized under relatively high
oxygen fugacity or oxidized conditions. Furthermore, the results show that the Middle Eocene granitoids crystallized from
magmas with H2O content about 3.2 wt%. The relatively high water content is consistent with the generation environment of
HAG rocks in an active continental margin and has allowed the magma to reach shallower crustal levels. The MMEs with
ellipsoidal and spherical shapes show igneous microgranular textures and chilled margins, probably indicating the presence of
magmamixing. Besides, core to rim compositional oscillations (An and FeO) for the plagioclase crystals serve as robust evidence
to support magma mixing. The studied amphiboles and pyroxenes are grouped in the subalkaline fields that are consistent with
crystallization from I-type calc-alkaine magma in the subduction environment related to active continental margin. Mineral
chemistry data indicate that Haji Abad granodiorites were generated in an orogenic belt related to the volcanic arc setting
consistent with the subduction of Neo-Tethyan oceanic crust beneath the central Iranian microcontinent.
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Introduction

The Haji Abad intrusion is hosted within the Urumieh–
Dokhtar magmatic assemblage (UDMA) as part of the
Zagros orogeny (Fig. 1). Similar to other segments of the
Alpine–Himalayan mountain chain, the Zagros orogeny
formed as a consequence of closure of the Neo-Tethyan ocean
and the continuing continental collision between Arabia and
Eurasia (e.g., Berberian and Berberian 1981; Berberian and
King 1981; Moine-Vaziri 1985; Arvin et al. 2007; Allen 2009)
and is an outstanding natural laboratory for studyingmetamor-
phism and igneous rocks, continental orogenesis, and petro-
genetic and geodynamic processes. Geologically, the Zagros

* Ali Kananian
kananian@khayam.ut.ac.ir

1 School of Geology, College of Science, University of Tehran,
Tehran, Iran

2 Department of Geochemistry and Environmental Science, School of
Earth and Space Sciences, University of Science and Technology of
China, Hefei 230026, China

3 Department of Earth Sciences, Faculty of Sciences, University of
Kurdistan, Sanandaj, Iran

Arabian Journal of Geosciences (2018) 11: 717
https://doi.org/10.1007/s12517-018-4083-4

http://crossmark.crossref.org/dialog/?doi=10.1007/s12517-018-4083-4&domain=pdf
mailto:kananian@khayam.ut.ac.ir


orogeny is made up of three NW–SE-trending parallel belts,
which from north to south are the UDMA, Sanandaj–Sirjan
structural zone (SSZ), and Zagros Fold–Thrust Belt (ZFTB)
(Alavi 2004). UDMAwhich is 150 km wide is predominantly
composed of tholeiitic, calc-alkaline, and K-rich alkaline in-
trusive and extrusive rocks with associated pyroclastic and
volcanoclastic successions, and occurred along the activemar-
gin of the Iranian plate as an active continental magmatism
(Alavi 2004). The intrusive rocks are dominantly composed of
granite, granodiorite, and diorite that generally show calc-al-
kaline, metaluminous, I-type composition (e.g., Rezaei-
Kahkhaei et al. 2011; Sarjoughian et al. 2012; Kananian
et al. 2014; Kazemi et al. 2018). Though many studies have
been done on the petrogenesis of these rocks, there are few
studies conducted on mineral chemistry in order to determine
the emplacement conditions and physicochemical parameters
of the parental magma of these rocks.

The mineral assemblage and compositions in igneous rocks
can be used to evaluate the physicochemical conditions of mag-
ma crystallization during the emplacement of intrusive rocks
(e.g., Abbott 1985; Sarjoughian et al. 2015). So, the composi-
tions and structures of the various mineral phases (feldspar,
amphibole, pyroxene, etc) can serve as ideal proxies for the
determination of magmatic processes and physicochemical pa-
rameters, such as pressure and temperature of crystallization,
oxygen fugacity, H2O contents, and composition of parental
magma (Zhang et al. 2006; Honarmand et al. 2012; Murphy
et al. 2012; Sepahi et al. 2012; Sherafat et al. 2012; Ayati et al.
2013; Sarjoughian et al. 2015). Many researchers proposed that
using estimated crystallization pressure can readily determine
the depths of emplacement and provide insights into the denu-
dation history (e.g., Hammarstrom and Zen 1986; Vyhnal et al.
1991; Schmidt 1992; Anderson 1996; Stein and Dietl 2001;
Zhang et al. 2006). The estimation of the emplacement depth
during the solidification of calc-alkaline intrusions is an indica-
tor of characterizing the complex chemical evolution and tec-
tonic processes in orogenic belts, thus also provides indirect
evidence for the ascent or descent of exposed crustal sections
through time (Rutter et al. 1989; Tulloch and Challis 2000;
Zhang et al. 2006).

Feldspar and pyroxene thermobarometry have been widely
used to estimate the crystallization pressure and temperature
of igneous rocks, providing tools to determine the emplace-
ment depth of rocks (Helz 1973; Fuhrman and Lindsley 1988;
Soesoo 1997; Putirka et al. 2003; Putirka 2005, 2008; Faak
et al. 2013).

Amphibole-group minerals occur in a wide variety of ig-
neous rocks formed in different tectonic environments and
have an important influence in the subduction-related mag-
matic evolution (Anderson 1980; Ernst 1999; Davidson
et al. 2007; Martin 2007; Larocque and Canil 2010; Ridolfi
et al. 2010; Dessimoz et al. 2012; Krawczynski et al. 2012).
Mafic magmas that are related to the subduction tectonic

environment are usually hydrous, and the increase in water
contents of such magmas induces the late-stage metasomatic
processes and formation of interstitial amphibole (Claeson
and Meurer 2004).

The Haji Abad intrusion is a well-exposed Middle Eocene
I-type granodioritc pluton in the north of the Haji Abad village
(Fig. 2) and contains abundant globular or elliptical mafic
microgranular enclaves (MMEs) of various sizes, that provide
an excellent case to investigate the physicochemical condi-
tions in terms of many parameters accompanying magma em-
placement and crystallization.

The Haj i Abad p lu ton was in t ruded in to the
volcanosedimentary rocks (Fig. 2) that mainly consists of
granodiorite and diorite along with aplitic dikes (Tabbakh
Shabani 1991; Safarzadeh et al. 2007; Kazemi et al. 2018).
This intrusive has been named granite in the geologic map of
the Saveh quadrangle at 1:250,000 scale (Nogole-Sadat and
Hoshmandzadeh 1984), but in the Danesfahan quadrangle
map at 1:100,000 scale (Eghlimi 2000), it has been named
as subvolcanic and plutonic rocks with diorite to granite
suites. Kazemi et al. (2018) suggested that the Haji Abad
granitoids are metaluminous, arc-related calc-alkaline, and I-
type in composition. In addition, these researchers, based on
field and petrographic characterization together with bulk rock
geochemical and Nd–Sr isotopic data, suggested that host
rocks and their MMEs originated by interaction between ba-
saltic lower crust-derived felsic and mantle-derived mafic
magmas in an active continental margin arc environment.
The emplacement of the Haji Abad granitoid in the SW
Buin-Zahra region took place ca. 40 Ma, representing an oro-
genic cycle in a preplate collision (Kazemi et al. 2018).
Kazemi et al. (2018) concluded that the angle of subduction
of Neo-Tethyan oceanic crust beneath central Iran is less than
15° for Eocene magmatism in the central UDMA interior,
consistent with flat or low-angle subduction.

The in situ microanalysis of minerals (such as feldspar,
amphibole, and pyroxene) is our approach to reinvestigate this
intrusion where major element compositions are used for (1)
estimations of crystallization temperature, pressure, oxygen
fugacity, and H2O content using mineral chemical composi-
tions of Haji Abad granitoid (HAG) rocks; (2) determination
of chemical composition, nature, and tectonic setting of their
formative magma; and (3) exploration of petrogenetic pro-
cesses, such as magma mixing, responsible for the formation
of I-type intrusive rocks, using chemical zoning in the plagio-
clase crystals and petrography observations.

Geological setting and field relations

The HAG is located about 20 km southwestern of Buin-Zahra
City in the central part of the UDMAwithin the structural zone
of central Iran (Figs. 1 and 2).
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The area is dominated by Eocene magmatic rocks that are the
thickest and largest exposed unit (Fig. 2). The early Eocene vol-
canic rocks are the oldest geologic units in the study area and are
traceable to the Oligocene, Miocene, Pliocene, and the
Quaternary, that show facies variation frommarine to continental
eruptions.

The surrounding rocks in the Haji Abad intrusion are
Eocene rhyodacitic tuff, dacitic pyroclastics, dacite-andesitic
lava flows and breccia, basalt, andesitic basalt, dacitic ignim-
brite, and tuffite (Fig. 2; Nogole-Sadat and Hoshmandzadeh
1984; Eghlimi 2000; Dorouzi and Vosoughi Abedini 2009).

Dacitic pyroclastics, mainly tuffs, are the oldest rocks, and
they are mainly exposed in the southern and western parts of
the Haji Abad granitoid and have the longest contact with the
pluton. The northern and northeastern parts of the intrusion
were emplaced into lower Eocene tuff, andesitic volcanics,
and breccias, whereas the dacitic ignimberites are exposed in
the south of the Haji Abad pluton. This pluton has a low height
and hill morphology, while the surrounding volcanic rocks are
higher.

These rocks are dominantly composed of olivine, plagio-
clase, clinopyroxene, amphibole, biotite, K-feldspar, and
quartz. Geochemically, the basalt, andesitic basalt, andesite,
and dacite belong to the subalkaline series and show calc-
alkaline affinity. Based on their enrichment of LILE and
LREE and relative depletion of HFSE, these rocks can be
correlated with the subduction tectonic setting in an active
continental margin (Dorouzi and Vosoughi Abedini 2009).
The Oligocene starts with a clastic unit of conglomerate,
sandstone, and marl of the Lower Red Formation followed
by limestone marl and marl and finally changes to the peri-
odicity of igneous and volcanoclastic units consisting of
dacite, rhyolite, andesite, basalt, and ignimbrite. The youn-
ger geological units are marine and detrital sediments of
Qom and Upper Red formations, which are deposited on
top of the volcanic rocks during the Oligo-Miocene and
Miocene, respectively.

Several plutonic bodies with K-Ar age of 39.2 ± 3.2 Ma
(Caillat et al. 1978) in the vicinity of the Haji Abad grano-
diorite intruded the Eocene volcanosedimentary rocks that
comprise gabbro, dior i te , quart–dior i te , quartz–
monzodiorite, granodiorite, quartz–monzonite, and granite
along with aplitic dikes (Tabbakh Shabani 1991; Kazemi
et al. 2018) with transitional contact. The Haji Abad pluton
forms a large SE–NW elongated body, elongated parallel to
the regional faults; is medium-grained, granular, and light
gray; and exposed over an area of > 40 km2 that occurs at
the intersection of the regional faults and shows weak con-
tact metamorphism (Figs. 2 and 3a). This pluton comprises
of granodiorite and minor diorite. The dioritic rocks
scattered as small outcrops through the southern part of
the area. These rocks are fine-grained and have a seriate
texture with feldspar megacrysts along the margins that

exhibit a chilled margin, but toward the center, gradually
change to a granular texture. The study of Kazemi et al.
(2018) revealed that the Haji Abad granitoids are medium-
to high-K calc-alkaline, metaluminous, magnetite series and
I-type igneous rocks.

It is notable that microgranular enclaves of various sizes are
common throughout the Haji Abad granodiorites (Fig. 3b).
They are globular or elliptical in shape, 2–30 cm in diameter,
and display hypidiomorphic microgranular texture and sharp
boundaries with their hosts. These enclaves are fine-grained
and darker than their host rocks and comprised of diorite and
gabbro-diorite. They are structurally massive with chilled
margins toward the enclave rims.

Analytical methods

Electron probe microanalyses (EPMA) of mineral assem-
blages were carried out using a JEOL JXA-8230
Superprobe at Hefei University, China. The operating con-
ditions were 15 kV accelerating voltage, 10 nA (K-feldspar
and plagioclase) and 20 nA (amphibole and pyroxene)
beam current, and 5 μm beam diameter. Structural formu-
lae calculations of feldspars are based on eight atoms of
oxygen. Structural formulae of amphibole are calculated on
the basis of 23 oxygens. Pyroxenes are classified by using
the total numbers of specified cations at the M sites based
on the six oxygen atoms.

Field and petrography observation

The predominant intrusive rock of the investigated area is
granodiorites that are gray and massive, and the diorites are
scattered as separate and small outcrops throughout the
southern part of the area and are fine-grained and seriate
with feldspar megacrysts along the margins, but they in-
crease in grain size and become granular toward the center.
The major constituents of the investigated rocks are K-feld-
spar, quartz, plagioclase, pyroxene, and minor Fe–Ti oxide,
and hornblende (Fig. 3c–f), and the accessory minerals (<
1%) include euhedral to rounded zircon, prismatic to acicu-
lar apatite, and titanite. Plagioclase occurs as euhedral to
anhedral crystals, zoned and altered to sericite, epidote,
and calcite, whereas the K-feldspars occur as anhedral
grains. Plagioclase with sieve-textured and poikilitic texture
(Fig. 3c, e) are the common features in these samples. Some
plagioclase crystals show rounding and corroded margins.
Marginal comminution and the rounded corners of plagio-
clase grains can be an indicator of magma mixing (e.g.,
Zorpi et al. 1989; Shelley 1993). Pyroxene as euhedral to
subhedral crystals is a dominant mafic phase in all the rocks
of the HAG. Pyroxene crystals are partly to completely
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transformed to actinolite as a result of hydrothermal alter-
ation (Fig. 3c). Hornblende is commonly at interstitial phase
and is rarely altered to tremolite hornblende, chlorite, and
titanite. Quartz forms anhedral crystals or aggregates of sev-
eral grains with irregular boundaries (Fig. 3e).

MME comprises mafic mineral assemblages, relatively
fine-grained and commonly globular to ellipsoidal shaped
having a typical igneous microstructure (e.g., Vernon 1990;
Barbarin 2005) with various sizes (Fig. 3b). These enclaves
are present throughout the intrusion and are characterized by
a hypidiomorphic microgranular texture and are structurally
massive (Fig. 3f). The majority of the enclaves have chilled
margins and sharp boundaries with their host granodiorite,
although some MMEs have transitional contacts with their
host rock. The MMEs mainly comprise of pyroxene, plagio-
clase, K-feldspar, quartz, and hornblende (Fig. 3f). The pla-
gioclases occur as euhedral–subhedral tabular-prismatic

shape. The pyroxenes are the most abundant dark mineral,
followed by amphiboles.

Mineral chemistry

Feldspar

The results of EPMA analysis of plagioclases and K-
feldspar from the Haji Abad granodiorite are presented in
Table 1 and are shown in a Ab–An–Or ternary diagram
(Fig. 4). The compositions of K-feldspar crystals vary from
Or77 to Or95. The anorthite contents of plagioclases in the
rocks range 9.8–60.2 mol%, and in the Ab–An–Or diagram
(Deer et al. 1992), all of them plot mainly in the labradorite,
andesine, and oligoclase fields (Fig. 4). Plagioclase crystals
commonly show oscillatory zoning (Fig. 5). The core to rim

Fig. 1 Simplified geology of the western Iran showing the Sanandaj–Sirjan zone (SSZ), main Zagros thrust (MZT), and Urumieh–Dokhtar magmatic arc
(UDMA) (modified after Aghanabati 1998)
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EPMA analyses of three plagioclases, HG45-1-P, HG45-2-
P, and HG45-4-P, all show oscillatory variations of An
values from the center to the rime.

Pyroxene

The results of 25 point analyses performed on 15 represen-
tative clinopyroxene crystals from HAG are presented in
Table 2 and are plotted in the diagram of Wo–En–Fs
(Fig. 6a). In the Wo–En–Fs diagram of Morimoto et al.
(1988), most of them principally plot in the field of diopside
and some in the augite field (Fig. 6a). They are classified as
the BQuad^ or Ca–Mg–Fe clinopyroxenes (Fig. 6b;
Morimoto et al. 1989). Clinopyroxenes are rich in Ca
(Wo46.67) but poor in Na (Na2O < 0.44). Their compositions
range from En38Fs9Wo43 to En44Fs15Wo49.

Amphibole

The results of EPMA analysis of amphibole samples from
the Haji Abad granodiorite are presented in Table 3 and
plotted on the BCa+BNa versus BNa diagram (Leake et al.
1997) (Fig. 7a). They range in composition from magnesio-
hornblende to hornblende and to tremolite–hornblende of
the calcic-amphibole group [calculated CaB (B-site; apfu—

atoms per formula unit) is higher than 1.50 apfu, CaA is
lower than 0.5 apfu, the (Na+K)A (A-site) is lower than
0.5 apfu] following the nomenclature of Leake et al.
(1997) (Fig. 7b). The chemical composition of amphibole
in the HAG has wide Al2O3 and SiO2 ranges from 2.87 to
4.16 wt% and from 49.57 to 53.1 wt%, respectively, while
their Mg# (Mg/(Mg+Fe)) varies between 0.88 and 0.96
(Table 3).

Discussion

Estimation of pressure, temperature, oxygen
fugacity, and water contents

Compositions of the mineral chemistry are used to deter-
mine the physicochemical crystallization conditions such
as temperature, pressure, H2O contents, and oxygen fugac-
ity. The estimations of crystallization temperature, pressure,
H2O content, and oxygen fugacity using feldspar and py-
roxene minerals of granitoid rocks were proposed by some
researchers such as Helz (1973), Fuhrman and Lindsley
(1988), Soesoo (1997), Putirka et al. (2003), Putirka
(2005, 2008), and Faak et al. (2013).

Fig. 2 Geological map of the Haji
Abad granitoid. Simplified and
modified from 1:250,000 Saveh
map by Nogole-Sadat and
Hoshmandzadeh (1984)
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Pressure and temperature conditions of crystallization

The plagioclase and pyroxene compositions are sensitive to
variations in the chemistry of magma and the pressure and
temperature crystallization conditions. The pyroxene

crystallization pressures obtained from granodiorite using
the XPT and YPT parameters are shown in Fig. 8a (Soesoo
1997). XPT and YPT parameters were calculated using the
following methods:

X PT ¼ 0:446SiO2 þ 0:l87TiO2−0:404A12O3 þ 0:346FeOtot−0:052MnOþ 0:309MgOþ 0:431CaO−0:446Na2O

Y PT ¼ −0:369SiO2 þ 0:535TiO2−0:317A12O3 þ 0:323FeOtot þ 0:235MnO−0:5l6MgO−0:167CaO−0:l53Na2O

Fig. 3 Field photograph and thin
section representative
microphotographs (cross-
polarized light) of the Haji Abad
granitoids and their enclaves: a
field photograph showing the Haji
Abad granodiorite, b
microgranular enclaves hosted by
granodiorite, c granodiorite with
granular texture including sieved
plagioclase, d feldspar
phenocrysts hosted by
microgranular enclave, e
poikilitic texture and resorption
surface in the granodiorite, and f
photomicrograph showing the
relationship between
microgranular enclave and host
granodiorite. Abbreviations: Pl,
plagioclase; Px, pyroxene; Qtz,
quartz. Mineral abbreviations are
from Kretz (1983)
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The results illustrate clearly that all the pyroxenes fall with-
in the < 2-kbar pressure.

Putirka (2008) proposed a geobarometry base on
clinopyroxene compositions that can be used in granitic rocks.
According to the proposed barometers (equations 30 and 32c:
Putirka 2008), the averages of calculated pressures are 1.9 and
1.8 kbar, respectively. The highest calculated pressure using
the clinopyroxene geobarometry is 5 kbar, which reflects ini-
tial pyroxene crystallization pressure, indicating initial crys-
tallization depth (17.5 km) in the Haji Abad granodiorite.

Assuming that 1 kbar is comparable to ca. 3.5 km of the
crust, they were emplaced at ca. 6.6 km in depth. Petrographic
and textural pieces of evidence such as medium- to fine-
grained and sharp angular contacts to the uppermost crustal
country rocks where low-grade metamorphic aureole, hydro-
thermal alteration, and cognate volcanic rocks nearby were
exposed suggest high-level emplacements in the granodiorite
rocks that are in good agreement with the abovementioned
results (Clarke 1992). The calculated pressure (1.9 kbar) for
the HAG is compatible with suggested thicknesses (ca. 3–
9 km) of Paleogene volcanic and sedimentary rocks in the
Urumieh–Dokhtar magmatic assemblage (e.g., Förster et al.
1972; Morley et al. 2009). Moreover, the estimated pressures
from the other plutonic rocks in UDMA, such as lower Eocene
Kuh-e Dom pluton (1.3 kbar; Sarjoughian et al. 2012), Natanz
pluton (2.1–2.5 kbar; Honarmand et al. 2012), Oligo-Miocene
Nabar pluton (2–2.15 kbar; Abbasi et al. 2014), and Miocene
Niyasar plutonic complex (0.2–1.7 kbar; Honarmand et al.
2016), are in good agreement with the pressure of HAG, in-
dicating that most of the Paleogene granitoids in the UDMA
intruded into the Eocene volcanic rocks. The mentioned dis-
cussions suggest that these shallow intrusions formed under
overburden pressures of < 3 kbar.

Several models of two- and three-feldspar thermometry
have been proposed (e.g., Nekvasil and Burnham 1987;
Fuhrman and Lindsley 1988; Elkins and Grove 1990). The
estimated temperatures using ternary-feldspar thermometry
(Fuhrman and Lindsley 1988) range from 518 to 649 °C,
with average 585 ± 40 °C. But it should be noted that this
thermometry probably displays the subsolidus temperature
that is lower than the actual feldspar crystallization
temperature.

Two-feldspar thermometry (Putirka 2008: Eq. 27a) is the
other thermometry that we use for the estimation of crystalli-
zation temperature. This thermometry shows relatively higher
temperature than the previous geothermometer, with an aver-
age value of 724 ± 23 °C.

Plagioclase and pyroxene are commonly coexisting min-
erals in igneous rocks in a wide range of temperature and
compositions and are used for geothermometry (Faak et al.
2013). Clinopyroxene–plagioclase thermometry was devel-
oped by Faak et al. (2013) based on experiments in the
temperature-sensitive exchange ofMg between clinopyroxeneT
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and plagioclase, according for different anorthite contents in
plagioclase (XAn) and various silica activities (aSiO2) in the
system:

T K½ � ¼ −9219þ 2034XAnð Þ= 1n KMg
P1=Cpx−1:6−1n aSiO2

� �
:

Using this geothermometry, the calculated temperatures
range from 633 to 822 °C (with an average of 741 ± 20 °C).
The estimated temperature corresponds well with the two-
feldspar thermometry results.

Furthermore, we used the XPT versus YPT diagram of Soesoo
(1997) for determination of the pyroxene crystallization temper-
ature (Fig. 8b). It suggests that the pyroxenes crystallized under
the temperature of 1150–1200 °C. Likewise, two methods from
Putirka (2008) (equations 32d and 34) are used for the estimation
of temperature conditions of clinopyroxene crystallization.
According to equations 32d and 34, the calculated temperatures
for clinopyroxene crystallization range from 1009 to 1144 °C
(with an average of 1090 °C) and 947 to 1171 °C (with an
average of 1014 °C), respectively. These temperatures are higher
than the estimated temperature by feldspar thermometry, indicat-
ing that the pyroxene and feldspar temperatures represent the
first and late stages of magmatic crystallization of Haji Abad
granodiorite, respectively.

Oxygen fugacity (ƒO2), H2O contents, and density

Oxygen fugacity has an important influence on the liquidus
temperature, melt and crystal composition, magmatic process
control, crystallization sequence, and types of crystallized
minerals (Botcharnikov et al. 2005; France et al. 2010).
Schweitzer et al. (1979) suggested that the Fe3+ content of

the pyroxenes depends on the oxygen fugacity of their gener-
ation environment, and is shown on the AlIV+Na versus AlVI+
2Ti+Cr plot. Papike and Cameron (1976) have mentioned
distances of the plotted samples from the line of Fe3+ and
suggested that the more distance of samples from the line is
indicative of a higher amount of oxygen fugacity in their for-
mation environment. When the samples of granodiorite are
plotted on the diagram, most of them plot above the line of
Fe3+ = 0, indicating that they crystallized under relatively high
oxygen fugacity or oxidized conditions (Fig. 8c).

The water contents have a considerable influence on
plagioclase-melt equilibria (e.g., Kudo and Weill 1970;
Housh and Luhr 1991; Panjasawatwong et al. 1995). Putirka
(2005) proposed a hygrometric formulation for the calculation
of water contents based on plagioclase-melt compositions.
According to the plagioclase-melt hydrometer of Putirka
(2005), the average of water contents in the Haji Abad grano-
diorite is about 3.2 wt%. The calculated water content is con-
sistent with the generation environment of HAG rocks in an
active continental margin and has allowed the magma to reach
shallower crustal levels.

Because of released water from the subducted oceanic slab
and its transfer to a higher level and eventually the role of
released fluids in the production of magma, this leads to the

Fig. 5 Measured EPMA profiles for representative plagioclase crystals
from the Haji Abad granodiorite, indicating oscillatory zoning

Fig. 4 Compositions of feldspars of the Haji Abad pluton on the Ab–An–
Or diagram (Deer et al. 1992). Or, potassium feldspar; Ab, albite; Ol,
oligoclase; And, andesine; La, labradorite; By, bytownite; An, anorthite

Arab J Geosci (2018) 11: 717 Page 9 of 20 717



Ta
bl
e
2

R
ep
re
se
nt
at
iv
e
el
ec
tr
on

m
ic
ro
pr
ob
e
an
al
ys
es

(w
t%

)
an
d
st
ru
ct
ur
al
fo
rm

ul
ae

(c
pf
u)

of
py
ro
xe
ne

of
th
e
H
aj
iA

ba
d
gr
an
ito

id
s

S
am

pl
e

H
G
45
-1
-P
X
1

H
G
45
-1
-P
X
2

H
G
45
-3
-P
X
1

H
G
45
-3
-P
X
2

H
G
45
-4
-P
1R

H
G
45
-4
-P
1C

H
G
45
-4
-P
2R

H
G
45
-4
-P
2C

H
G
45
-6
-P
X
11

H
G
45
-6
-P
X
12

H
G
45
-6
-P
X
2R

H
G
45
-6
-P
X
2C

H
G
45
-6
-P
X
31

Si
O
2

53
.8
4

53
.7
9

53
.2
8

53
.9
4

54
.1
6

54
.1
4

54
.0
7

53
.2
2

53
.8
7

53
.6
4

53
.4
1

54
.1
2

53
.4
6

T
iO

2
0.
00

0.
08

0.
13

0.
02

0.
06

0.
05

0.
13

0.
04

0.
01

0.
04

0.
04

A
l 2
O
3

0.
45

0.
24

0.
67

0.
32

0.
21

0.
33

0.
27

0.
79

0.
34

0.
21

0.
45

0.
35

0.
35

Fe
O

7.
14

6.
50

7.
61

7.
74

6.
50

6.
96

6.
61

7.
86

6.
74

7.
13

8.
94

6.
47

7.
28

M
gO

14
.9
7

14
.7
7

14
.4
3

14
.9
0

15
.1
3

14
.9
8

15
.0
3

14
.4
1

15
.0
1

14
.7
7

14
.0
2

15
.4
7

15
.2
1

C
aO

22
.8
2

23
.9
3

22
.6
9

22
.7
6

23
.4
2

23
.2
8

23
.4
7

22
.5
0

22
.8
5

23
.7
5

22
.1
7

23
.3
0

22
.7
8

N
a 2
O

0.
34

0.
29

0.
35

0.
31

0.
35

0.
32

0.
29

0.
39

0.
24

0.
24

0.
26

0.
33

0.
27

K
2O

0.
01

0.
01

0.
01

0.
02

0.
01

0.
00

To
ta
l

99
.5
9

99
.6
2

99
.1
5

10
0.
09

99
.8
0

10
0.
08

99
.8
4

99
.3
0

99
.0
9

99
.7
3

99
.2
5

10
0.
08

99
.3
9

Si
1.
99
8

1.
99
6

1.
99
1

1.
99
8

2.
00
2

2.
00
0

2.
00
1

1.
98
6

2.
00
9

1.
99
1

2.
00
5

1.
99
3

1.
98
7

T
i

0.
00
0

0.
00
2

0.
00
4

0.
00
1

0.
00
0

0.
00
2

0.
00
1

0.
00
4

0.
00
1

0.
00
0

0.
00
0

0.
00
1

0.
00
1

A
lIV

0.
00
2

0.
00
2

0.
00
5

0.
00
2

0.
01
0

0.
00
9

0.
00
6

0.
01
2

A
lV

I
0.
01
8

0.
00
9

0.
02
4

0.
01
2

0.
01
1

0.
01
6

0.
01
4

0.
02
5

0.
02
5

0.
00
0

0.
02
5

0.
00
9

0.
00
4

Fe
3
+

0.
00
8

0.
01
4

0.
00
6

0.
01
2

0.
01
3

0.
00
6

0.
00
4

0.
01
4

0.
00
0

0.
02
6

0.
00
0

0.
02
1

0.
02
7

Fe
2
+

0.
21
3

0.
18
8

0.
23
2

0.
22
7

0.
18
8

0.
20
9

0.
20
1

0.
23
2

0.
21
0

0.
19
5

0.
28
1

0.
17
8

0.
19
9

M
g

0.
82
8

0.
81
7

0.
80
4

0.
82
2

0.
83
4

0.
82
5

0.
82
9

0.
80
2

0.
83
5

0.
81
7

0.
78
5

0.
84
9

0.
84
3

C
a

0.
90
7

0.
95
2

0.
90
9

0.
90
3

0.
92
8

0.
92
1

0.
93
1

0.
90
0

0.
91
3

0.
94
4

0.
89
1

0.
91
9

0.
90
7

N
a

0.
02
4

0.
02
1

0.
02
5

0.
02
2

0.
02
5

0.
02
3

0.
02
1

0.
02
8

0.
01
7

0.
01
7

0.
01
9

0.
02
3

0.
01
9

K
0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
1

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

Su
m

ca
tio
n

4.
00
0

4.
00
0

4.
00
0

4.
00
0

4.
00
0

4.
00
0

4.
00
0

4.
00
0

4.
00
0

4.
00
0

4.
00
0

4.
00
0

4.
00
0

M
g/
(M

g+
Fe

2
+
)

0.
79
5

0.
81
3

0.
77
6

0.
78
3

0.
81
6

0.
79
8

0.
80
5

0.
77
6

0.
78
6

0.
80
7

0.
72
9

0.
82
7

0.
80
9

W
o

47
49

47
46

48
47

47
47

46
48

45
47

47
E
n

42
.5
02

41
.7
56

41
.3
46

42
.1
15

42
.7
71

42
.1
89

42
.3
03

41
.4
67

42
.2
57

41
.7
67

39
.8
82

43
.6
27

43
.2
49

Fs
10
.9
33

9.
60
6

11
.9
44

11
.6
39

9.
65
4

10
.6
83

10
.2
28

11
.9
85

11
.5
12

9.
96
7

14
.8
06

9.
15
1

10
.2
05

S
am

pl
e

H
G
45
-6
-P
X
11

H
G
45
-6
-P
X
12

H
G
45
-6
-P
X
21

H
G
45
-6
-P
X
22

H
G
45
-6
-P
X
31

H
G
45
-6
-P
X
32

H
G
45
-8
-P
X
11

H
G
45
-8
-P
X
12

H
G
45
-8
-P
X
21

H
G
45
-8
-P
X
22

H
G
45
-8
-P
X
31

H
G
45
-8
-P
X
32

Si
O
2

53
.3
2

54
.2
1

53
.5
4

52
.7
1

53
.9
5

52
.9
9

53
.1
0

53
.4
0

53
.2
8

53
.5
5

54
.0
4

53
.7
3

T
iO

2
0.
11

0.
07

0.
06

0.
07

0.
06

0.
07

0.
07

0.
01

0.
08

0.
02

0.
07

A
l 2
O
3

0.
48

0.
32

0.
56

0.
94

0.
26

0.
68

0.
27

0.
17

0.
66

0.
40

0.
25

0.
33

Fe
O

9.
09

7.
98

7.
86

7.
72

6.
94

7.
39

8.
52

8.
09

8.
74

9.
39

6.
18

7.
10

M
gO

14
.0
2

14
.8
1

15
.0
3

14
.3
9

15
.2
4

14
.4
6

15
.0
9

14
.8
0

13
.5
0

13
.3
8

15
.0
8

14
.7
3

C
aO

22
.8
5

22
.3
5

22
.2
7

21
.8
8

22
.4
9

22
.7
5

21
.3
0

22
.5
6

23
.1
7

23
.1
5

24
.0
6

23
.1
4

N
a 2
O

0.
30

0.
31

0.
36

0.
41

0.
29

0.
32

0.
23

0.
16

0.
44

0.
32

0.
21

0.
29

K
2O

To
ta
l

10
0.
17

10
0.
09

99
.7
1

98
.1
1

99
.2
4

98
.6
5

98
.5
8

99
.2
2

99
.8
8

10
0.
21

99
.8
3

99
.3
9

Si
1.
98
4

2.
00
9

1.
98
7

1.
98
9

2.
00
8

1.
98
9

1.
99
7

1.
99
8

1.
98
7

1.
99
7

1.
99
8

2.
00
1

T
i

0.
00
3

0.
00
2

0.
00
2

0.
00
2

0.
00
2

0.
00
2

0.
00
2

0.
00
0

0.
00
2

0.
00
1

0.
00
0

0.
00
2

A
lIV

0.
01
3

−0
.0
11

0.
01
1

0.
00
9

−0
.0
10

0.
00
9

0.
00
1

0.
00
2

0.
01
0

0.
00
2

0.
00
2

−0
.0
02

A
lV

I
0.
00
8

0.
02
5

0.
01
3

0.
03
3

0.
02
1

0.
02
1

0.
01
1

0.
00
6

0.
01
9

0.
01
5

0.
00
9

0.
01
7

Fe
3
+

0.
02
7

0.
00
0

0.
02
4

0.
00
6

0.
00
0

0.
01
2

0.
00
6

0.
00
7

0.
02
4

0.
01
0

0.
00
7

0.
00
2

Fe
2
+

0.
25
6

0.
24
7

0.
22
0

0.
23
8

0.
21
6

0.
22
0

0.
26
2

0.
24
6

0.
24
9

0.
28
3

0.
18
4

0.
22
0

M
g

0.
77
8

0.
81
8

0.
83
2

0.
80
9

0.
84
5

0.
80
9

0.
84
6

0.
82
5

0.
75
1

0.
74
4

0.
83
1

0.
81
8

C
a

0.
91
1

0.
88
7

0.
88
5

0.
88
5

0.
89
7

0.
91
5

0.
85
8

0.
90
4

0.
92
6

0.
92
5

0.
95
3

0.
92
3

N
a

0.
02
1

0.
02
2

0.
02
6

0.
03
0

0.
02
1

0.
02
4

0.
01
7

0.
01
1

0.
03
2

0.
02
3

0.
01
5

0.
02
1

K
0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

Su
m

ca
tio
n

4.
00
0

4.
00
0

4.
00
0

4.
00
0

4.
00
0

4.
00
0

4.
00
0

4.
00
0

4.
00
0

4.
00
0

4.
00
0

4.
00
0

M
g/
(M

g+
Fe

2+
)

0.
75
2

0.
75
8

0.
79
1

0.
77
3

0.
78
9

0.
78
6

0.
76
4

0.
77
0

0.
75
1

0.
72
4

0.
81
9

0.
78
8

W
o

47
45

45
.7
18

45
.7
92

45
.5
66

47
.0
63

43
.6
55

45
.7
81

48
47

48
47

E
n

40
.0
03

41
.6
10

42
.9
45

41
.8
97

42
.9
44

41
.6
15

43
.0
28

41
.7
74

38
.9
92

38
.1
08

42
.2
39

41
.7
13

Fs
13
.1
57

13
.2
62

11
.3
37

12
.3
11

11
.4
90

11
.3
23

13
.3
17

12
.4
44

12
.9
25

14
.4
97

9.
32
9

11
.2
02

717 Page 10 of 20 Arab J Geosci (2018) 11: 717



hydration of igneous rocks in the subduction zone environ-
ment (Sarjoughian 2012).

The abovementioned pieces of evidence indicate that the
Haji Abad intrusion had probably been saturated with water
before the final solidification. H2O is the main volatile phase
dissolved in natural aluminosilicate melts and strongly affects
the physicochemical attributes of melts such as phase relation-
ships, viscosity, density, and diffusivity. Therefore, dissolved
water can control magma’s ability to separate from the source
and melt crystallization (Snelling and Woodmorappe 1998)
and distribution of enclaves within the host rocks. As
Mcbirny (2007) proposed, density reduces throughout the en-
tire calc-alkaline series due to the steady reduction in iron and
increase in silica. The calculated density by the method of
Bottinga and Weill (1970) for granodioritic magmas gives an
average 2392 kg/m3.

Mineralogical evidence for magma mixing

The magma forming the Haji Abad granodiorites evolved
by magma mixing, in particular mixing of mafic and felsic
melts. This can be proved by the following evidence in
terms of petrography and mineralogy: The widespread oc-
currences of ellipsoidal and spherical MMEs in the Haji
Abad granodiorite with igneous microgranular textures, dis-
tinct contacts with their host rocks (Fig. 3b, f), chilled mar-
gins against the host granodiorite, and with no sign of re-
crystallization, deformation, and metamorphic or residual
sedimentary fabrics support a magmatic origin resulting
from interactions between basic and felsic magmas (e.g.,
Vernon 1984; Didier and Barbarin 1991; Baxter and Feely
2002; Grogan and Reavy 2002; Perugini et al. 2003;
Sarjoughian et al. 2012; Yang et al. 2015) and preclude
the possibility that the enclaves are fragments of recrystal-
lized, refractory metamorphic rocks or of melt residues from

the granite sources (e.g., Chappell et al. 1987, 2000; White
et al. 1999), fragments of cumulates from the host magma
(e.g., Noyes et al. 1983; Chen et al. 2009; Shellnutt et al.
2010; Huang et al. 2014), or xenoliths of mafic rock (e.g.,
Bonin 2004; Yang et al. 2004, 2006). Furthermore, the pres-
ence of K-feldspar and plagioclase megacrysts and acicular
apatite in the MMEs, feldspars, and quartz that were
entrained from the host granitoids to the enclaves (Fig. 3d)
and the sieve texture in corroded, partially resorbed plagioclases
are pieces of evidence suggesting a hybrid system formed by
mixing of two distinct end-member magma compositions (e.g.,
Yang et al. 2015), during which the mafic magma was injected
into the felsic magma and crystallization under rapid cooling in
a quenched environment occurred as a result of mingling of
small volumes of hot mafic melt with cooler granitoid magma
(e.g., Vernon 1984; Chen et al. 2009, 2016).

Chemically oscillatory zoning in plagioclase has been wide-
ly observed in magmatic rocks (e.g., Tepley et al. 2000;
Davidson et al. 2001; Halama et al. 2002; Tepley and
Davidson 2003; Chen et al. 2015), especially fluctuating An
and FeO contents in plagioclase that are a widespread phenom-
enon in subduction-related magma systems (e.g., Hattori and
Sato 1996; Tepley et al. 2000; Davidson et al. 2001; Ruprecht
and Wörner 2007; Andrews et al. 2008; Shcherbakov et al.
2011; Cao et al. 2014) and are an indicator to identify magmatic
processes. Plagioclase crystals with oscillatory zoning in the
form of anorthite fractions (Fig. 5) likely indicate the mixing
of coexisting mafic and felsic magmas. Ustunisik et al. (2014)
suggested that temperature, total pressure, and water content of
the melts are important factors controlling compositional zon-
ing in plagioclase, although lithospheric pressure will have a
little real effect on plagioclase at a given liquid composition
(Housh and Luhr 1991; Lange et al. 2009). Oxygen fugacity
has obvious effects on Fe content, but not for other elements,
such as partitioning of Ca between plagioclase and melt

Fig. 6 a En–Wo–Fs ternary (Morimoto et al. 1988) and b Q=Ca+Mg+Fe2+ versus J=2Na diagrams (Morimoto et al. 1989) for the determination of
clinopyroxene compositions
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(Phinney 1992; Wilke and Behrens 1999). Although An and
FeO values display similar trends within the core–mantle–rim
of these crystals, they do not show synchronous variations (Fig.
5). These trends indicate that oxygen fugacity variations have
no important role in the observed oscillations, but these

oscillations are indeed caused by changes to the melt composi-
tion, while asynchronous variations (decreasing An without
decreasing FeO) suggest the effect of plagioclase crystallization
which depleted Ca in the melt (Cao et al. 2014). As a result,
strong correlations between An and FeO contents in plagioclase

Fig. 8 a, b XPT versus YPT
diagrams of Soesoo (1997) for the
determination of the pyroxene
crystallization pressure and
temperature. c AlVI+2Ti+Cr
versus AlIV+Na diagram,
indicating crystallization under
relatively high oxygen fugacity or
oxidized conditions (Schweitzer
et al. 1979)

Fig. 7 aBCa+BNa versus BNa diagram, indicating that studied amphiboles belong to the calcic group (Leake et al. 1997). bComposition of amphiboles
of the Haji Abad granodiorite plotted on the Si versus Mg/(Mg+Fe+2) diagram (Leake et al. 1997)
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(Fig. 5) from the Haji Abad granitoid indicate that mixing or
recharging of magma took place under open-system conditions
(Ruprecht and Wörner 2007). Zoned plagioclases in HAG
show wide compositional oscillations from An10 to An60 and
usually well-developed dissolution surfaces that can be an in-
dicator of large-scale turbulences of the magma chamber occur-
ring in open-system conditions, such as during magma mixing
or contamination that both of them can effectively change the

temperature and chemical composition (e.g., Singer et al. 1995;
Hattori and Sato 1996; Davidson and Tepley 1997; Tepley et al.
1999, 2000; Davidson et al. 2001). The oscillatory patterns of
chemical compositions from the core to the rim are commonly
interpreted as an indicator of magma mingling in silica-
intermediate rocks (Stamatelopoulou-Seymour et al. 1990).

According to the petrography and plagioclase chemistry
descriptions mentioned above, it can be concluded that

Fig. 9 a TiO2 versus K2O and b TiO2 versus MgO diagrams using amphibole compositions for discrimination of geochemical affinity and tectonic
environment (Molina et al. 2009)

Fig. 10 a Al2O3 (wt%) versus
TiO2 (wt%) and b Al2O3 (wt%)
versus SiO2 (wt%) binary
diagrams (after Le Base 1962)
using composition of pyroxenes
for discrimination of magmatic
affinity and tectonic setting

Fig. 11 a SiO2/100–TiO2–Na2O ternary diagram using pyroxene
composition (Beccaluva et al. 1989). b Plotted pyroxene data on the Ti
versus Ca diagram (Sun and Bertrand 1991) fall in the orogenic field. c

Amphiboles in Haji Abad granodiorite are plotted in the field of subduc-
tion amphibole on the Na2O versus SiO2 diagram (Coltorti et al. 2007)
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chemical and/or thermal changes occurred in the chamber
magma during crystal growth as a result of magma mixing
(Baxter and Feely 2002; Grogan and Reavy 2002; Yang
et al. 2015).

Nature of magma and tectonic environment

The mineral chemistry of ferromagnesian minerals (such as
pyroxene, amphibole, and biotite) is a function of chemical
composition and tectonic setting of their formative magma
and can provide valuable information about tectonic setting
and petrogenesis of the granitoid rocks (Maulana et al. 2012).
According to many researchers (Chappel and White 1974;
Wyborn et al. 1981; White and Chappell 1983; Clemens and
Wall 1984), the presence of calcic amphiboles in granitoid
rocks indicates that these rocks belong to the I-type granitoids
(Stein and Dietl 2001), because the abundance of CaO in these
granites leads to hornblende crystallization.

Molina et al. (2009) suggested that the incorporation of K,
Mg, and Ti into the amphibole structure depends of the nature
of magma, as the amphiboles in the subalkaline series have
lower TiO2 (< 2 wt%) and K2O than those found in alkaline
series. According to Molina et al. (2009), on the TiO2 versus
K2O and TiO2 versus MgO discrimination diagrams (Fig. 9),

the studied amphiboles are grouped in the subalkaline fields
that are consistent with crystallization from I-type calc-alka-
line magma in a subduction environment related to active
continental margin. Clinopyroxene compositions, especially
element contents such as Ti, Al, Na, Cr, and Si, can be used
to identify the magmatic affinity and geotectonic environment
(e.g., Le Base 1962; Leterrier et al. 1982; Sun and Bertrand
1991). Le Base 1962 has believed that it is possible to separate
peralkaline, alkaline, and subalkaline magmatic series using
the SiO2, Al2O3, and TiO2 contents in the chemical composi-
tion of pyroxene. Pyroxene in granodiorites is rich in Si and
poor in Ti and Al and, in the SiO2 and TiO2 versus Al2O3

diagrams (Fig. 10), plots in the fields of subalkaline and
calc-alkaline, respectively. The above results are in agreement
with geochemical data (Tabbakh Shabani 1991; Safarzadeh
et al. 2007; Kazemi et al. 2018). As Kazemi et al. (2018)
suggested, these rocks are metaluminous and calc-alkaline in
character with low A/CNK (molar Al2O3/(CaO+Na2O+K2O))
ratios from 0.69 to 1.03 and A/NK (molar Al2O3/Na2O+K2O)
ratios from 1.37 to 2.54, indicative of an I-type affinity for
these rocks.

The frequency of elements such as Al, Ti, Cr, Na, and
especially Si in the chemical composition of pyroxene is an
indicator of their nature and tectonic setting (Le Base 1962;

Fig. 12 Schematic model of the
generation of the Haji Abad
granitoids and their mafic
enclaves in the UDMA during the
Middle Eocene
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Leterrier et al. 1982; Sun and Bertrand 1991). As shown in
Fig. 11a, low contents of Ti and high SiO2 contents in the
studied pyroxene structure are characteristic of arc volcanic
igneous rocks (Beccaluva et al. 1989). Furthermore, the plot-
ted pyroxene data on the Ti versus Ca diagram (Sun and
Bertrand 1991) indicates that the HAG rocks were generated
in an orogenic belt (Fig. 11b). The studied amphiboles have
low contents of Na2O and TiO2. Coltorti et al. (2007) pro-
posed that suprasubduction amphiboles (S-Amph) generally
show lower contents of Na2O and TiO2 than intraplate amphi-
boles (I-Amph). Also, amphiboles in Haji Abad granodiorite
are plotted in the field of subduction amphibole on the Na2O
versus SiO2 diagram (Fig. 11c; Coltorti et al. 2007). As shown
in Fig. 10, the low content of Ti and the high content of SiO2

in the pyroxene structure indicate the characteristics of pyrox-
enes in igneous rocks associated with volcanic arc (Beccaluva
et al. 1989). A subduction zone setting for the studied intru-
sion is also supported by geochemical data (Tabbakh Shabani
1991; Safarzadeh et al. 2007; Kazemi et al. 2018). Many re-
searchers proposed the Neo-Tethyan subduction beneath cen-
tral Iran as the interpretation of the origin of magmatism in the
UDMA (Rezaei-Kahkhaei et al. 2011; Honarmand et al. 2012;
Sarjoughian et al. 2012; Kananian et al. 2014; Sarjoughian
et al. 2018). For instance, Honarmand et al. (2012) using
clinopyroxene and biotite composition suggested that Natanz
pluton formed from a calc-alkaline magma in a subduction
zone setting. Also, Sarjoughian et al. (2018) based on geo-
chemical data proposed that Zafarghand igneous complex in
the UDMA formed in an active continental margin setting,
which was emplaced during subduction of Neo-Tethyan oce-
anic crust beneath the Sanandaj–Sirjan and central Iran zones.
Consequently, the HAG represents an orogenic cycle, and the
mixing processes possibly took place in an active continental
margin during northeastward subduction of Neo-Tethyan oce-
anic crust underneath the central Iranian microcontinent (Fig.
12).

Conclusions

1. The Haji Abad intrusion is a well-exposed I-type
granodioritc pluton in the central part of the UDMA.
Two-feldspar and clinopyroxene thermometers yield
crystallization temperatures with an average of 724 and
1090 °C. The calculated pyroxene and feldspar tempera-
tures represent the first and late stages of magmatic crys-
tallization of Haji Abad granodiorite, respectively.

2. Meanwhile, the calculated average pressures of emplace-
ment are 1.9 kbar for the granodioritic rocks, which is
equal to depths of about 6.7 km based on the two barom-
eter equations of clinopyroxene. The highest calculated
pressure (5 kbar) reflects initial pyroxene crystallization

pressure, indicating initial crystallization depth (17.5 km)
in the Haji Abad granodiorite.

3. The oxygen fugacity estimates according to pyroxene are
above the line of Fe3+ = 0, indicating that the Haji Abad
magmas were characterized by relatively high oxygen fu-
gacity or oxidized conditions. Furthermore, the results
show that the rocks crystallized from magmas with H2O
content of 3.2 wt%. The calculated water content is con-
sistent with the generation environment of HAG rocks in
active continental margins.

4. The widespread ellipsoidal and spherical MMEs with ig-
neous micogranular textures and chilled margins in the
Haji Abad granodiorite; the presence of K-feldspar and
plagioclase megacrysts and acicular apatite in the
MMEs, feldspars, and quartz that were entrained from
the host granitoids to the enclaves; and sieve texture in
corroded, partially resorbed plagioclases, together with
An and FeO oscillatory patterns in the plagioclase, sug-
gest a hybrid system formed by mixing of two distinct
end-member magma compositions, duringwhich the maf-
ic magma was injected into the felsic magma, and crys-
tallization under rapid cooling in a quenched environment
occurred as a result of mixing/mingling of hot mafic melt
with cooler granitoid magma, since chemical and/or ther-
mal changes occurred in the chamber magma during crys-
tal growth as a result of magma mixing.

5. The studied amphiboles and pyroxenes are grouped in the
subalkaline fields that are consistent with crystallization
from I-type calc-alkaline magma in a subduction environ-
ment related to active continental margin, indicating the
generation of HAG in an orogenic belt related to the vol-
canic arc setting consistent with the subduction of Neo-
Tethyan oceanic crust beneath the central Iranian
microcontinent.
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